

Computer Vision - Lecture 7

Segmentation as Energy Minimization

16.11.2016

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements

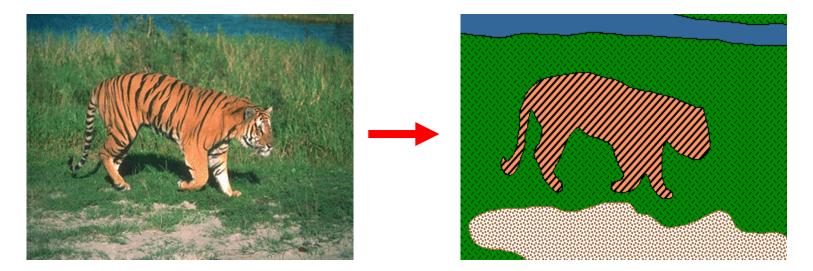
- Please don't forget to register for the exam!
 - > On the Campus system

Course Outline

- Image Processing Basics
- Segmentation
 - Segmentation and Grouping
 - Segmentation as Energy Minimization
- Recognition
 - Global Representations
 - Subspace representations
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
- Motion and Tracking

Recap: Image Segmentation

• Goal: identify groups of pixels that go together



Recap: K-Means Clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 - 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
 - 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 - 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 - 4. If c_i have changed, repeat Step 2

Properties

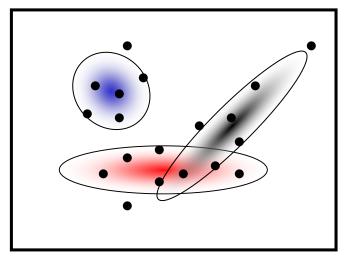
- Will always converge to some solution
- Can be a "local minimum"
 - Does not always find the global minimum of objective function:

 $||p - c_i||^2$

clusters i

points p in cluster i

RWTHAACHEN UNIVERSITY Recap: Expectation Maximization (EM)



Goal

Computer Vision WS 16/17

Find blob parameters θ that maximize the likelihood function:

$$p(data|\theta) = \prod_{n=1}^{N} p(\mathbf{x}_n|\theta)$$

• Approach:

- 1. E-step: given current guess of blobs, compute ownership of each point
- M-step: given ownership probabilities, update blobs to maximize likelihood function
- 3. Repeat until convergence

Slide credit: Steve Seitz

Recap: EM Algorithm

See lecture Machine Learning!

7

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j = 1, \dots, K, \ n = 1, \dots, N$$

 M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) = \text{soft number of samples labeled } j$$

$$\hat{\pi}_{j}^{\text{new}} \leftarrow \frac{\hat{N}_{j}}{N}$$

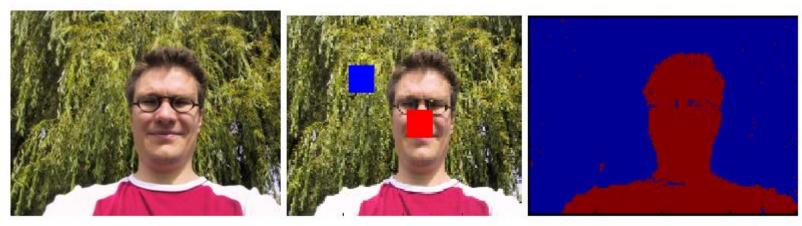
$$\hat{\mu}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}$$

$$\hat{\Sigma}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\mu}_{j}^{\text{new}}) (\mathbf{x}_{n} - \hat{\mu}_{j}^{\text{new}})^{\text{T}}$$

Slide adapted from Bernt Schiele

Computer Vision WS 16/17

RWTHAACHE UNIVERSIT MoG Color Models for Image Segmentation



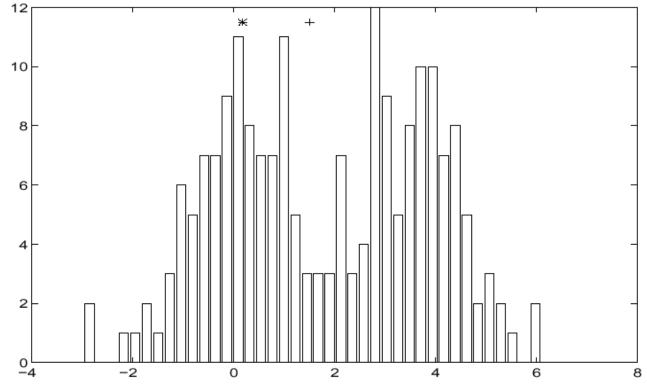
(a) input image

(b) user input

(c) inferred segmentation

- User assisted image segmentation
 - > User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - > Use those models to classify all other pixels.
 - ⇒ Simple segmentation procedure (building block for more complex applications)

Recap: Mean-Shift Algorithm



Computer Vision WS 16/17

Iterative Mode Search

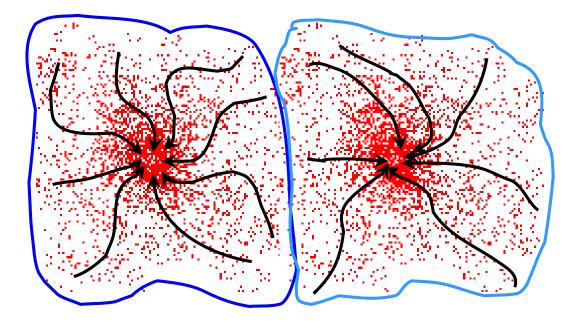
- 1. Initialize random seed, and window W
- 2. Calculate center of gravity (the "mean") of W: $\sum xH(x)$
- 3. Shift the search window to the mean
- 4. Repeat Step 2 until convergence

Slide credit: Steve Seitz

 $x \in W$

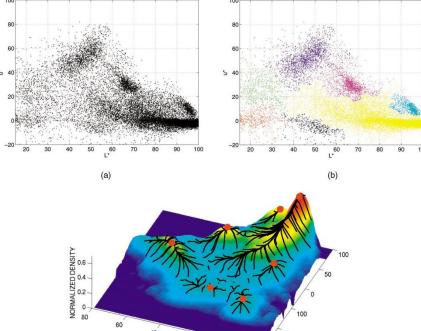
Recap: Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode



Recap: Mean-Shift Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

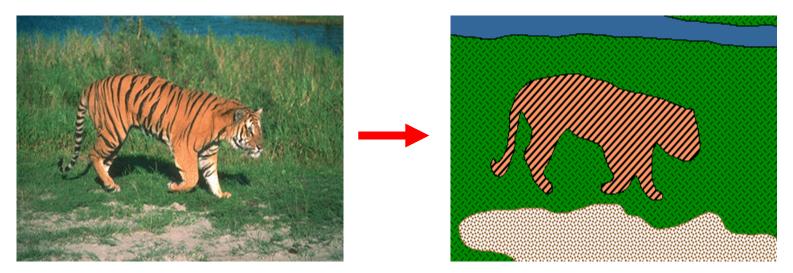


B. Leibe

omputer Vision WS 16/17

Back to the Image Segmentation Problem...

• Goal: identify groups of pixels that go together



- Up to now, we have focused on ways to group pixels into image segments based on their appearance...
 - Segmentation as clustering.
- We also want to enforce region constraints.
 - Spatial consistency
 - Smooth borders

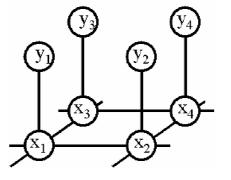
RWITHAACHEN UNIVERSITY

Topics of This Lecture

- Segmentation as Energy Minimization
 - Markov Random Fields
 - Energy formulation
- Graph cuts for image segmentation
 - Basic idea
 - s-t Mincut algorithm
 - Extension to non-binary case

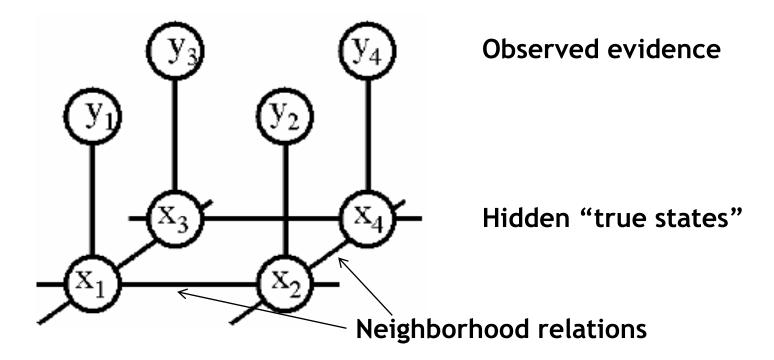
• Applications

Interactive segmentation



Markov Random Fields

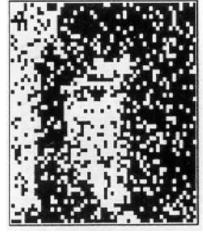
- Allow rich probabilistic models for images
- But built in a local, modular way
 - Learn local effects, get global effects out



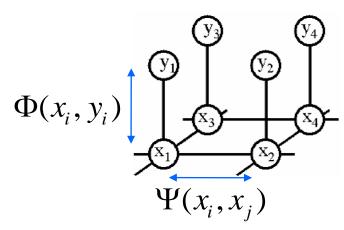
Computer Vision WS 16/17

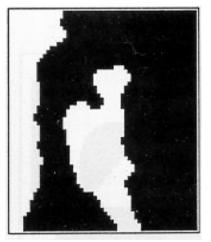
MRF Nodes as Pixels

Original image



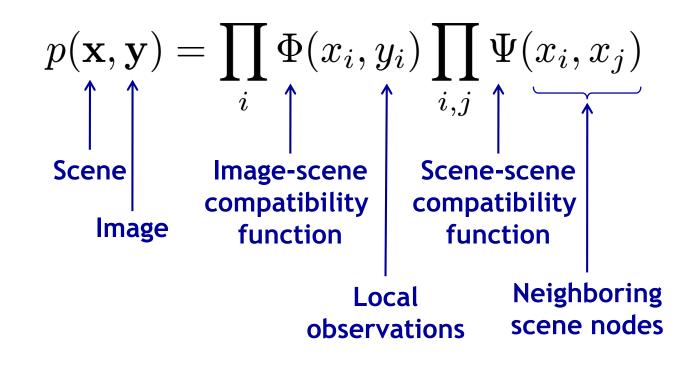
Degraded image





Reconstruction from MRF modeling pixel neighborhood statistics

Network Joint Probability



Slide credit: William Freeman

Energy Formulation

- Joint probability $p(\mathbf{x}, \mathbf{y}) = \prod \Phi(x_i, y_i) \prod \Psi(x_i, x_j)$
- Maximizing the joint probability is the same as minimizing the negative log

$$-\log p(\mathbf{x}, \mathbf{y}) = -\sum_{i} \log \Phi(x_i, y_i) - \sum_{i,j} \log \Psi(x_i, x_j)$$
$$E(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$$

- This is similar to free-energy problems in statistical mechanics (spin glass theory). We therefore draw the analogy and call *E* an *energy function*.
- ϕ and ψ are called potentials.

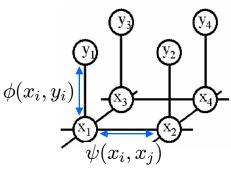
Energy Formulation

Energy function

$$E(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$$

Single-node potentials

Pairwise potentials

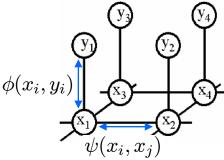


• Single-node potentials ϕ ("unary potentials")

- Encode local information about the given pixel/patch
- How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
 - Encode neighborhood information
 - How different is a pixel/patch's label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)

Energy Minimization

- Goal:
 - Infer the optimal labeling of the MRF.
- Many inference algorithms are available, e.g.
 - > Gibbs sampling, simulated annealing
 - > Iterated conditional modes (ICM)
 - Variational methods
 - Belief propagation
 - > Graph cuts
 - Recently, Graph Cuts have become a popular tool
 - Only suitable for a certain class of energy functions
 - But the solution can be obtained very fast for typical vision problems (~1MPixel/sec).



see lecture Machine Learning

Topics of This Lecture

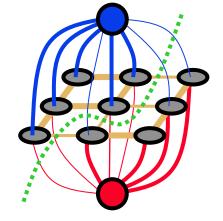
- Segmentation as Energy Minimization
 - Markov Random Fields
 - Energy formulation

• Graph cuts for image segmentation

- Basic idea
- s-t Mincut algorithm
- Extension to non-binary case

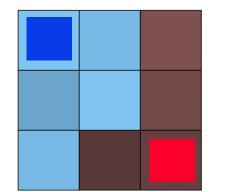
• Applications

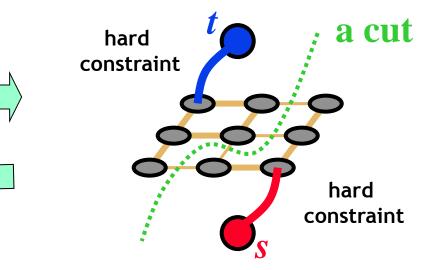
> Interactive segmentation



Graph Cuts for Optimal Boundary Detection

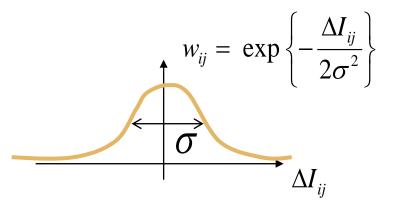
• Idea: convert MRF into source-sink graph





Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)



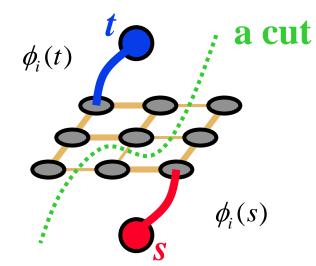
21 [Boykov & Jolly, ICCV'01]

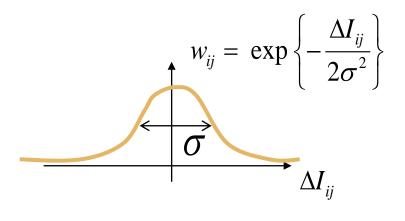
Slide credit: Yuri Boykov

Simple Example of Energy

$$E(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi_i(x_i) + \sum_{i,j} w_{ij} \cdot \delta(x_i \neq x_j)$$

Unary terms Pairwise terms

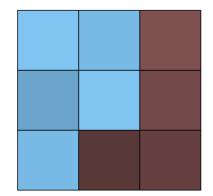


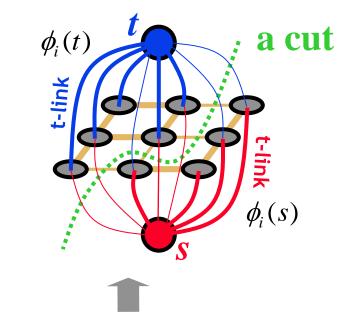


 $x \in \{s, t\}$

(binary object segmentation)

Adding Regional Properties



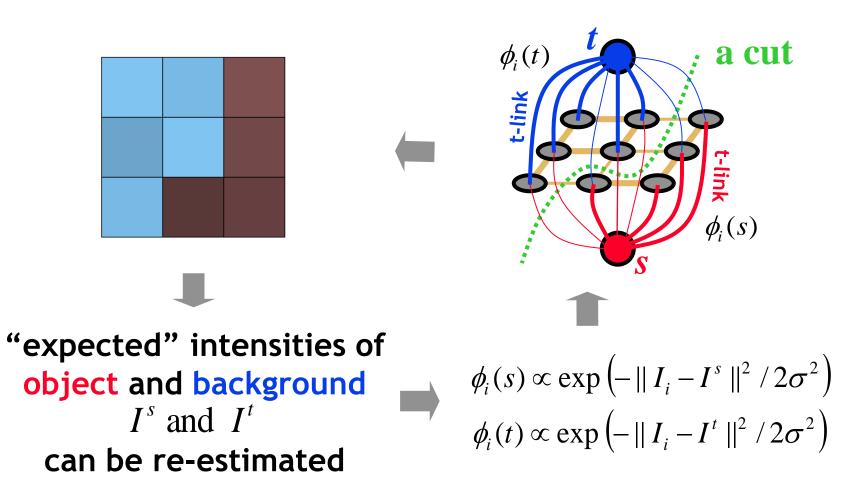


Regional bias example Suppose I^s and I^t are given "expected" intensities of object and background

 $\phi_i(s) \propto \exp\left(-\|I_i - I^s\|^2 / 2\sigma^2\right)$ $\phi_i(t) \propto \exp\left(-\|I_i - I^t\|^2 / 2\sigma^2\right)$

NOTE: hard constrains are not required, in general.

Adding Regional Properties

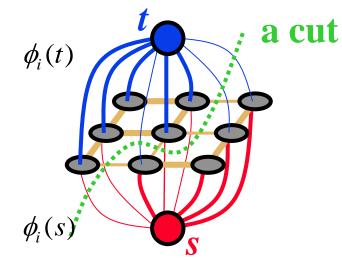


EM-style optimization

24 [Boykov & Jolly, ICCV'01]

Adding Regional Properties

 More generally, regional bias can be based on any intensity models of object and background



$$\phi_i(L_i) = -\log p(I_i|L_i)$$

$$p(I_i|t)$$

$$p(I_i|s)$$

given object and background intensity histograms

Slide credit: Yuri Boykov

25 [Boykov & Jolly, ICCV'01]

How to Set the Potentials? Some Examples

- Color potentials
 - e.g., modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\phi}) = \log \sum_k \theta_{\phi}(x_i, k) p(k|x_i) \mathcal{N}(y_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Edge potentials
 - E.g., a "contrast sensitive Potts model"

$$\psi(x_i, x_j, g_{ij}(\mathbf{y}); \theta_{\psi}) = -\theta_{\psi} g_{ij}(\mathbf{y}) \delta(x_i \neq x_j)$$

where

Computer Vision WS 16/17

$$g_{ij}(\mathbf{y}) = e^{-\beta \|y_i - y_j\|^2} \qquad \beta = \frac{1}{2} \left(\exp\left(\|y_i - y_j\|^2 \right) \right)^{-1}$$

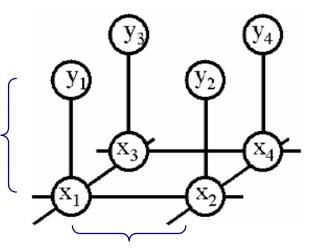
- Parameters $heta_{\phi}$, $heta_{\psi}$ need to be learned, too!

26 [Shotton & Winn, ECCV'06]

Example: MRF for Image Segmentation

• MRF structure

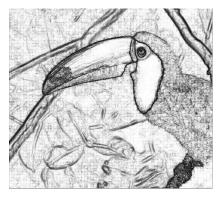
unary potentials



pairwise potentials

Data (D)

Unary likelihood



Pair-wise Terms

MAP Solution 27

Slide adapted from Phil Torr

Topics of This Lecture

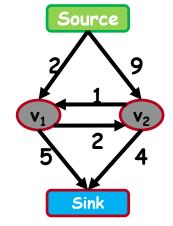
- Segmentation as Energy Minimization
 - » Markov Random Fields
 - Energy formulation

• Graph cuts for image segmentation

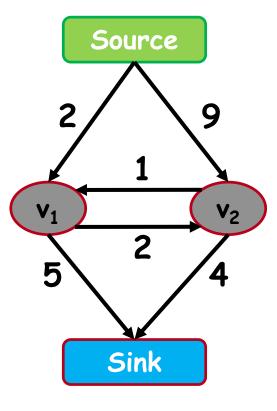
- Basic idea
- s-t Mincut algorithm
- Extension to non-binary case

• Applications

> Interactive segmentation



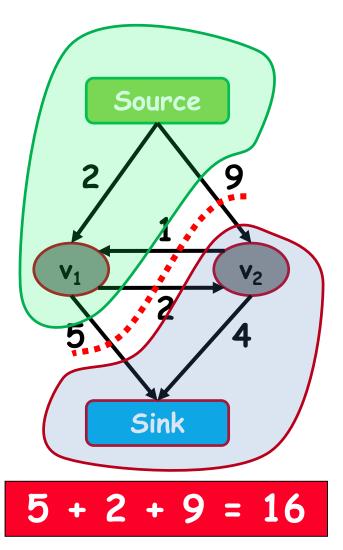
RWTHAACHEN UNIVERSITY How Does it Work? The s-t-Mincut Problem



Graph (V, E, C)
Vertices V = $\{v_1, v_2 v_n\}$
Edges E = {(v ₁ , v ₂)}
Costs C = {c _(1, 2) }

Slide credit: Pushmeet Kohli

The s-t-Mincut Problem



What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

The s-t-Mincut Problem

Source 9 **V**₂ 5 Sink 2 + 1+4=7 What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

What is the st-mincut?

st-cut with the minimum cost

How to Compute the s-t-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink

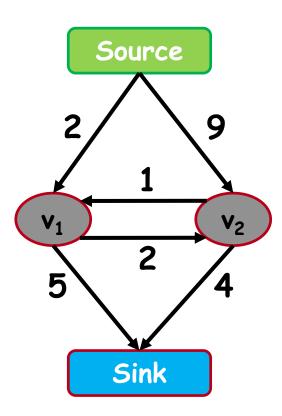
Constraints

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut/Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut



History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2 U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm \log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm \log_{m/(n \log n)} n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

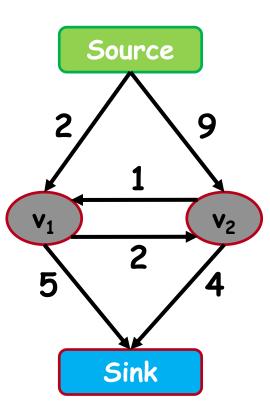
n: #nodesm: #edgesU: maximumedge weight

Algorithms assume nonnegative edge weights

Slide credit: Andrew Goldberg

Maxflow Algorithms

Flow = 0



Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

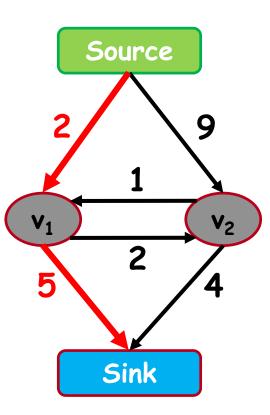
Slide credit: Pushmeet Kohli

Computer Vision WS 16/17

B. Leibe

Maxflow Algorithms

Flow = 0



Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

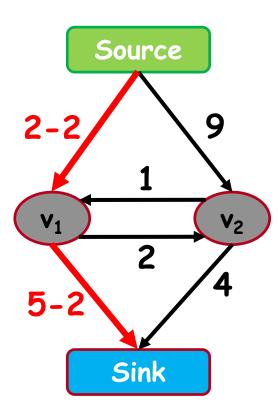
Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

B. Leibe

Maxflow Algorithms

$$Flow = 0 + 2$$



Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

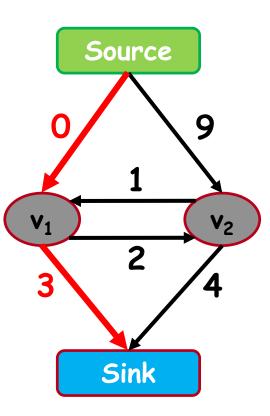
Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

Computer Vision WS 16/17

B. Leibe

$$Flow = 2$$



Augmenting Path Based Algorithms

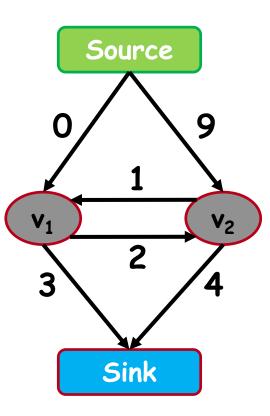
- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

Computer Vision WS 16/17

$$Flow = 2$$



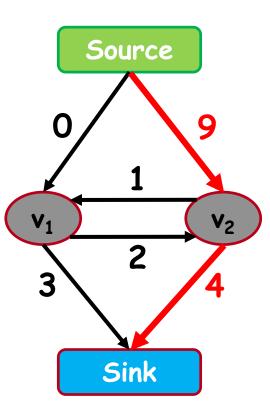
Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

$$Flow = 2$$



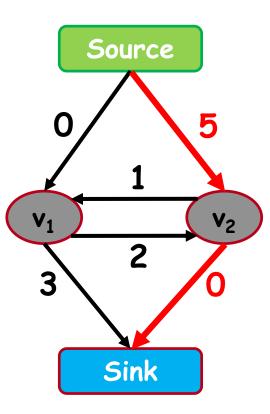
Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

$$Flow = 2 + 4$$



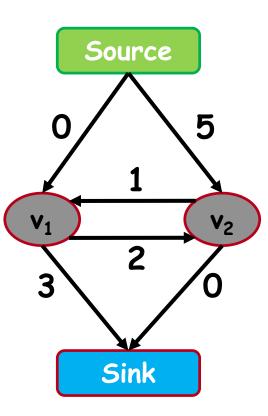
Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

Flow = 6



Augmenting Path Based Algorithms

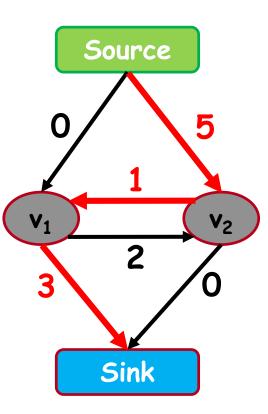
- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

Computer Vision WS 16/17

Flow = 6



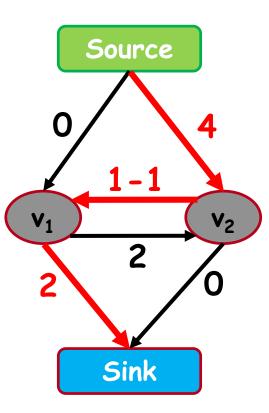
Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

$$Flow = 6 + 1$$



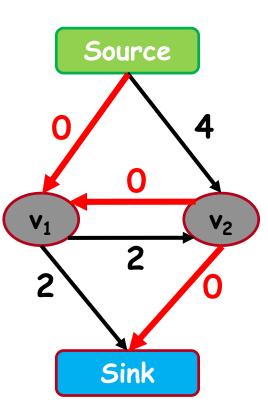
Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

Flow = 7



Augmenting Path Based Algorithms

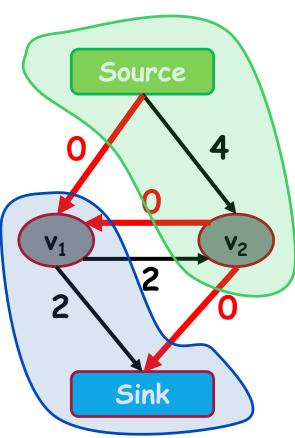
- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

Computer Vision WS 16/17

Flow = 7



Augmenting Path Based Algorithms

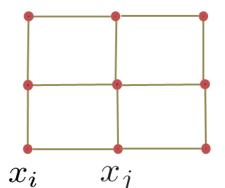
- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Slide credit: Pushmeet Kohli

Applications: Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity (m ~ O(n))



(A)

- Dual search tree augmenting path algorithm [Boykov and Kolmogorov PAMI 2004]
 - Finds approximate shortest augmenting paths efficiently.
 - > High worst-case time complexity.
 - Empirically outperforms other algorithms on vision problems.
 - Efficient code available on the web <u>http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html</u>

When Can s-t Graph Cuts Be Applied?

$$\begin{split} E(L) &= \sum_{p} E_p(L_p) + \sum_{pq \in N} E(L_p, L_q) \\ & \text{t-links} & \text{n-links} & L_p \in \{s, t\} \end{split}$$

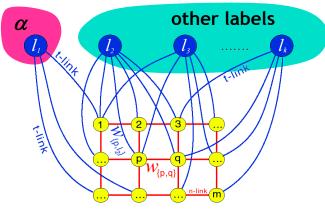
• s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

$$E(L)$$
 can be minimized
by s-t graph cuts $\longleftrightarrow E(s,s) + E(t,t) \le E(s,t) + E(t,s)$ Submodularity("convexity")

- Submodularity is the discrete equivalent to convexity.
 - > Implies that every local energy minimum is a global minimum.
 ⇒ Solution will be globally optimal.

Topics of This Lecture

- Segmentation as Energy Minimization
 - » Markov Random Fields
 - Energy formulation
- Graph cuts for image segmentation
 - Basic idea
 - s-t Mincut algorithm
 - Extension to non-binary case
- Applications
 - Interactive segmentation

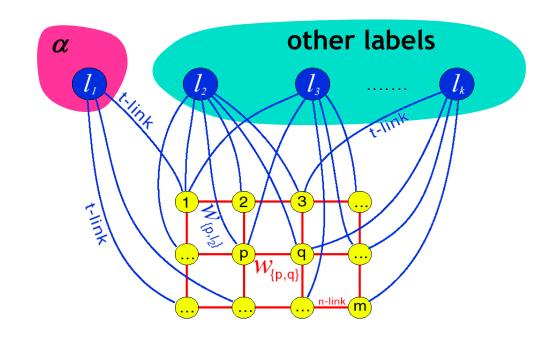


Dealing with Non-Binary Cases

- Limitation to binary energies is often a nuisance.
 ⇒ E.g. binary segmentation only...
- We would like to solve also multi-label problems.
 - > The bad news: Problem is NP-hard with 3 or more labels!
- There exist some approximation algorithms which extend graph cuts to the multi-label case:
 - > α -Expansion
 - > $\alpha\beta$ -Swap
- They are no longer guaranteed to return the globally optimal result.
 - > But α -Expansion has a guaranteed approximation quality (2-approx) and converges in a few iterations.

α -Expansion Move

- Basic idea:
 - Break multi-way cut computation into a sequence of binary s-t cuts.



α -Expansion Algorithm

- **1.** Start with any initial solution
- **2.** For each label " α " in any (e.g. random) order:
 - 1. Compute optimal α -expansion move (s-t graph cuts).
 - 2. Decline the move if there is no energy decrease.
- 3. Stop when no expansion move would decrease energy.

Example: Stereo Vision

Depth map

Original pair of "stereo" images

Slide credit: Yuri Boykov

α-Expansion Moves

- In each $\alpha\text{-expansion}$ a given label " α " grabs space from other labels

For each move, we choose the expansion that gives the largest decrease in the energy: \Rightarrow binary optimization problem

Slide credit: Yuri Boykov

Topics of This Lecture

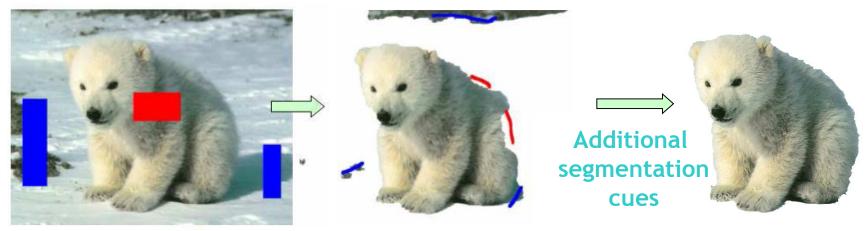
- Segmentation as Energy Minimization
 - Markov Random Fields
 - Energy formulation
- Graph cuts for image segmentation
 - Basic idea
 - > s-t Mincut algorithm
 - > Extension to non-binary case

• Applications

Interactive segmentation

GraphCut Applications: "GrabCut"

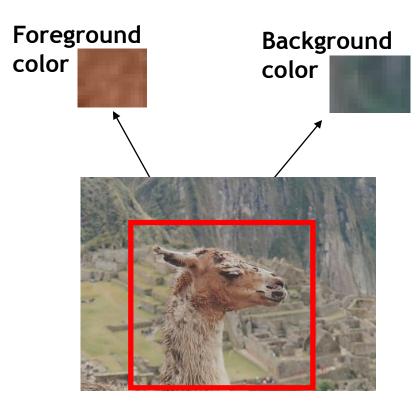
- Interactive Image Segmentation [Boykov & Jolly, ICCV'01]
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges
- Procedure
 - > User marks foreground and background regions with a brush.
 - This is used to create an initial segmentation which can then be corrected by additional brush strokes.



Slide credit: Matthieu Bray

RWTHAACHEN UNIVERSITY

GrabCut: Data Model



Global optimum of the energy

- Obtained from interactive user input
 - > User marks foreground and background regions with a brush
 - > Alternatively, user can specify a bounding box

Slide credit: Carsten Rother

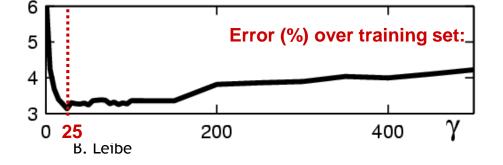
Computer Vision WS 16/17

GrabCut: Coherence Model

• An object is a coherent set of pixels:

$$\psi(x, y) = \gamma \sum_{(m,n)\in C} \delta[x_n \neq x_m] e^{-\beta \|y_m - y_n\|^2}$$

How to choose γ ?

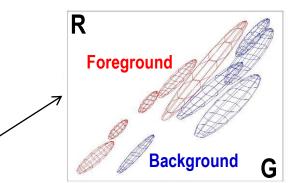


Slide credit: Carsten Rother

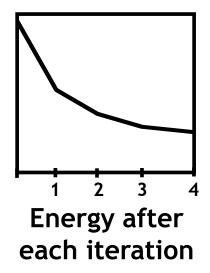
Computer Vision WS 16/17

Iterated Graph Cuts

Result



Color model (Mixture of Gaussians)

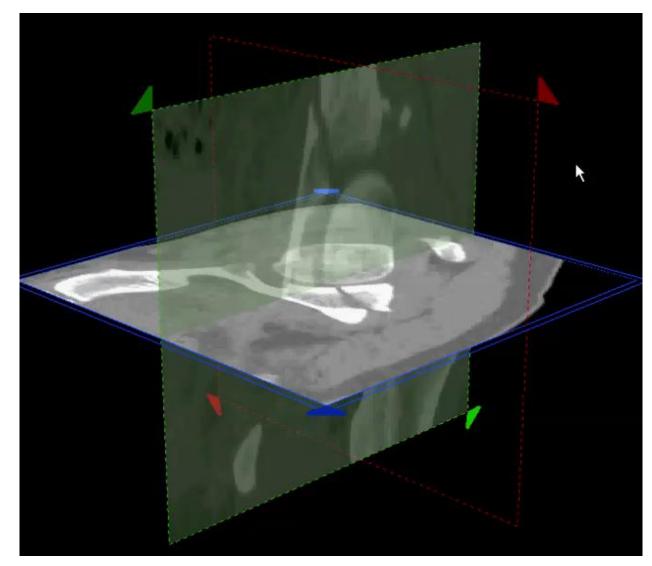


Slide credit: Carsten Rother

GrabCut: Example Results

• This is included in the newest version of MS Office!

RWTHAACHEN UNIVERSITY Applications: Interactive 3D Segmentation



Slide credit: Yuri Boykov

Summary: Graph Cuts Segmentation

- <u>Pros</u>
 - Powerful technique, based on probabilistic model (MRF).
 - Applicable for a wide range of problems.
 - Very efficient algorithms available for vision problems.
 - > Becoming a de-facto standard for many segmentation tasks.

Cons/Issues

- Graph cuts can only solve a limited class of models
 - Submodular energy functions
 - Can capture only part of the expressiveness of MRFs
- Only approximate algorithms available for multi-label case

References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:
 - Y. Boykov, O. Veksler, <u>Graph Cuts in Vision and Graphics: Theories and</u> <u>Applications</u>. In Handbook of Mathematical Models in Computer Vision, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.
- Read how the interactive segmentation is realized in MS Office 2010
 - C. Rother, V. Kolmogorov, Y. Boykov, A. Blake, <u>Interactive</u> <u>Foreground Extraction using Graph Cut</u>, Microsoft Research Tech Report MSR-TR-2011-46, March 2011
- Try the GraphCut implementation at http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html