Computer Vision - Lecture 12 Recognition with Local Features 05.12.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

Course Outline Image Processing Basics Segmentation & Grouping Object Recognition Object Categorization I Sliding Window based Object Detection Local Features & Matching Local Features - Detection and Description Recognition with Local Features Indexing & Visual Vocabularies Object Categorization II 3D Reconstruction

· Motion and Tracking

What Can be Represented by a 2×2 Matrix?

• 2D Mirror about y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• 2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• 2D Translation?

$$x' = x + t_{_{\scriptscriptstyle X}}$$

$$y' = y + t_y$$

NO!

Slide credit: Alexei Efros

B. Leihe

2D Linear Transforms

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Only linear 2D transformations can be represented with a 2x2 matrix.
- Linear transformations are combinations of ...
 - Scale,
- Rotation,
- Shear, and
- Mirror

D Laiba

Homogeneous Coordinates

 Q: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

$$x' = x + t_x$$
$$y' = y + t_y$$

• A: Using the rightmost column:

$$\text{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Slide credit: Alexei Efros

. Leibe

Basic 2D Transformations

· Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_s \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_s & 0 & 0 \\ 0 & s_s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$\begin{bmatrix} x' \\ 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$\begin{bmatrix} x' \\ 1 \end{bmatrix} \begin{bmatrix} 1 & sh_s & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Shearing

ide credit: Alexei Efros B. Leibe

2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Affine transformations are combinations of ...
 - > Linear transformations, and
 - > Translations
- Parallel lines remain parallel

20

Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Projective transformations:
 - > Affine transformations, and
 - > Projective warps
- Parallel lines do not necessarily remain parallel

Strategy 1: RANSAC [Fischler81] RANdom SAmple Consensus Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those. Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Recall: Difficulties of Voting

- · Noise/clutter can lead to as many votes as true target.
- Bin size for the accumulator array must be chosen carefully.
- (Recall Hough Transform)
- · In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.

- Recognition by alignment: looking for object and pose that fits well with image

 - Invariant local features offer more reliable matches.
- · Alignment approach to recognition can be effective if we find reliable features within clutter.

B. Leibe

References and Further Reading

· A detailed description of local feature extraction and recognition can be found in Chapters 3-5 of Grauman & Leibe (available on the L2P).

- K. Grauman, B. Leibe Visual Object Recognition Morgan & Claypool publishers, 2011
- R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision
 2nd Ed., Cambridge Univ. Press, 2004

More details on RANSAC can also be found in Chapter 4.7 of Hartley & Zisserman.

Summary

Use good correspondences to designate hypotheses.

Find consistent "inlier" configurations in clutter

Generalized Hough Transform

RANSAC

Application: large-scale image retrieval

Application: recognition of specific (mostly planar) objects

Movie posters

Books

CD covers