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¢ Interest points:
» Local maxima in scale
space of Laplacian-of-
Gaussian
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ide adapted from Krystian Mikolaiczyk B. Leibe
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Course Outline

Image Processing Basics

Segmentation & Grouping

Object Recognition
Object Categorization |
» Sliding Window based Object Detection

Local Features & Matching

» Local Features - Detection and Description
» Recognition with Local Features

» Indexing & Visual Vocabularies

¢ Object Categorization Il
¢ 3D Reconstruction
¢ Motion and Tracking

Recap: Automatic Scale Selection

¢ Function responses for increasing scale (scale signature)
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Recap: Harris-Laplace pmikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

Harris-Laplace points

ide adapted from Krystian Mikolaiczyk 5. Leibe




Recap: SIFT Feature Descriptor

¢ Scale Invariant Feature Transform
¢ Descriptor computation:
» Divide patch into 4x4 sub-patches: 16 cells

» Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch

» Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
1JCV 60 (2), pp. 91-110, 2004.
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Slide credit: Svetlana | azebnik B. Leibe
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Recognition with Local Features

¢ Image content is transformed into local features that
are invariant to translation, rotation, and scale

¢ Goal: Verify if they belong to a consistent configuration

Local Features,
e.g. SIFT

Computer Vision WS 16/17

ide credit: David lowe B. Leibe
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Parametric (Global) Warping

p’=(y)

p=(xy)
o Transformation 7'is a coordinate-changing machine:
p = T(p)
« What does it mean that 7'is global?

» It’s the same for any point p

» It can be described by just a few numbers (parameters)
¢ Let’s represent T'as a matrix:

, X
p = Mp, ':M
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ide credit: Alexei Ffrg B. Leibe
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Topics of This Lecture

¢ Recognition with Local Features
» Matching local features

Finding consistent configurations

» Alignment: linear transformations

» Affine estimation

» Homography estimation

v

¢ Dealing with Outliers
» RANSAC
» Generalized Hough Transform

¢ Indexing with Local Features
» Inverted file index
» Visual Words
» Visual Vocabulary construction
» tf-idf weighting

B. Leibe
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Concepts: Warping vs. Alignment

Warping: Given a source

0 T ° image and a transformation,
° —_ e s what does the transformed
ike?
. 0 output look like?
L] .
° B .
Alignment: Given two
o T o images with corresponding
° ) s features, what is the
transformation between
[ o]
them?
o o
. 13
ide credit: Kristen Grauman B. Leibe
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RWTH CHET
What Can be Represented by a 2x2 Matrix?

e 2D Scaling?
X'=8,%Xx [xT [s, Ox
y'=s,*y Ly'] [0 s,y

¢ 2D Rotation around (0,0)?

X'=C0os@*x—sind*y [x'] [cos® —sin@][ x
y'=sin@*x+cos@*y Ly'] |sing cosé ||y

¢ 2D Shearing?
X'=x+sh,*y [x7 [ 1 shi[x
y'=sh, *x+y y'| |sh, 1|y

ide credit: Alexei Efro B. Leibe



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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What Can be Represented by a 2x2 Matrix?

e 2D Mirror about y axis?
X'=-X x| [-1 0]x
y'=y y' | [0 1]y
¢ 2D Mirror over (0,0)?
X'=-X x"| [-1 0][x
y'=-y y'| Lo -1y

e 2D Translation?

X'=X+t,
vyt NO!
y'=y+t,
16
Slide credit: Alexej Efro B. Leibe
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Homogeneous Coordinates

¢ Q: How can we represent translation as a 3x3 matrix
using homogeneous coordinates?

X'= X+t
y'=y+t,

¢ A: Using the rightmost column:

10t
Translation=|0 1 t,
0 0 1

ibe 18
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2D Affine Transformations

i 3 10

« Affine transformations are combinations of ...
» Linear transformations, and
» Translations

e Parallel lines remain parallel

ide credit: Alexei Ffrg B. Leibe
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2D Linear Transforms

X' a bjlx
y' c djLy
¢ Only linear 2D transformations can be represented with
a 2x2 matrix.
¢ Linear transformations are combinations of ...
» Scale,
» Rotation,

» Shear, and
> Mirror

ide credit: Alexej Ffro: B. Leibe

Basic 2D Transformations

¢ Basic 2D transformations as 3x3 matrices

x] [1 0 t7x [x] [s, 0 Ofx
y=(0 1 t ]y y'|=|0 s, O]y
1] o0 1)1 1] Jo 0 11
Translation Scaling
X" [cos@ -sing 07[x [x] [1 sh 0O]x
y'|=|sin@ cos@ Ofy y'|=|sh, 1 0|y
1] ] o 0 11 1] l0 o 11
Rotation Shearing
19
ei Efra B. Leibe
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Projective Transformations

il

¢ Projective transformations:
> Affine transformations, and
» Projective warps

o Parallel lines do not necessarily remain parallel

1A m
tray «Lm:nul:|
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Alignment Problem Let’s Start with Affine Transformations

* We have previously considered how to fit a model to
image evidence
» E.g., a line to edge points

¢ Simple fitting procedure (linear least squares)

« Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

« In alignment, we will fit the parameters of some ¢ Can be used to initialize fitting for more complex models

transformation according to a set of matching feature

pairs (“correspondences”).
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Slide credit: Kristen Grauman B. Leibe ide credit: Syetlana | azebnik B. Leibe
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Fitting an Affine Transformation Fitting an Affine Transformation

¢ Assuming we know the correspondences, how do we get
the transformation?

* Affine model approximates perspective projection of
planar objects

MR

B. Leibe
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24

lmage source: David Lowe)

25

ide credit: Kristen Grauman B. Leibe
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Recall: Least Squares Estimation Fitting an Affine Transformation

« Set of data points: (X, X,),(X,, X;,), (X3, X;)

¢ Goal: a linear function to predict X’s from Xs:
Xa+b=X'

* We want to find a and b.

¢ How many (X, X') pairs do we need?

¢ Assuming we know the correspondences, how do we get
the transformation?

=X, X, 1fa '
= X,a+b Xl. 1 _ le AX=B .
g X,a+b=X, X, 1|b X, g m
@ : . . %)
= « What if the data is noisy? = m,
= . N c
2 X, 1 X, Overcor;sltramed Solution: E m,
> . problem 2 _
< X, 1fa] |X . =At =
g : =2 min || Az — B|)? z=A"B 8 m,
2 X, 1(b X, . s
£ = Least-squares Matlab: 2 {,
o L S
o minimization T = A\B 2 3 . ) -
ide credit: Alexei Ffrg: B. Leibe B. Leibe 2
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Fitting an Affine Transformation

X ¥y 0 0 1 0fm, X{
0 0 x vy 0 1|m, A

+ How many matches (correspondence pairs) do we need
to solve for the transformation parameters?

¢ Once we have solved for the parameters, how do we
compute the coordinates of the corresponding point for
(Xnew1 ynew) ?

Slide credit: Kristen Grauman B. Leibe
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Homography

* A projective transform is a mapping between any two
perspective projections with the same center of
projection.

» l.e. two planes in 3D along the same sight ray
¢ Properties
» Rectangle should map to arbitrary quadrilateral
» Parallel lines aren’t
» but must preserve straight lines
¢ This is called a homography

wx' hy h, hglx
wy'| = [hy hy, hy

Set scale factor to 1
= 8 parameters left.

) 1
b4 H p

ide adapted from Alexei Efro: B. Leibe
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Fitting a Homography

¢ Estimating the transformation

Xp € X, Matrix notation
'
Xp, € Xg, X'=HXx
XAJ<—>XE} X":%X'
z

ide credit: Krystian Mikolaiczyic B. Leibe
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Homography

¢ A projective transform is a mapping between any two
perspective projections with the same center of
projection.
» l.e. two planes in 3D along the same sight ray
¢ Properties
» Rectangle should map to arbitrary quadrilateral

» Parallel lines aren’t pP2
» but must preserve straight lines
¢ This is called a homography
wx' Ol | P
v e % % PP1
Wy * * *
w 1
r p
29
ide adapted from Alexej Ffro B. Leibe
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Fitting a Homography
¢ Estimating the transformation
Homogenous coordinates Image coordinates
Xp € X, X' hy hy, hs][x N . X' Matr"ix notation
XaOXayl=hy by by |y yi=2y X'=Hx
X, <> Xg, 7| |hy hy 12 1 7 X"=1yx'
z
31
ide credit: Krystian Mikolaiczyi B. Leibe
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Fitting a Homography

¢ Estimating the transformation

Xp € X, Matrix notation
'
X, > Xg, X'=HXx
XAJ R d XB_, X n_ L. X '
z

I'’e
e s
L
hy, Xg, +huy5‘ +1 ]
ide credit: Krystian Mikolaiczyk 5. Leibe




Fitting a Homography

« Estimating the transformation

Fitting a Homography

¢ Estimating the transformation

¢ Solution:
» Null-space vector of A

NY
Xp € Xg, l
X, €>Xg, A_D

Xp, € Xg,
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ide credit: Krystian Mikolaiczyic B. Leibe

~
=
ﬁ Homogenous coordinates
E Xp € X, Mx] ’h“ h, h“’ Mx Matll'ix n<;i|ation
S . =
il % [y ][h b Bol]y X =hX
§ XA1<—>XB} 72'7 7h31 h32 17 h X":%XI
=3 .
=8
g g K Yyt K oy, v
S B Xty +1 B hy g thyyg +1 34
Slide credit: Krystian Mikolajczyk B. Leibe
Fitting a Homography
« Estimating the transformation
S
g Homogenous coordinates Image coordinates
A x, oxg b rhy, Py X+ +hyg
é Xp, € Xg, Doy Xg, + Ny +1 b hy Xg, + Yy +1
i Xp, > Xg, XA,hsl XBJ+XA,hBZyB‘+XA‘:hll XB,"'hlzyB)‘*'hls
é. hu XB)JrhlzyB]+h13’XA,h31 X&’XAhazy&’xA,=0
8 h21 XB, +hzzy5, + hzs_ yA,h31 XB, - yA,hszyB, - yA, =0 16
ide credit: Krystian MIkQIaTcZVEC Elcihe
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Fitting a Homography

¢ Estimating the transformation

ide credit: Krystian Mikolajczyk B. Leibe

Xy ©Xe M thethy X thate th

Xp, € Xg, hy, Xg, +h32y& +1 hy, Xg + hgzy& +1

Xa X -
A B XAhBI XB,JrXAhazyB,JrXA _hu xﬁ+r112yE5+h13

Fitting a Homography

¢ Estimating the transformation

Py X, 1Y, Py =X Py Xg, =X Ny, =X, =0
Py Xg +h5Ye +1s =Y e Xg =Y, MY — Y, =0

Xs Yg 1 0 O

0 =X Xs X Ys X ||Ms

X, X
AR 00 0 % Yo 1 ~YpXy ~YaYs —Ya||hu
Xy, € Xg, o . o, =
Xp, > Xg, hyy
: Ny
h32
Ah=0 1
. 37
ide credit: Krystian Mikolaiczyi B. Leibe

Fitting a Homography

¢ Estimating the transformation

¢ Solution:
> Null-space vector of A

» Corresponds to smallest
singular vector

SVD Ah

Xp X
A% l
« ox d, - 0
~ B A=UDV' =U :
Xp, X
A ] B, 0 - dg
h= [Vlgv"'!vqg]
Vag
ide credit: Krystian Mikolaiczyk 5. Leibe

Minimizes least square error

39
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Image Warping with Homographies Uses: Analyzing Patterns and Shapes

4
» What is the shape of the b/w floor pattern?

nns

P o
5 é ° \ 5
g g
[ 2
! Q :
2 S
7 o
2 >
g Image plane in front I ‘ g
= Black area =
3 h £
8 x:;:i:ﬂ pixel 0 3 The floor (enlarged)
Slide credit: Steve Seit B. Leibe ide credit: Antonio Criminisi 8. Leibe
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Analyzing Patterns and Shapes Topics of This Lecture
" 1
1 i |
c
L
g
&
o
g ¢ Dealing with Outliers
o s S » RANSAC
] £ S » Generalized Hough Transform
Y =1 0
E 2 From Martin Kemp The Science of Art E
2 (manual reconstruction) 2
> >
g g
2 2
£ £
S ; ) - ) 43
ide credit: Antonio Criminisi B. Leibe B. Leibe
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UNIVERSITY| UNIVERSITY]

Problem: Outliers Example: Least-Squares Line Fitting
¢ OQutliers can hurt the quality of our parameter
estimates, e.g.,
» An erroneous pair of matching points from two images

» A feature point that is noise or doesn’t belong to the
transformation we are fitting.

¢ Assuming all the points that belong to a particular line
are known

~ ~
= =
S &
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1% %]
= =
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= 2
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44 45

5 Lebe Source; Forsvth & Poncel

ide credit: Kriten Grauman B. Leibe
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Outliers Affect Least-Squares Fit Outliers Affect Least-Squares Fit

5 S
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= m = T T 5 E) E] [ 2 @ 3
E e 2 0 s B 4 2 0 B + & £
& 46 S 7
B. Leibe Source; Forsyth & Poncel B. Leibe Source; Forsyth & Ponce

Strategy 1: RANSAC [Fischlers1] RANSAC

¢ RANdom SAmple Consensus RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches)

« Approach: we want to avoid the impact of outliers, so
let’s look for “inliers”, and use only those.

e s L 2. Compute transformation from seed group
¢ Intuition: if an outlier is chosen to compute the current

fit, then the resulting line won’t have much support 3. Find inliers to this transformation

~ ~

=] i o . . . . .

=1 from rest of the points. = 4. If the number of inliers is sufficiently large, re-

K 2 compute least-squares estimate of transformation on

s 5 all of the inliers

2 )

s S . .

g § ¢ Keep the transformation with the largest number of

= . .

g g inliers

o o

© 48 S 49
ide credit: Kristen Grauman B. Lethe ide credit: Kristen Grauman B. Leibe
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RANSAC Line Fitting Example RANSAC Line Fitting Example
¢ Task: Estimate the best line ¢ Task: Estimate the best line
» How many points do we need to estimate the line?
[ ] [ ]
[ ] [ ]
[ ] [ ]
° i ° )
~ [ ] ~ [ ]
g . ° . g ° ° .
2 s 2 H
5 ° s °
< . . < . . Sample two points
: =
S 50 o y 51
ide credit: Jioxiane Chai B. Leibe ide credit: Jinxiane Chai B. Leibe




RANSAC Line Fitting Example

e Task: Estimate the best line

Fit a line to them

Computer Vision WS 16/17

slide credit: Jinxiang Chai B. Leibe

RANSAC Line Fitting Example

e Task: Estimate the best line

Total number of points
within a threshold of
line.

Computer Vision WS 16/17

ide credit: Jinxiano Chai B. Leibe

"7 “7 inlier points”

RANSAC Line Fitting Example

¢ Task: Estimate the best line

<" “11 inlier points”

Repeat, until we get a
good result.
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ide credit: Jinxiano Chai B. Leibe

RANSAC Line Fitting Example

e Task: Estimate the best line

Total number of points

Computer Vision WS 16/17

[ ] [ ] .
° within a threshold of
line.
53
ide credit: Jinxiang Chai B. Leibe
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RANSAC Line Fitting Example
e Task: Estimate the best line
[
E
g Repeat, until we get a
g good result.
g
S .
ide credit: Jinxiang Chai B. Leibe 5

RANSAC: How many samples?

¢ How many samples are needed?
» Suppose W is fraction of inliers (points from line).
> N points needed to define hypothesis (2 for lines)
» k samples chosen.

« Prob. that a single sample of n points is correct: w"

« Prob. that all k samples fail is: 1-w"*

= Choose k high enough to keep this below desired failure
rate.

N
S
©
g
1
=
.
S
2
>
g
5
2
£
o
o

ide credit: David | owe B. Leibe
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RANSAC: Computed k (p=0.99) After RANSAC
Sample Proportion of outliers * RANSAC divides data into inliers and outliers and yields
size estimate computed from minimal set of inliers.
n 5% 10% 20% 25% 30% 40% 50% s ses . . . :
« Improve this initial estimate with estimation over all
2 2 3 5 6 7 117 inliers (e.g. with standard least-squares minimization).
3 3 4 7 9 1 19 35 « But this may change inliers, so alternate fitting with re-
4 3 5 9 13 17 34 72 classification as inlier/outlier.
~ 5 4 6 12 17 26 57 146 ~
= 6 4 7 16 24 37 97 293 =
= 7 | 4 8 20 33 54 163 588 E L.t
S ] oo
% 8 5 9 26 44 78 272 1177 % ‘/ﬂ/f/u_/ -
. ide credit: David | owe B. Leibe % . ide credit: David | owe B. Leibe *

RWTH/CHET RWTH CHET
.. UNIVERSITY o UNIVERSITY
Example: Finding Feature Matches Example: Finding Feature Matches

¢ Find best stereo match within a square search window
(here 300 pixels?)

¢ Global transformation model: epipolar geometry

¢ Find best stereo match within a square search window
(here 300 pixels2)

¢ Global transformation model: epipolar geometry

before RANSAC after RANSAC

Images from Hartley & Zisserman

60
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Images from Hartley & Zisserman

61

ide credit: David | owe B. Leibe ide credit: David lowe. B Lefbe

UNIVERSITY NIVERSITY|

Problem with RANSAC Strategy 2: Generalized Hough Transfuorm

¢ In many practical situations, the percentage of outliers
(incorrect putative matches) is often very high (90% or
above).

¢ Alternative strategy: Generalized Hough Transform

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).
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. 63
ide credit: Svetlana | azebnik B. Leibe

ide credit: Svetlana | azehnik. 5. Leibe




NIVERS
Strategy 2: Generalized Hough Transform

* Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

Of course, a hypothesis from a single match is unreliable.

Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.

5

5
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Slide credit: Svetlana | azebnik B. Leibe

Indexing Local Features

New image

Computer Vision WS 16/17

Model base

ide credit: Kristen Grauman

lmage source: David Lowe)

Object Recognition Results
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Background subtract for Objects recognized Recognition in spite
model boundaries of occlusion
ide credit: Kristen Grauman B. Leibe Jmage source: David | owel

UNIVERS
Pose Clustering and Verification with SIFT

¢ To detect instances of objects from a model base:

1. Index descriptors

* Distinctive features narrow down
possible matches

Computer Vision WS 16/17

65

ide credit: Kristen Grauman 8. Leibe Image source: David Lowel

UNIVERS
Pose Clustering and Verification with SIFT

¢ To detect instances of objects from a model base:

1. Index descriptors

* Distinctive features narrow down
possible matches

2. Generalized Hough transform
to vote for poses
* Keypoints have record of parameters
relative to model coordinate system
3. Affine fit to check for agreement
between model and image
features

* Fit and verify using features from
Hough bins with 3+ votes

Computer Vision WS 16/17
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ide credit: Kristen Grauman B Lefbe Jmage source: David Lowel

Location Recognition
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[Lowe, 1JCV’04] 6
B. Leibe Slide credit: David Lowe
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Recall: Difficulties of Voting

Noise/clutter can lead to as many votes as true target.

Bin size for the accumulator array must be chosen
carefully.

(Recall Hough Transform)

In practice, good idea to make broad bins and spread
votes to nearby bins, since verification stage can prune
bad vote peaks.

Computer Vision WS 16/17

B. Leibe
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References and Further Reading

¢ A detailed description of local feature extraction and
recognition can be found in Chapters 3-5 of Grauman &
Leibe (available on the L2P).

» K. Grauman, B. Leibe e

Visual Object Visual Object Recognition
Recognition Morgan & Claypool publishers, 2011

R. Hartley, A. Zisserman

Multiple View Geometry in

Computer Vision

2nd Ed., Cambridge Univ. Press, 2004

More details on RANSAC can also be found in Chapter 4.7
of Hartley & Zisserman.
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RWTH/ACHEN
Summary

¢ Recognition by alignment: looking for object and pose
that fits well with image
» Use good correspondences to designate hypotheses.
» Invariant local features offer more reliable matches.
» Find consistent “inlier” configurations in clutter
- Generalized Hough Transform
- RANSAC

« Alignment approach to recognition can be effective
if we find reliable features within clutter.
» Application: large-scale image retrieval
» Application: recognition of specific (mostly planar) objects
- Movie posters
- Books

- CD covers
7

B. Leibe
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