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Computer Vision – Lecture 7

Segmentation as Energy Minimization

16.11.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de
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Announcements

• Please don’t forget to register for the exam!

 On the Campus system

2
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Course Outline

• Image Processing Basics

• Segmentation

 Segmentation and Grouping

 Segmentation as Energy Minimization

• Recognition

 Global Representations

 Subspace representations

• Local Features & Matching

• Object Categorization

• 3D Reconstruction

• Motion and Tracking

3
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Recap: Image Segmentation

• Goal: identify groups of pixels that go together

4
B. LeibeSlide credit: Steve Seitz, Kristen Grauman
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Recap: K-Means Clustering

• Basic idea: randomly initialize the k cluster centers, and 

iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster

– For each point p, find the closest ci.  Put p into cluster i

3. Given points in each cluster, solve for ci

– Set ci to be the mean of points in cluster i

4. If ci have changed, repeat Step 2

• Properties
 Will always converge to some solution

 Can be a “local minimum”

– Does not always find the global minimum of objective function:

5
B. LeibeSlide credit: Steve Seitz
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Recap: Expectation Maximization (EM)

• Goal

 Find blob parameters µ that maximize the likelihood function:

• Approach:
1. E-step:  given current guess of blobs, compute ownership of each point

2. M-step:  given ownership probabilities, update blobs to maximize 

likelihood function

3. Repeat until convergence
6

B. LeibeSlide credit: Steve Seitz
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Recap: EM Algorithm

• Expectation-Maximization (EM) Algorithm

 E-Step: softly assign samples to mixture components

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments

7
B. Leibe

8j = 1; : : : ;K; n= 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft number of samples labeled j

Slide adapted from Bernt Schiele
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MoG Color Models for Image Segmentation

• User assisted image segmentation

 User marks two regions for foreground and background.

 Learn a MoG model for the color values in each region.

 Use those models to classify all other pixels.

 Simple segmentation procedure

(building block for more complex applications)

8
B. Leibe
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Recap: Mean-Shift Algorithm

• Iterative Mode Search
1. Initialize random seed, and window W

2. Calculate center of gravity (the “mean”) of W:

3. Shift the search window to the mean

4. Repeat Step 2 until convergence
9

B. LeibeSlide credit: Steve Seitz



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

6
/1

7

Recap: Mean-Shift Clustering

• Cluster: all data points in the attraction basin of a mode

• Attraction basin: the region for which all trajectories 

lead to the same mode

10
B. LeibeSlide by Y. Ukrainitz & B. Sarel
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Recap: Mean-Shift Segmentation

• Find features (color, gradients, texture, etc)

• Initialize windows at individual pixel locations

• Perform mean shift for each window until convergence

• Merge windows that end up near the same “peak” or 

mode

11
B. LeibeSlide credit: Svetlana Lazebnik
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Back to the Image Segmentation Problem…

• Goal: identify groups of pixels that go together

• Up to now, we have focused on ways to group pixels into 

image segments based on their appearance…

 Segmentation as clustering.

• We also want to enforce region constraints.

 Spatial consistency

 Smooth borders
12

B. Leibe
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Topics of This Lecture

• Segmentation as Energy Minimization

 Markov Random Fields

 Energy formulation

• Graph cuts for image segmentation

 Basic idea

 s-t Mincut algorithm

 Extension to non-binary case

• Applications

 Interactive segmentation

13
B. Leibe
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Markov Random Fields

• Allow rich probabilistic models for images

• But built in a local, modular way

 Learn local effects, get global effects out

14
B. LeibeSlide credit: William Freeman

Observed evidence

Hidden “true states”

Neighborhood relations
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MRF Nodes as Pixels

15
B. Leibe

Reconstruction

from MRF modeling

pixel neighborhood 

statistics

Degraded imageOriginal image

( , )i ix y

( , )i jx x
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Network Joint Probability

16
B. Leibe

Scene

Image

Slide credit: William Freeman

Image-scene

compatibility 

function

Scene-scene

compatibility 

function

Neighboring

scene nodes
Local

observations
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Energy Formulation

• Joint probability

• Maximizing the joint probability is the same as 

minimizing the negative log

• This is similar to free-energy problems in statistical 

mechanics (spin glass theory). We therefore draw the 

analogy and call E an energy function.

• Á and Ã are called potentials.
17

B. Leibe
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Energy Formulation

• Energy function

• Single-node potentials Á (“unary potentials”)

 Encode local information about the given pixel/patch

 How likely is a pixel/patch to belong to a certain class

(e.g. foreground/background)?

• Pairwise potentials Ã

 Encode neighborhood information

 How different is a pixel/patch’s label from that of its neighbor? 

(e.g. based on intensity/color/texture difference, edges)
18

B. Leibe

Pairwise

potentials

Single-node

potentials

Á(xi; yi)

Ã(xi; xj)
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Energy Minimization

• Goal:

 Infer the optimal labeling of the MRF.

• Many inference algorithms are available, e.g.
 Gibbs sampling, simulated annealing

 Iterated conditional modes (ICM)

 Variational methods

 Belief propagation

 Graph cuts

• Recently, Graph Cuts have become a popular tool
 Only suitable for a certain class of energy functions

 But the solution can be obtained very fast for typical vision 
problems (~1MPixel/sec).

19
B. Leibe

Á(xi; yi)

Ã(xi; xj)
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Topics of This Lecture

• Segmentation as Energy Minimization

 Markov Random Fields

 Energy formulation

• Graph cuts for image segmentation

 Basic idea

 s-t Mincut algorithm

 Extension to non-binary case

• Applications

 Interactive segmentation

20
B. Leibe
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Graph Cuts for Optimal Boundary Detection

• Idea: convert MRF into source-sink graph

21
B. Leibe

n-links

s

t a cuthard 

constraint

hard 

constraint

Minimum cost cut can be 

computed in polynomial time

(max-flow/min-cut algorithms)







 


22
exp



ij

ij

I
w

ijI



[Boykov & Jolly, ICCV’01]Slide credit: Yuri Boykov
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Simple Example of Energy

22
B. Leibe

},{ tsx

Pairwise termsUnary terms

(binary object segmentation)

Slide credit: Yuri Boykov







 


22
exp



ij

ij

I
w

ijI



s

t a cut

)(si

)(ti
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Adding Regional Properties

23
B. Leibe

pqw

n-links

s

t a cut

NOTE: hard constrains are not required, in general.

Regional bias example

Suppose                are given 

“expected” intensities 

of object and background

ts II   and  22 2/||||exp)(  s

ii IIs 

 22 2/||||exp)(  t

ii IIt 

[Boykov & Jolly, ICCV’01]Slide credit: Yuri Boykov

)(si

)(ti
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Adding Regional Properties

24
B. Leibe

pqw

n-links

s

t a cut

 22 2/||||exp)(  s

ii IIs 

 22 2/||||exp)(  t

ii IIt 

EM-style optimization

“expected” intensities of

object and background

can be re-estimated

ts II   and

[Boykov & Jolly, ICCV’01]Slide credit: Yuri Boykov

)(ti

)(si
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Adding Regional Properties

• More generally, regional bias can be based on any 

intensity models of object and background

25
B. Leibe

a cut

given object and background intensity 

histograms 

s

t

I

[Boykov & Jolly, ICCV’01]Slide credit: Yuri Boykov

)(ti

)(si
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How to Set the Potentials? Some Examples

• Color potentials

 e.g., modeled with a Mixture of Gaussians

• Edge potentials

 E.g., a “contrast sensitive Potts model”

where

• Parameters µÁ, µÃ need to be learned, too!

26
B. Leibe [Shotton & Winn, ECCV’06]
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Example: MRF for Image Segmentation

• MRF structure

27
Pair-wise Terms MAP SolutionUnary likelihoodData (D)

Slide adapted from Phil Torr

unary potentials

pairwise potentials
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Topics of This Lecture

• Segmentation as Energy Minimization

 Markov Random Fields

 Energy formulation

• Graph cuts for image segmentation

 Basic idea

 s-t Mincut algorithm

 Extension to non-binary case

• Applications

 Interactive segmentation

28
B. Leibe
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How Does it Work? The s-t-Mincut Problem

29
B. Leibe

Source

Sink

v1 v2

2

5

9

4
2

1

Graph (V, E, C)

Vertices V = {v1, v2 ... vn}

Edges E = {(v1, v2) ....}

Costs C = {c(1, 2) ....}

Slide credit: Pushmeet Kohli
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The s-t-Mincut Problem

30
B. Leibe

Source

Sink

v1 v2

2

5

9

4
2

1

Slide credit: Pushmeet Kohli

What is an st-cut?

What is the cost of a st-cut?

An st-cut (S,T) divides the nodes 

between source and sink.

Sum of cost of all edges

going from S to T

5 + 2 + 9 = 16
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The s-t-Mincut Problem

31
B. Leibe

Source

Sink

v1 v2

2

5

9

4
2

1

Slide credit: Pushmeet Kohli

What is an st-cut?

What is the cost of a st-cut?

An st-cut (S,T) divides the nodes 

between source and sink.

Sum of cost of all edges

going from S to T

st-cut with the 

minimum cost

What is the st-mincut?

2 + 1 + 4 = 7
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How to Compute the s-t-Mincut?

32
B. Leibe

Source

Sink

v1 v2

2

5

9

4
2

1

Solve the dual maximum flow problem

In every network, the maximum flow 

equals the cost of the st-mincut

Min-cut/Max-flow Theorem

Compute the maximum flow 

between Source and Sink

Constraints

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Slide credit: Pushmeet Kohli



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

6
/1

7

History of Maxflow Algorithms

33
B. Leibe

Augmenting Path and Push-Relabel

n: #nodes

m: #edges

U: maximum 

edge weight

Algorithms 

assume non-

negative edge 

weights

Slide credit: Andrew Goldberg
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Maxflow Algorithms

34
B. Leibe

Source

Sink

v1 v2

2

5

9

4
2

1

Slide credit: Pushmeet Kohli

Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 0
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Maxflow Algorithms

35
B. Leibe

Source

Sink

v1 v2

9

4
2

1

Slide credit: Pushmeet Kohli

Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 0
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Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 0 + 2
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Augmenting Path Based 
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1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 2
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Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 2



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

6
/1

7

Maxflow Algorithms

39
B. Leibe

Source

Sink

v1 v2

0

3
2

1

Slide credit: Pushmeet Kohli

Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 2
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Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 2 + 4
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Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 6
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Augmenting Path Based 
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1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 6
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Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 6 + 1
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Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 7
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Augmenting Path Based 

Algorithms

1. Find path from source to sink 

with positive capacity

2. Push maximum possible flow 

through this path

3. Repeat until no path can be 

found

Algorithms assume non-negative capacity

Flow = 7
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Applications: Maxflow in Computer Vision

• Specialized algorithms for vision 

problems

 Grid graphs 

 Low connectivity (m ~ O(n))

• Dual search tree augmenting path algorithm

[Boykov and Kolmogorov PAMI 2004]

 Finds approximate shortest augmenting

paths efficiently.

 High worst-case time complexity.

 Empirically outperforms other 

algorithms on vision problems.

 Efficient code available on the web

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

46
B. LeibeSlide credit: Pushmeet Kohli

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
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When Can s-t Graph Cuts Be Applied?

• s-t graph cuts can only globally minimize binary energies 

that are submodular. 

• Submodularity is the discrete equivalent to convexity.

 Implies that every local energy minimum is a global minimum.

 Solution will be globally optimal.

47
B. Leibe
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by s-t graph cuts
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Submodularity (“convexity”)

[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]
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Topics of This Lecture

• Segmentation as Energy Minimization

 Markov Random Fields

 Energy formulation

• Graph cuts for image segmentation

 Basic idea

 s-t Mincut algorithm

 Extension to non-binary case

• Applications

 Interactive segmentation

53
B. Leibe

other labels
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Dealing with Non-Binary Cases

• Limitation to binary energies is often a nuisance.

 E.g. binary segmentation only…

• We would like to solve also multi-label problems.

 The bad news: Problem is NP-hard with 3 or more labels!

• There exist some approximation algorithms which 

extend graph cuts to the multi-label case:

 -Expansion

 -Swap

• They are no longer guaranteed to return the globally 

optimal result.

 But -Expansion has a guaranteed approximation quality 

(2-approx) and converges in a few iterations.

54
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-Expansion Move

• Basic idea:

 Break multi-way cut computation into a sequence of 

binary s-t cuts.

55
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other labels

Slide credit: Yuri Boykov
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-Expansion Algorithm

1. Start with any initial solution

2. For each label  “”  in any (e.g. random) order:

1. Compute optimal -expansion move (s-t graph cuts).

2. Decline the move if there is no energy decrease.

3. Stop when no expansion move would decrease energy.

56
B. LeibeSlide credit: Yuri Boykov
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Example: Stereo Vision

57
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Original pair of “stereo” images

Depth map

ground truth

Slide credit: Yuri Boykov

Depth map
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-Expansion Moves

• In each -expansion a given label “” grabs space from 

other labels

58
B. Leibe

initial solution

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

For each move, we choose the expansion that gives the largest 

decrease in the energy:       binary optimization problem

Slide credit: Yuri Boykov
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Topics of This Lecture

• Segmentation as Energy Minimization

 Markov Random Fields

 Energy formulation

• Graph cuts for image segmentation

 Basic idea

 s-t Mincut algorithm

 Extension to non-binary case

• Applications

 Interactive segmentation

59
B. Leibe



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

6
/1

7

GraphCut Applications: “GrabCut”

• Interactive Image Segmentation [Boykov & Jolly, ICCV’01]

 Rough region cues sufficient 

 Segmentation boundary can be extracted from edges

• Procedure
 User marks foreground and background regions with a brush.

 This is used to create an initial segmentation
which can then be corrected by additional brush strokes.

User segmentation cues

Additional 

segmentation

cues

Slide credit: Matthieu Bray
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GrabCut: Data Model

• Obtained from interactive user input

 User marks foreground and background regions with a brush

 Alternatively, user can specify a bounding box
61
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Global optimum of 

the energy 

Background

color

Foreground

color

Slide credit: Carsten Rother
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GrabCut: Coherence Model

• An object is a coherent set of pixels:

62
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How to choose  ?  

Slide credit: Carsten Rother
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Iterated Graph Cuts

63
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each iteration

Result
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Color model

(Mixture of Gaussians)

Slide credit: Carsten Rother
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GrabCut: Example Results

• This is included in the newest version of MS Office!

64
B. Leibe Image source: Carsten Rother
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Applications: Interactive 3D Segmentation

65
B. LeibeSlide credit: Yuri Boykov [Y. Boykov, V. Kolmogorov, ICCV’03]
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Summary: Graph Cuts Segmentation

• Pros

 Powerful technique, based on probabilistic model (MRF).

 Applicable for a wide range of problems.

 Very efficient algorithms available for vision problems.

 Becoming a de-facto standard for many segmentation tasks.

• Cons/Issues

 Graph cuts can only solve a limited class of models

– Submodular energy functions

– Can capture only part of the expressiveness of MRFs

 Only approximate algorithms available for multi-label case

67
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References and Further Reading

• A gentle introduction to Graph Cuts can be found in the 

following paper:
 Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and 

Applications. In Handbook of Mathematical Models in Computer Vision, 

edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006. 

• Read how the interactive segmentation is realized in MS 

Office 2010

 C. Rother, V. Kolmogorov, Y. Boykov, A. Blake, Interactive 

Foreground Extraction using Graph Cut, Microsoft Research Tech 

Report MSR-TR-2011-46, March 2011

• Try the GraphCut implementation at

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

B. Leibe
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http://www.csd.uwo.ca/~yuri/Papers/chapter_04.pdf
http://research.microsoft.com/pubs/147408/RotherEtAlMRFBook-GrabCut.pdf
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

