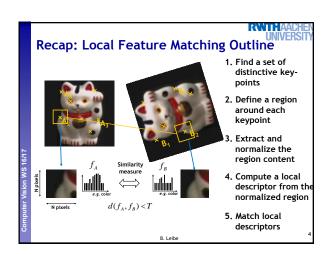
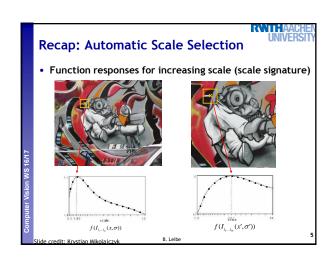
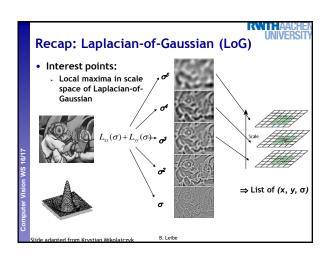
# Computer Vision - Lecture 12 Recognition with Local Features 05.12.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

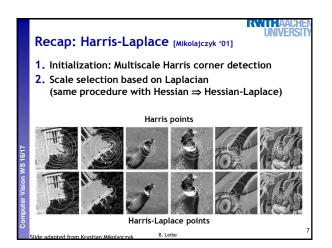
### Course Outline Image Processing Basics Segmentation & Grouping Object Recognition Object Categorization I Sliding Window based Object Detection Local Features & Matching Local Features - Detection and Description Recognition with Local Features Indexing & Visual Vocabularies Object Categorization II 3D Reconstruction

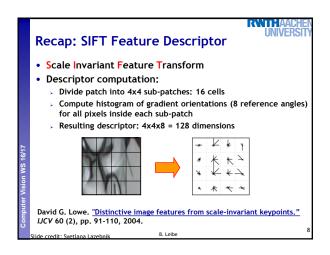
· Motion and Tracking

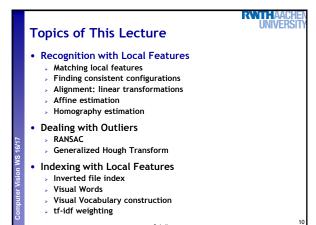


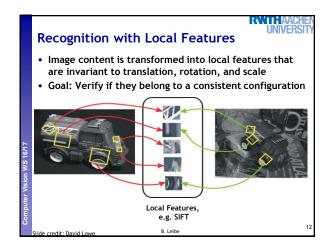


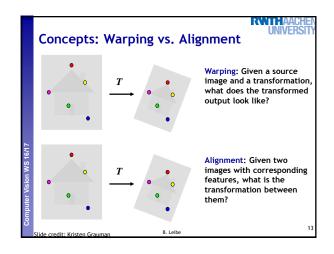


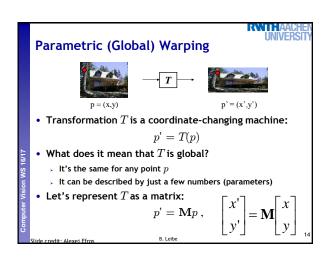


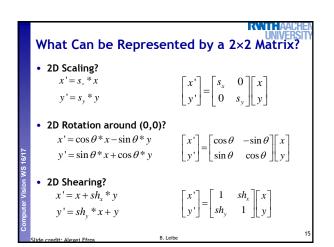












### What Can be Represented by a 2×2 Matrix?

### • 2D Mirror about y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

### • 2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

### • 2D Translation?

$$x' = x + t_{_{\scriptscriptstyle X}}$$

$$y' = y + t_y$$

NO!

Slide credit: Alexei Efros

B. Leihe

### **2D Linear Transforms**

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Only linear 2D transformations can be represented with a 2x2 matrix.
- Linear transformations are combinations of ...
  - Scale,
- Rotation,
- Shear, and
- Mirror

D Laiba

### Homogeneous Coordinates

 Q: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

$$x' = x + t_x$$
$$y' = y + t_y$$

• A: Using the rightmost column:

$$\text{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Slide credit: Alexei Efros

. Leibe

### Basic 2D Transformations

· Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_s \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_s & 0 & 0 \\ 0 & s_s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$\begin{bmatrix} x' \\ 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$\begin{bmatrix} x' \\ 1 \end{bmatrix} \begin{bmatrix} 1 & sh_s & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Shearing

ide credit: Alexei Efros B. Leibe

### **2D Affine Transformations**

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

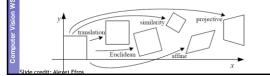
- Affine transformations are combinations of ...
  - > Linear transformations, and
  - > Translations
- Parallel lines remain parallel

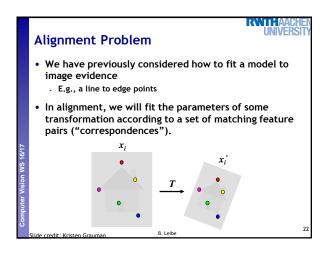
# 20

### Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

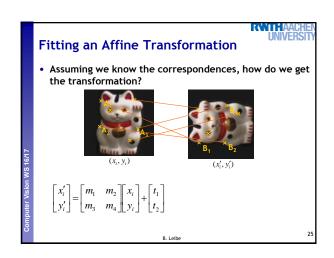
- Projective transformations:
  - > Affine transformations, and
  - > Projective warps
- Parallel lines do not necessarily remain parallel

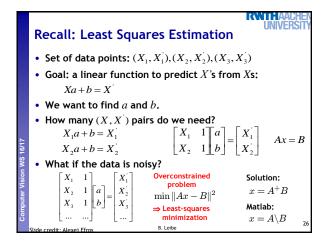


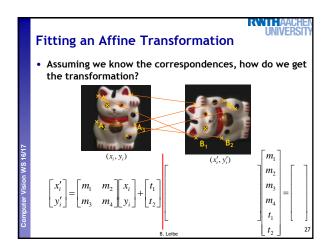


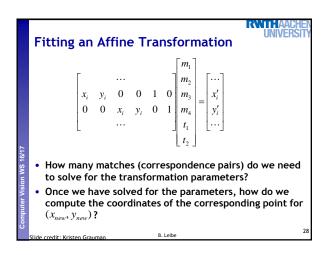


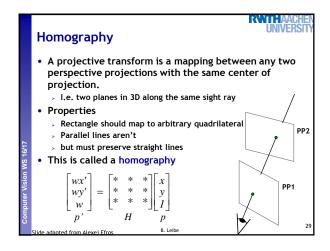


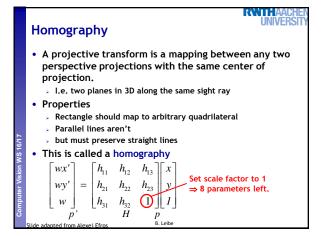


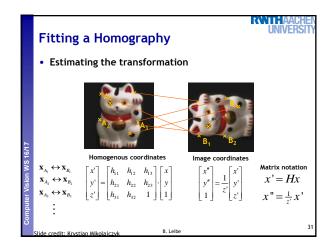


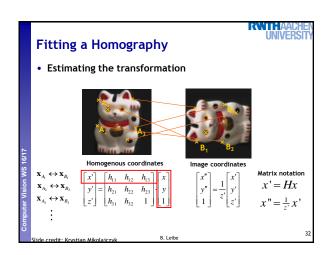


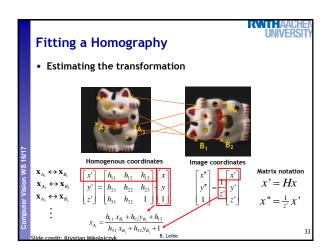


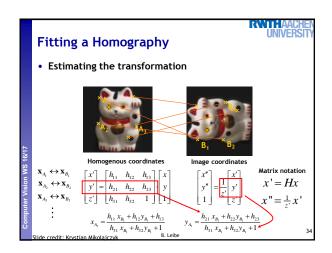


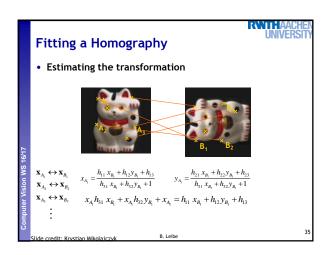


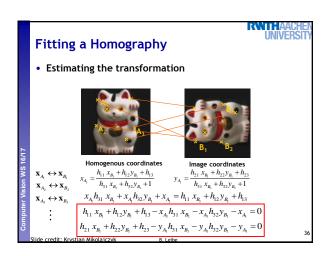


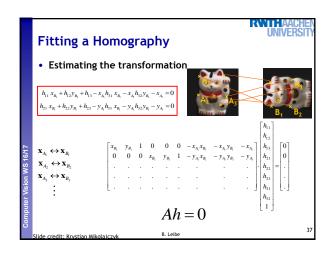


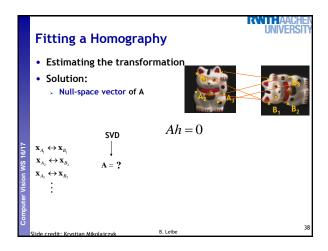


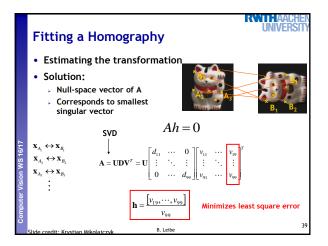


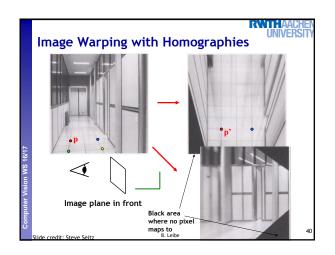


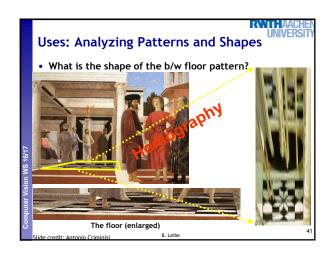


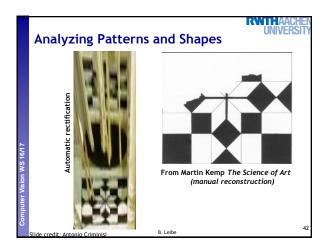




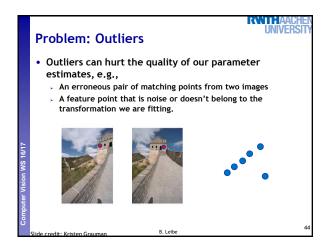


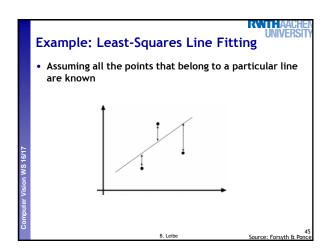


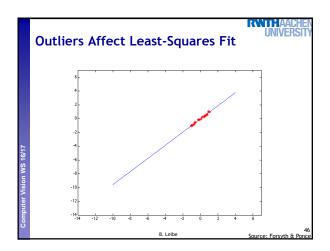


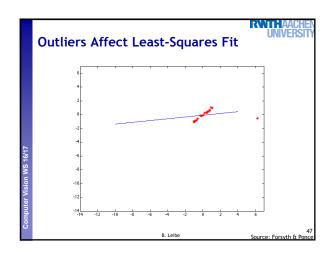




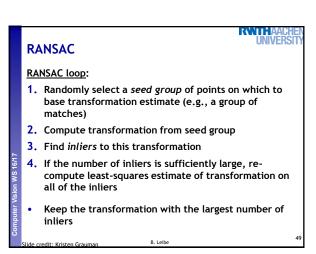


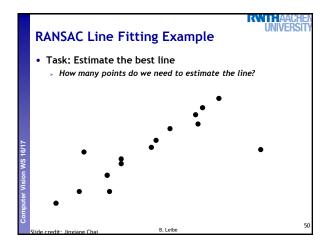


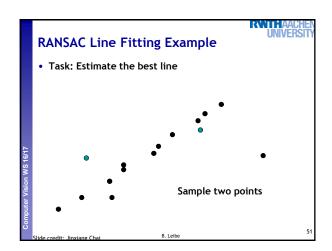


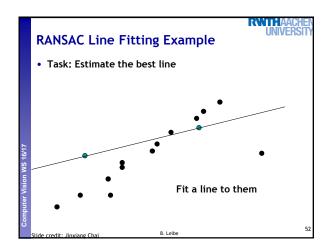


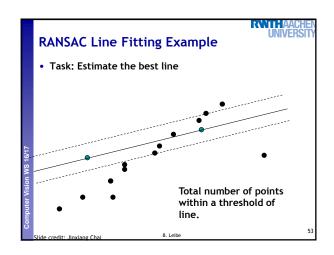
## Strategy 1: RANSAC [Fischler81] RANdom SAmple Consensus Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those. Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

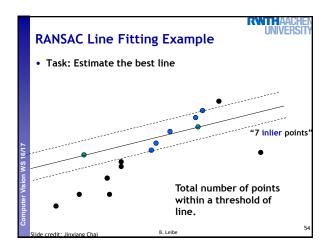


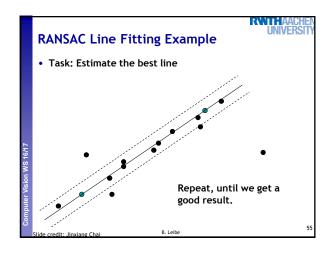


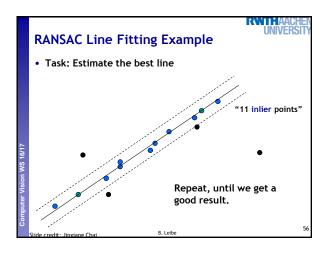


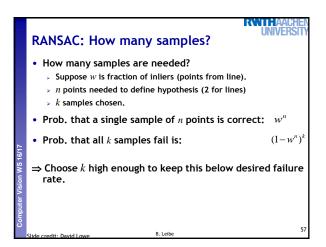




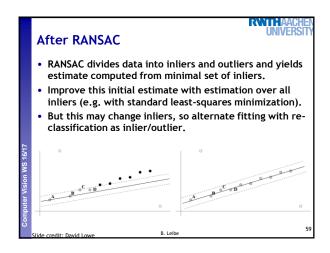


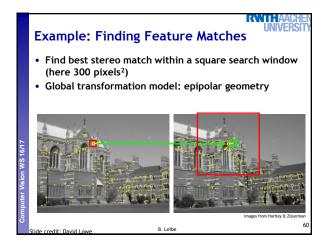


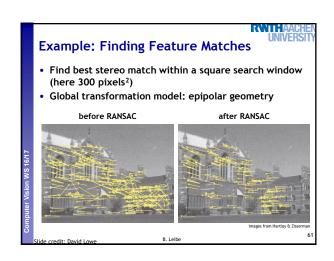


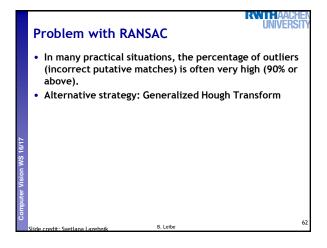


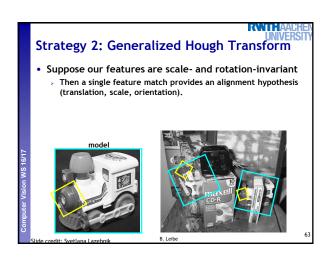
| Sample<br>size | Proportion of outliers |     |     |     |     |     |      |
|----------------|------------------------|-----|-----|-----|-----|-----|------|
| n              | 5%                     | 10% | 20% | 25% | 30% | 40% | 50%  |
| 2              | 2                      | 3   | 5   | 6   | 7   | 11  | 17   |
| 3              | 3                      | 4   | 7   | 9   | 11  | 19  | 35   |
| 4              | 3                      | 5   | 9   | 13  | 17  | 34  | 72   |
| 5              | 4                      | 6   | 12  | 17  | 26  | 57  | 146  |
| 6              | 4                      | 7   | 16  | 24  | 37  | 97  | 293  |
| 7              | 4                      | 8   | 20  | 33  | 54  | 163 | 588  |
| 8              | 5                      | 9   | 26  | 44  | 78  | 272 | 1177 |

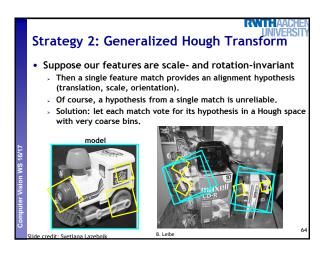


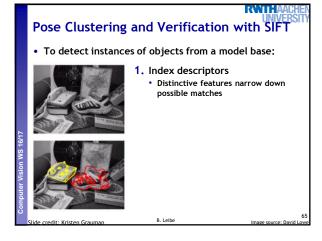


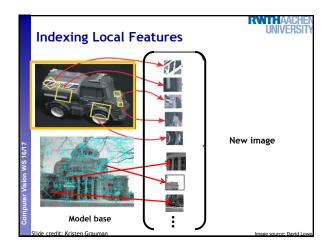


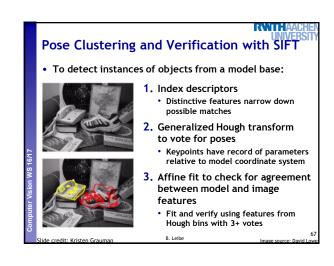


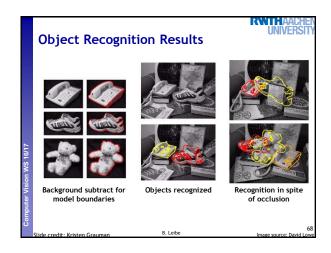


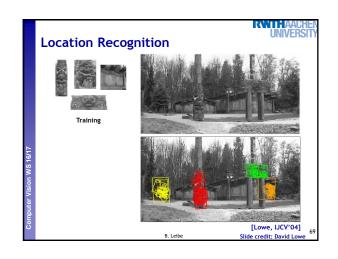












### Recall: Difficulties of Voting

- · Noise/clutter can lead to as many votes as true target.
- Bin size for the accumulator array must be chosen carefully.
- (Recall Hough Transform)
- · In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.

- Recognition by alignment: looking for object and pose that fits well with image

  - Invariant local features offer more reliable matches.
- · Alignment approach to recognition can be effective if we find reliable features within clutter.

B. Leibe

### References and Further Reading

· A detailed description of local feature extraction and recognition can be found in Chapters 3-5 of Grauman & Leibe (available on the L2P).



- K. Grauman, B. Leibe Visual Object Recognition Morgan & Claypool publishers, 2011
- R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision
  2nd Ed., Cambridge Univ. Press, 2004



More details on RANSAC can also be found in Chapter 4.7 of Hartley & Zisserman.

Summary

Use good correspondences to designate hypotheses.

Find consistent "inlier" configurations in clutter

Generalized Hough Transform

RANSAC

Application: large-scale image retrieval

Application: recognition of specific (mostly planar) objects

Movie posters

Books

CD covers