

Computer Vision - Lecture 11

Local Features II

30.11.2016

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Object Categorization I
 - Sliding Window based Object Detection
- Local Features & Matching
 - > Local Features Detection and Description
 - Recognition with Local Features
- Object Categorization II
 - Part based Approaches
 - > Deep Learning Approaches
- 3D Reconstruction
- Motion and Tracking

A Script...

- We've created a script... for the part of the lecture on object recognition & categorization
 - K. Grauman, B. Leibe
 Visual Object Recognition
 Morgan & Claypool publishers, 2011

- Chapter 3: Local Feature Extraction (Last+this lecture)
- Chapter 4: Matching
- Chapter 5: Geometric Verification

(Monday's topic) (Wednesday's topic)

- Available on the L2P -

Recap: Local Feature Matching Outline

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region

5. Match local descriptors

4

RWTHAACHEN UNIVERSITY Recap: Requirements for Local Features

- Problem 1:
 - > Detect the same point *independently* in both images
- Problem 2:

Computer Vision WS 16/17

> For each point correctly recognize the corresponding one

We need a repeatable detector!

We need a reliable and distinctive descriptor!

Recap: Harris Detector [Harris88]

 Compute second moment matrix (autocorrelation matrix)

$$M(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
 1. Image derivatives

- 2. Square of derivatives
- 3. Gaussian filter g(σ_l)

4. Cornerness function - two strong eigenvalues

 $R = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$

$$= g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$$

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk

Computer Vision WS 16/17

6

Recap: Harris Detector Responses [Harris88]

Slide credit: Krystian Mikolajczyk

Hessian Detector [Beaudet78]

• Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

Note: these are 2nd derivatives!

Intuition: Search for strong derivatives in two orthogonal directions

Slide credit: Krystian Mikolajczyk

Hessian Detector [Beaudet78]

• Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

$$det(Hessian(I)) = I_{xx}I_{yy} -$$

In Matlab:

$$I_{xx} * I_{yy} - (I_{xy})^{2}$$

Slide credit: Krystian Mikolajczyk

 I_{xy}^2

Hessian Detector - Responses [Beaudet78]

Effect: Responses mainly on corners and strongly textured areas.

Slide credit: Krystian Mikolajczyk

Hessian Detector - Responses [Beaudet78]

Topics of This Lecture

- Local Feature Extraction (cont'd)
 - Scale Invariant Region Selection
 - > Orientation normalization
 - > Affine Invariant Feature Extraction
- Local Descriptors
 - > SIFT
 - > Applications

• Recognition with Local Features

- Matching local features
- Finding consistent configurations
- > Alignment: linear transformations
- Affine estimation
- Homography estimation

From Points to Regions...

- The Harris and Hessian operators define interest points.
 - Precise localization
 - High repeatability

- In order to compare those points, we need to compute a descriptor over a region.
 - > How can we define such a region in a scale invariant manner?
- I.e. how can we detect scale invariant interest regions?

- Multi-scale procedure
 - Compare descriptors while varying the patch size \succ

 $d(f_A, f_B)$

Slide credit: Krystian Mikolajczyk

- Multi-scale procedure
 - > Compare descriptors while varying the patch size

 $d(f_A, f_B)$

B. Leibe

Slide credit: Krystian Mikolajczyk

- Multi-scale procedure
 - Compare descriptors while varying the patch size \succ

 $d(f_A, f_B)$

B. Leibe

Slide credit: Krystian Mikolajczyk

- Multi-scale procedure
 - > Compare descriptors while varying the patch size

 $d(f_A, f_B)$

B. Leibe

Slide credit: Krystian Mikolajczyk

- Comparing descriptors while varying the patch size
 - **Computationally inefficient** \geq
 - Inefficient but possible for matching ≻
 - Prohibitive for retrieval in large ≻ databases
 - Prohibitive for recognition \succ

e.g. color

Similarity measure

 $d(f_A, f_B)$

B. Leibe

Slide credit: Krystian Mikolajczyk

- Solution:
 - Design a function on the region, which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

 For a point in one image, we can consider it as a function of region size (patch width)

- Common approach:
 - Take a local maximum of this function.
 - > Observation: region size for which the maximum is achieved should be *invariant* to image scale.

Important: this scale invariant region size is found in each image independently!

• Function responses for increasing scale (scale signature)

Slide credit: Krystian Mikolajczyk

B. Leibe

19.

• Function responses for increasing scale (scale signature)

Slide credit: Krystian Mikolajczyk

• Function responses for increasing scale (scale signature)

Slide credit: Krystian Mikolajczyk

• Function responses for increasing scale (scale signature)

Slide credit: Krystian Mikolajczyk

B. Leibe

• Function responses for increasing scale (scale signature)

Slide credit: Krystian Mikolajczyk

B. Leibe

• Function responses for increasing scale (scale signature)

Slide credit: Krystian Mikolajczyk

B. Leibe

• Normalize: Rescale to fixed size

Slide credit: Tinne Tuytelaars

What Is A Useful Signature Function?

• Laplacian-of-Gaussian = "blob" detector

Characteristic Scale

 We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision 30 (2): pp 77--116.

Slide credit: Svetlana Lazebnik

Interest points:

Local maxima in scale \triangleright space of Laplacian-of-Gaussian

 σ^4 $L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^3$

Slide adapted from Krystian Mikolajczyk

B. Leibe

 σ^2

 σ

Slide adapted from Krystian Mikolajczyk

B. Leibe

Slide adapted from Krystian Mikolajczyk

B. Leibe

LoG Detector: Workflow

Slide credit: Svetlana Lazebnik

LoG Detector: Workflow

sigma = 11.9912

Slide credit: Svetlana Lazebnik

LoG Detector: Workflow

Difference-of-Gaussian (DoG)

 We can efficiently approximate the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)

• Advantages?

- > No need to compute 2nd derivatives.
- Gaussians are computed anyway, e.g. in a Gaussian pyramid.

Key point localization with DoG

- Detect maxima of difference-of-Gaussian (DoG) in scale space
- Then reject points with low contrast (threshold)
- Eliminate edge responses

Candidate keypoints: list of (x,y,σ)

Slide credit: David Lowe

DoG - Efficient Computation

Computation in Gaussian scale pyramid

Results: Lowe's DoG

Harris-Laplace [Mikolajczyk '01]

1. Initialization: Multiscale Harris corner detection

Slide adapted from Krystian Mikolajczyk

Computing Harris function Detecting local maxima 47

Harris-Laplace [Mikolajczyk '01]

- **1.** Initialization: Multiscale Harris corner detection
- **2.** Scale selection based on Laplacian (same procedure with Hessian \Rightarrow Hessian-Laplace)

Harris points

Harris-Laplace points

Computer Vision WS 16/17

Summary: Scale Invariant Detection

- Given: Two images of the same scene with a large scale difference between them.
- Goal: Find the same interest points independently in each image.
- Solution: Search for *maxima* of suitable functions in *scale* and in *space* (over the image).
- Two strategies
 - Laplacian-of-Gaussian (LoG)
 - > Difference-of-Gaussian (DoG) as a fast approximation
 - > These can be used either on their own, or in combinations with single-scale keypoint detectors (Harris, Hessian).

Topics of This Lecture

- Local Feature Extraction (cont'd)
 - Scale Invariant Region Selection
 - > Orientation normalization
 - > Affine Invariant Feature Extraction
- Local Descriptors
 - > SIFT
 - > Applications
- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - > Alignment: linear transformations
 - > Affine estimation
 - Homography estimation

Rotation Invariant Descriptors

- Find local orientation
 - Dominant direction of gradient \succ for the image patch

- Rotate patch according to this angle
 - This puts the patches into a canonical orientation. \geq

Slide credit: Svetlana Lazebnik, Matthew Brown

Orientation Normalization: Computation

[Lowe, SIFT, 1999

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

Topics of This Lecture

- Local Feature Extraction (cont'd)
 - Scale Invariant Region Selection
 - > Orientation normalization
 - > Affine Invariant Feature Extraction
- Local Descriptors
 - > SIFT
 - > Applications
- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - > Alignment: linear transformations
 - > Affine estimation
 - Homography estimation

The Need for Invariance

- Up to now, we had invariance to
 - Translation
 - Scale
 - Rotation
- Not sufficient to match regions under viewpoint changes
 - > For this, we need also affine adaptation

RWTHAACHEN UNIVERSITY

Affine Adaptation

• Problem:

Computer Vision WS 16/17

- Determine the characteristic shape of the region.
- Assumption: shape can be described by "local affine frame".
- Solution: iterative approach
 - > Use a circular window to compute second moment matrix.
 - Compute eigenvectors to adapt the circle to an ellipse.
 - Recompute second moment matrix using new window and iterate...

Iterative Affine Adaptation

- 1. Detect keypoints, e.g. multi-scale Harris
- **2.** Automatically select the scales
- 3. Adapt affine shape based on second order moment matrix
- 4. Refine point location

K. Mikolajczyk and C. Schmid, <u>Scale and affine invariant interest point detectors</u>, 56 IJCV 60(1):63-86, 2004. Slide credit: Tinne Tuytelaars

Affine Normalization/Deskewing

- Steps
 - > Rotate the ellipse's main axis to horizontal
 - > Scale the x axis, such that it forms a circle

Slide credit: Tinne Tuytelaars

Affine Adaptation Example

Scale-invariant regions (blobs)

Slide credit: Svetlana Lazebnik

Affine Adaptation Example

Affine-adapted blobs

Slide credit: Svetlana Lazebnik

B. Leibe

RWITHAACHEN UNIVERSITY Summary: Affine-Inv. Feature Extraction

Invariance vs. Covariance

- Invariance:
 - > features(transform(image)) = features(image)
- Covariance:
 - > features(transform(image)) = transform(features(image))

Covariant detection \Rightarrow invariant description

Slide credit: Svetlana Lazebnik, David Lowe

Topics of This Lecture

- Local Feature Extraction (cont'd)
 - > Orientation normalization
 - > Affine Invariant Feature Extraction
- Local Descriptors
 - > SIFT
 - Applications
- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - > Alignment: linear transformations
 - > Affine estimation
 - Homography estimation

Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Slide credit: Kristen Grauman

Local Descriptors

- Simplest descriptor: list of intensities within a patch.
- What is this going to be invariant to?

Feature Descriptors

- Disadvantage of patches as descriptors:
 - > Small shifts can affect matching score a lot

• Solution: histograms

Computer Vision WS 16/17

Feature Descriptors: SIFT

- Scale Invariant Feature Transform
- Descriptor computation:
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

RWTHAACHEN UNIVERSITY

Overview: SIFT

- Extraordinarily robust matching technique
 - > Can handle changes in viewpoint up to ~60 deg. out-of-plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Working with SIFT Descriptors

- One image yields:
 - n 2D points giving positions of the patches
 - [n x 2 matrix]
 - *n* scale parameters specifying the size of each patch
 - [n x 1 vector]
 - *n* orientation parameters specifying the angle of the patch
 - [n x 1 vector]
 - n 128-dimensional descriptors: each one is a histogram of the gradient orientations within a patch
 - [n x 128 matrix]

RWTHAACHEN UNIVERSITY

Local Descriptors: SURF

Fast approximation of SIFT idea

- ➢ Efficient computation by 2D box filters & integral images
 ⇒ 6 times faster than SIFT
- Equivalent quality for object identification
- http://www.vision.ee.ethz.ch/~surf

- GPU implementation available
 - Feature extraction @ 100Hz
 (detector + descriptor, 640×480 img)
 - http://homes.esat.kuleuven.be/~ncorneli/gpusurf/

You Can Try It At Home...

- For most local feature detectors, executables are available online:
- http://robots.ox.ac.uk/~vgg/research/affine
- http://www.cs.ubc.ca/~lowe/keypoints/
- http://www.vision.ee.ethz.ch/~surf
- <u>http://homes.esat.kuleuven.be/~ncorneli/gpusurf/</u>

RWTHAACHEN UNIVERSITY

Affine Covariant Features

LEUVEN

Collaborative work between: the Visual Geometry Group, Katholieke Universiteit Leuven, Inria Rhone-Alpes and the Center for Machine Perceptio

RINRIA

Affine Covariant Region Detectors

Detector output

output example: img1.haraff

Image with displayed regions

display features.m

Parameters defining an affine region

u,v,a,b,c in a(x-u) (x-u)+2b(x-u) (y-v)+c(y-v) (y-v)=1 with (0,0) at image top left corner

Code

- provided by the authors, see <u>publications</u> for details and links to authors web sites.

Linux binaries	Example of use	Displaying 1
Harris-Affine & Hessian-Affine	prompt>./h_affine.ln -haraff -i <u>img1.ppm</u> -o img1.haraff -thres 1000	matlab>> d
	prompt>./h_affine.ln -hesaff -i <u>img1.ppm</u> -o img1.hesaff -thres 500	matlab>> d
$\underline{\text{MSER}}$ - Maximaly stable extremal regions (also Windows)	prompt>./mser.ln -t 2 -es 2 -i <u>img1.ppm</u> -o img1.mser	matlab>> d
IBR - Intensity extrema based detector	prompt>./ibr.ln <u>img1.ppm</u> img1.ibr -scalefactor 1.0	matlab>> d
EBR - Edge based detector	prompt> ./ebr.ln <u>img1.ppm</u> img1.ebr	matlab>> d
Salient region detector	prompt>./salient.ln <u>img1.ppm</u> img1.sal	matlab>> d

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries

Topics of This Lecture

- Local Feature Extraction (cont'd)
 - > Orientation normalization
 - > Affine Invariant Feature Extraction
- Local Descriptors
 - > SIFT
 - > Applications
- Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - > Alignment: linear transformations
 - > Affine estimation
 - Homography estimation

Applications of Local Invariant Features

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition
 - Specific objects
 - Fextures
 - Categories

Wide-Baseline Stereo

RWTHAACHEN UNIVERSITY

Automatic Mosaicing

RWTHAACHEN UNIVERSITY

Panorama Stitching

(a) Matier data set (7 images)

(b) Matier final stitch

available

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

76 [Brown, Szeliski, and Winder, 2005]

RWTHAACHEI UNIVERSIT Recognition of Specific Objects, Scenes

Schmid and Mohr 1997

Sivic and Zisserman, 2003

Rothganger et al. 2003

Lowe 2002

RWTHAACHEN UNIVERSITY

Recognition of Categories

Constellation model

Bags of words

Weber et al. (2000) Fergus et al. (2003)

Csurka et al. (2004) Dorko & Schmid (2005) Sivic et al. (2005) Lazebnik et al. (2006), ...

Value of Local Features

Advantages

- Critical to find distinctive and repeatable local regions for multiview matching.
- Complexity reduction via selection of distinctive points.
- Describe images, objects, parts without requiring segmentation; robustness to clutter & occlusion.
- Robustness: similar descriptors in spite of moderate view changes, noise, blur, etc.
- How can we use local features for such applications?
 - Next: matching and recognition

Topics of This Lecture

- Local Feature Extraction (cont'd)
 - > Orientation normalization
 - > Affine Invariant Feature Extraction
- Local Descriptors
 - > SIFT
 - > Applications

Recognition with Local Features

- Matching local features
- Finding consistent configurations
- > Alignment: linear transformations
- > Affine estimation
- Homography estimation

Recognition with Local Features

- Image content is transformed into local features that are invariant to translation, rotation, and scale
- Goal: Verify if they belong to a consistent configuration

omputer Vision WS 16/17

Warping vs. Alignment

Warping: Given a source image and a transformation, what does the transformed output look like?

Alignment: Given two images with corresponding features, what is the transformation between them?

Parametric (Global) Warping

• Transformation T is a coordinate-changing machine:

$$\mathbf{p'} = T(\mathbf{p})$$

- What does it mean that T is global?
 - It's the same for any point p
 - It can be described by just a few numbers (parameters)
- Let's represent T as a matrix:

$$\mathbf{p'} = \mathbf{M}\mathbf{p} ,$$

Computer Vision WS 16/17

What Can be Represented by a 2×2 Matrix?

• 2D Scaling?

$$x' = s_x * x$$

$$y' = s_y * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• 2D Rotation around (0,0)? $x' = \cos \theta * x - \sin \theta * y$ $y' = \sin \theta * x + \cos \theta * y$

$$\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

• 2D Shearing? $x' = x + sh_x * y$ $y' = sh_y * x + y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Computer Vision WS 16/17

UNIVERSITY What Can be Represented by a 2×2 Matrix?

- 2D Mirror about y axis? x' = -xy' = y
- $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

 $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$

- 2D Mirror over (0,0)? x' = -x
 - y' = -y
- **2D Translation?** $x' = x + t_x$

 $y' = y + t_y$

Computer Vision WS 16/17

NO!

2D Linear Transforms

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Only linear 2D transformations can be represented with a 2x2 matrix.
- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

Computer Vision WS 16/17

Homogeneous Coordinates

• Q: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

$$x' = x + t_x$$
$$y' = y + t_y$$

• A: Using the rightmost column:

Translation =
$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations
- Parallel lines remain parallel

Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Projective transformations:
 - > Affine transformations, and
 - Projective warps
 - Parallel lines do not necessarily remain parallel

Slide credit: Alexej Efros

Alignment Problem

- We have previously considered how to fit a model to image evidence
 - e.g., a line to edge points
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences").

Slide credit: Kristen Grauman

Let's Start with Affine Transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an Affine Transformation

 Affine model approximates perspective projection of planar objects

Fitting an Affine Transformation

• Assuming we know the correspondences, how do we get the transformation?

$$(x_i', y_i')$$

$$\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Recall: Least Squares Estimation

- Set of data points: $(X_1, X_1), (X_2, X_2), (X_3, X_3)$
- Goal: a linear function to predict X's from Xs: Xa + b = X
- We want to find a and b.
- How many (X, X') pairs do we need? $X_1a + b = X_1$ $\begin{vmatrix} X_1 & 1 \\ X_1 & 1 \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \begin{vmatrix} X_1 \\ X' \end{vmatrix} \quad Ax = B$ $X_2a + b = X_2'$
- What if the data is noisy?

 $\begin{bmatrix} X_{1} & 1 \\ X_{2} & 1 \\ X_{3} & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} X_{1}^{'} \\ X_{2}^{'} \\ X_{3}^{'} \end{bmatrix}$ Overconstraine problem min $\|Ax - B\|^{2}$ \Rightarrow Least-square

Overconstrained \Rightarrow Least-squares

minimization

Matlab:

 $x = A \setminus B$

Slide credit: Alexej Efros

Computer Vision WS 16/17

B. Leibe

Fitting an Affine Transformation

 Assuming we know the correspondences, how do we get the transformation?

Fitting an Affine Transformation

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for (x_{new}, y_{new}) ?

Computer Vision WS 16/17

Homography

- A projective transform is a mapping between any two perspective projections with the same center of projection.
 - > I.e. two planes in 3D along the same sight ray
- Properties
 - Rectangle should map to arbitrary quadrilateral
 - Parallel lines aren't
 - but must preserve straight lines
 - This is called a homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$p' \qquad H \qquad p$$

Slide adapted from Alexej Efros

PP2 PP1 98

Homography

- A projective transform is a mapping between any two perspective projections with the same center of projection.
 - > I.e. two planes in 3D along the same sight ray
- Properties

Computer Vision WS 16/17

- Rectangle should map to arbitrary quadrilateral
- Parallel lines aren't
- but must preserve straight lines
- This is called a homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$
 Set scale factor to 1
 \Rightarrow 8 parameters left.
 p

Slide adapted from Alexej Efros

B. Leibe

Estimating the transformation

Matrix notation

$$x'' = \frac{1}{z'} x'$$

Estimating the transformation

$$\mathbf{x}_{A_{1}} \leftrightarrow \mathbf{x}_{B_{1}}$$

$$\mathbf{x}_{A_{2}} \leftrightarrow \mathbf{x}_{B_{2}}$$

$$\mathbf{x}_{A_{3}} \leftrightarrow \mathbf{x}_{B_{3}}$$

$$\begin{bmatrix} x' & h_{11} & h_{12} & h_{13} \\ y' & = h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Image coordinates

Matrix notation

$$x' = Hx$$

$$x'' = \frac{1}{z'}x'$$

B. Leibe

Estimating the transformation

Slide credit: Krystian Mikolajczyk

B. Leibe

Matrix notation

x' = Hx

$$x'' = \frac{1}{z'} x'$$

102

Estimating the transformation

103

Estimating the transformation

Slide credit: Krystian Mikolajczyk

Estimating the transformation

105

Estimating the transformation

$$h_{11} x_{B_1} + h_{12} y_{B_1} + h_{13} - x_{A_1} h_{31} x_{B_1} - x_{A_1} h_{32} y_{B_1} - x_{A_1} = 0$$

$$h_{21} x_{B_1} + h_{22} y_{B_1} + h_{23} - y_{A_1} h_{31} x_{B_1} - y_{A_1} h_{32} y_{B_1} - y_{A_1} = 0$$

 \mathbf{X}_{A_2}

RWTHAACHEN UNIVERSITY

Fitting a Homography

- Estimating the transformation
- Solution:

Computer Vision WS 16/17

- Null-space vector of A
- Corresponds to smallest eigenvector

$$\begin{array}{ccc} \mathbf{x}_{A_{1}} \leftrightarrow \mathbf{x}_{B_{1}} & \downarrow \\ \mathbf{x}_{A_{2}} \leftrightarrow \mathbf{x}_{B_{2}} & \mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{T} = \mathbf{U} \begin{bmatrix} d_{11} & \cdots & d_{19} \\ \vdots & \ddots & \vdots \\ d_{91} & \cdots & d_{99} \end{bmatrix} \begin{bmatrix} v_{11} & \cdots & v_{19} \\ \vdots & \ddots & \vdots \\ v_{91} & \cdots & v_{99} \end{bmatrix}^{T} \\ \vdots & \ddots & \vdots \\ \mathbf{h} = \frac{[v_{19}, \cdots, v_{99}]}{v_{99}} \end{array}$$
 Minimizes least square error

Slide credit: Krystian Mikolajczyk

Image Warping with Homographies

108

Uses: Analyzing Patterns and Shapes

• What is the shape of the b/w floor pattern?

RWTHAACHEN UNIVERSITY

Analyzing Patterns and Shapes

From Martin Kemp The Science of Art (manual reconstruction)

Slide credit: Antonio Criminisi

Computer Vision WS 16/17

Summary: Recognition by Alignment

- Basic matching algorithm
 - 1. Detect interest points in two images.
 - 2. Extract patches and compute a descriptor for each one.
 - 3. Compare one feature from image 1 to every feature in image 2 and select the nearest-neighbor pair.
 - 4. Repeat the above for each feature from image 1.
 - 5. Use the list of best pairs to estimate the transformation between images.

Transformation estimation

- > Affine
- Homography

Time for a Demo...

Automatic panorama stitching

References and Further Reading

- More details on homography estimation can be found in Chapter 4.7 of
 - R. Hartley, A. Zisserman
 Multiple View Geometry in Computer Vision
 2nd Ed., Cambridge Univ. Press, 2004
- Details about the DoG detector and the SIFT descriptor can be found in
 - D. Lowe, <u>Distinctive image features</u> <u>from scale-invariant keypoints</u>, *IJCV* 60(2), pp. 91-110, 2004

- Try the available local feature detectors and descriptors
 - http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries