

Computer Vision - Lecture 5

Structure Extraction

07.11.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

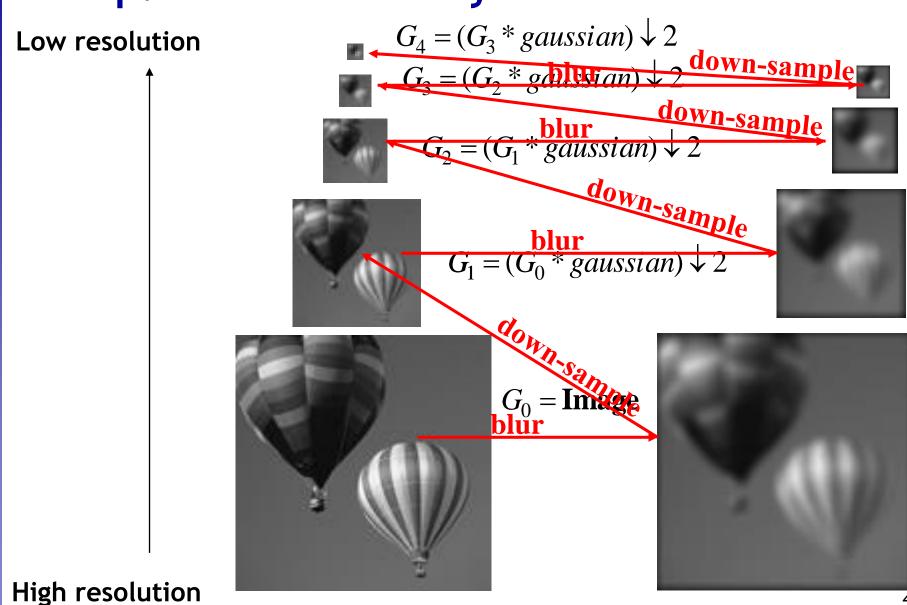
- Image Processing Basics
 - Image Formation
 - Binary Image Processing
 - Linear Filters
 - Edge & Structure Extraction
- Segmentation
- Local Features & Matching
- Object Recognition and Categorization
- 3D Reconstruction
- Motion and Tracking

RWTHAACHEN UNIVERSITY

Topics of This Lecture

- Recap: Edge detection
 - Image gradients
 - Canny edge detector
- Fitting as template matching
 - Distance transform
 - Chamfer matching
 - Application: traffic sign detection
- Fitting as parametric search
 - Line detection
 - Hough transform
 - Extension to circles
 - Generalized Hough transform

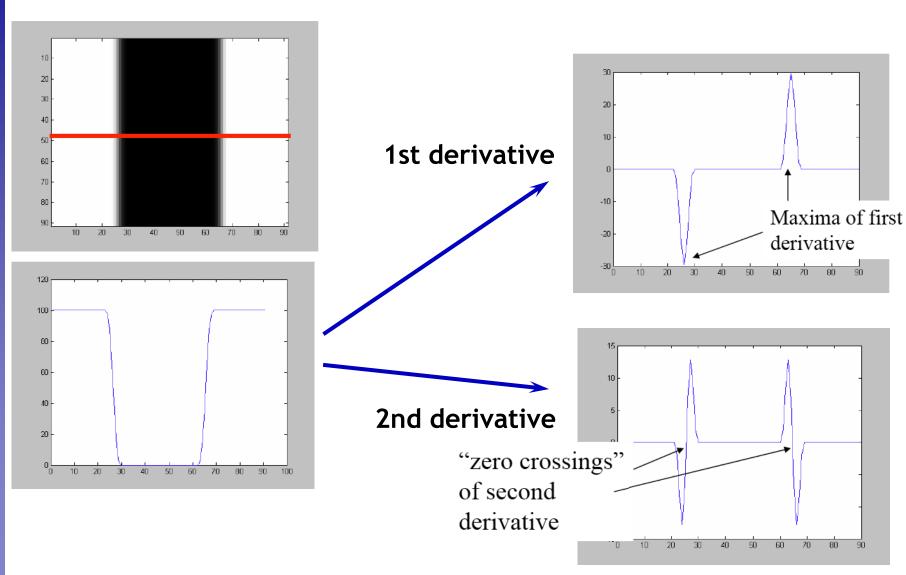
Recap: The Gaussian Pyramid



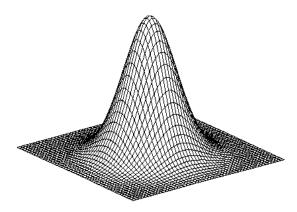
B. Leibe

Source: Irani & Basri

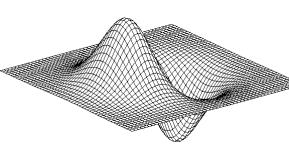
Recap: Derivatives and Edges...



Recap: 2D Edge Detection Filters



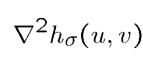
Laplacian of Gaussian



$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x} h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$$

Derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$



$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

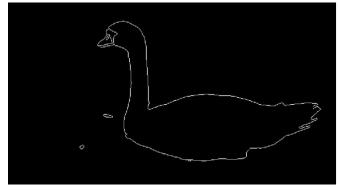
Recap: Canny Edge Detector

- Exercise 2.6!
- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB:
 - >> edge(image, 'canny');
 - >> help edge

adapted from D. Lowe, L. Fei-Fei

RWTHAACHEN UNIVERSITY

Edges vs. Boundaries



Edges are useful signals to indicate occluding boundaries, shape.

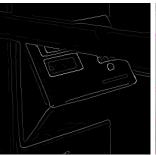
Here the raw edge output is not so bad...

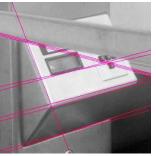
Slide credit: Kristen Grauman

...but quite often boundaries of interest are fragmented, and we have extra "clutter" edge points.

Fitting

Want to associate a model with observed features





[Figure from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

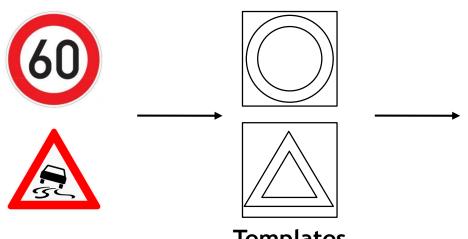
Topics of This Lecture

- Recap: Edge detection
 - Image gradients
 - Canny edge detector
- Fitting as template matching
 - Distance transform
 - Chamfer matching
 - Application: traffic sign detection
- Fitting as parametric search
 - Line detection
 - Hough transform
 - Extension to circles
 - Generalized Hough transform

Fitting as Template Matching

 We've already seen that correlation filtering can be used for template matching in an image.

- Let's try this idea with "edge templates".
 - Example: traffic sign detection in (grayvalue) video.



Templates

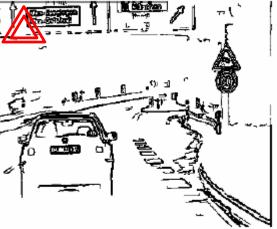
B. Leibe

Edge Templates

- Correlation filtering
 - Correlation between edge pixels in template and image

$$D_{\text{corr}}(x,y) = -\sum_{u,v} T[u,v]I[x+u,y+v]$$

- Unfortunately, this doesn't work at all... Why?
- ⇒ Zero correlation score if the edge template is 1 pixel off...

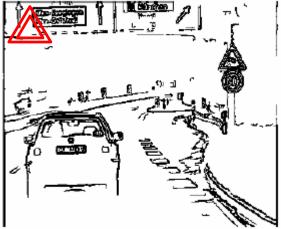


Edge Templates

- Better: Chamfer Distance
 - Average distance to nearest edge pixel

$$D_{\text{Chamfer}}(x,y) = \frac{1}{|T|} \sum_{u,v:T[u,v]=1} d_t(x+u,y+v)$$

- ⇒ More robust to small shifts and size variations.
- How can we compute this efficiently?

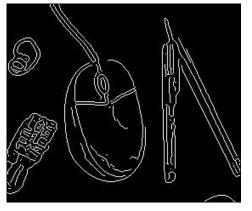


How Can This Be Made Efficient?

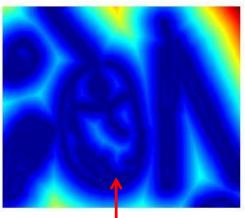
- Fast edge-based template matching
 - Distance transform of the edge image

Original

Gradient



Edges
B. Leibe



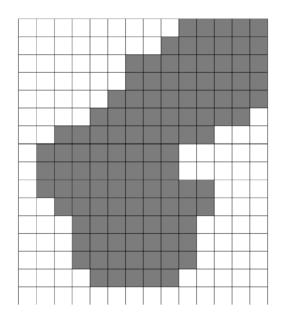
Distance transform

Value at (x,y) tells how far that position is from the nearest edge point (or other binary image structure)

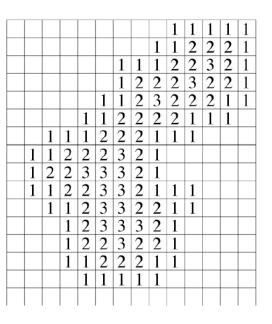
>> help bwdist

Distance Transform

 Image reflecting distance to nearest point in point set (e.g., edge pixels, or foreground pixels).



												Π.
								1	1	1	1	1
							1	2	2	2	2	1
					1	1	2	3	3	3	2	1
					1	2	3	4	4	3	2	1
				1	2	3	4	3	3	2	2	1
			1	2	3	4	3	2	2	1	1	
	1	1	2	3	4	3	2	1	1			
1	2	2	3	4	3	2	1					
1	2	3	4	4	3	2	1					
1	2	3	4	5	4	3	2	1	1			
	1	2	3	4	5	4	3	2	1			
		1	2	3	4	3	2	1				
		1	2	3	3	3	2	1				
		1	2	2	2	2	2	1				
			1	1	1	1	1					



4-connected adjacency

8-connected adjacency

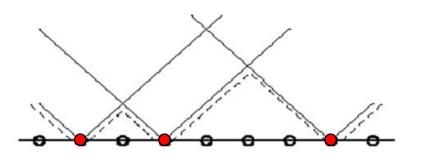
Distance Transform Algorithm (1D)

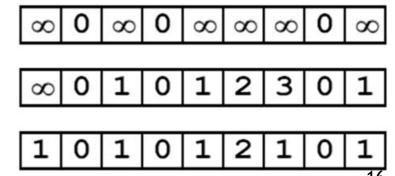
- Two-pass O(n) algorithm for 1D L₁ norm
- 1. Initialize: For all j
 - D[j] ← 1_P[j]

- // 0 if j is in **P**, infinity otherwise
- 2. Forward: For j from 1 up to n-1
 - \rightarrow D[j] \leftarrow min(D[j], D[j-1]+1)

+1 0

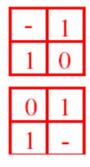
- 3. Backward: For j from n-2 down to 0
 - \rightarrow D[j] \leftarrow min(D[j], D[j+1]+1)

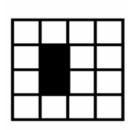




Distance Transform Algorithm (2D)

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Fwd pass finds closest above and to the left
 - Bwd pass finds closest below and to the right





∞	8	8	8
×	0	∞	×
8	0	8	8
8	8	8	8

×	8	8	8
8	0	1	8
8	0	8	8
8	8	8	8

8	8	8	8
8	0	1	2
8	0	1	2
8	1	2	3

2	1	2	3	
1	0	1	2	
1	0	1	2	
2	1	2	3	

Chamfer Matching

- Chamfer Distance
 - Average distance to nearest edge pixel

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

This can be computed efficiently by correlating the edge template with the distance-transformed image



Edge image

B. Leibe

Distance transform image [D. Gavrila, DAGM'99]

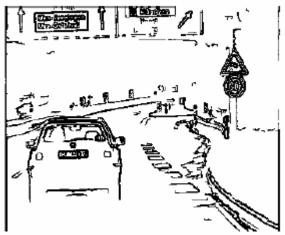
Chamfer Matching

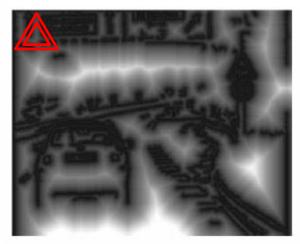
- Efficient implementation
 - Instead of correlation, sample fixed number of points on template contour.

⇒ Chamfer score boils down to series of DT lookups.

$$D_{chamfer}(T, I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

⇒ Computational effort independent of scale.



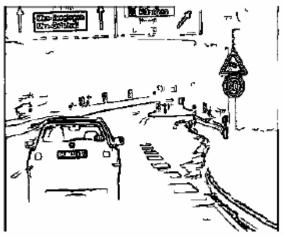


Edge image

B. Leibe

Distance transform image₁₉ [D. Gavrila, DAGM'99]

Chamfer Matching Results



Edge image

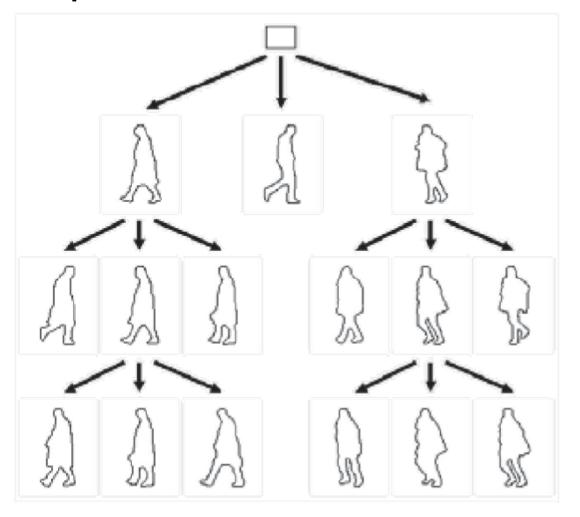
B. Leibe

Distance transform image 20

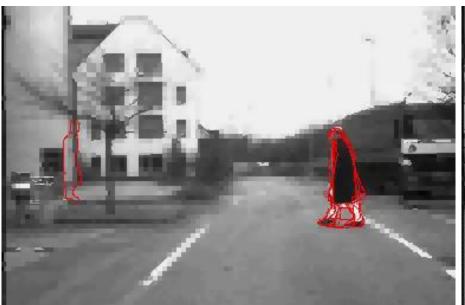
[D. Gavrila, DAGM'99]

Chamfer Matching for Pedestrian Detection

Organize templates in tree structure for fast matching



Chamfer Matching for Pedestrian Detection



Summary Chamfer Matching

Pros

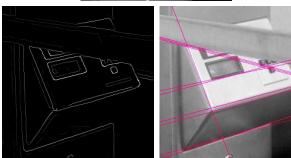
- Fast and simple method for matching edge-based templates.
- Works well for matching upright shapes with little intra-class variation.
- Good method for finding candidate matches in a longer recognition pipeline.

Cons

- Chamfer score averages over entire contour, not very discriminative in practice.
 - ⇒ Further verification needed.
- Low matching cost in cluttered regions with many edges.
 - ⇒ Many false positive detections.
- In order to detect rotated & rescaled shapes, need to match with rotated & rescaled templates ⇒ can get very expensive.

Topics of This Lecture

- Recap: Edge detection
 - Image gradients
 - Canny edge detector
- Fitting as template matching
 - Distance transform
 - Chamfer matching
 - Application: traffic sign detection
- Fitting as parametric search
 - Line detection
 - Hough transform
 - Extension to circles
 - Generalized Hough transform



RWTHAACHEN UNIVERSITY

Fitting as Search in Parametric Space

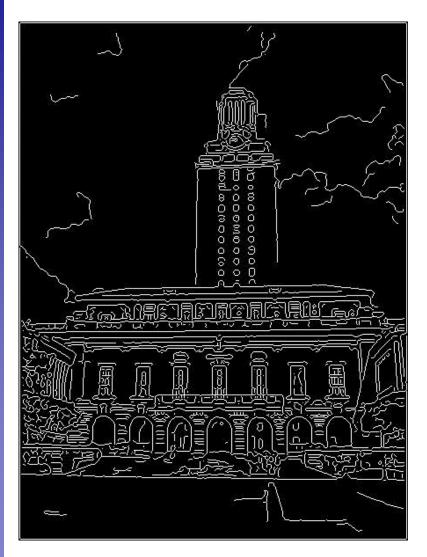
- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point.
- Three main questions:
 - What model represents this set of features best?
 - Which of several model instances gets which feature?
 - How many model instances are there?
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Example: Line Fitting

- Why fit lines?
 - > Many objects are characterized by presence of straight lines

Wait, why aren't we done just by running edge detection?

Difficulty of Line Fitting

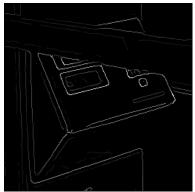


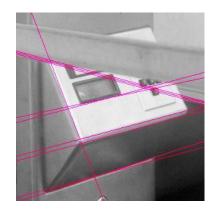
- Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters?

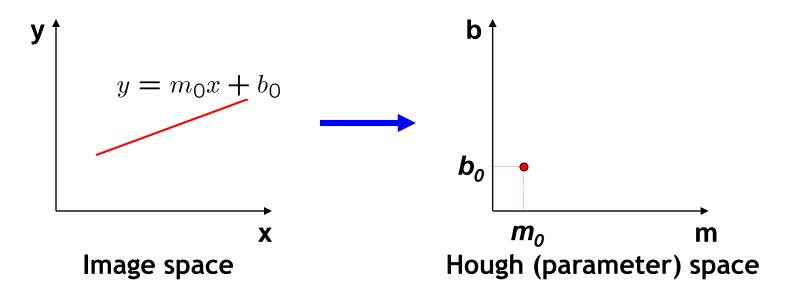
RWTHAACHEN UNIVERSITY

Fitting Lines

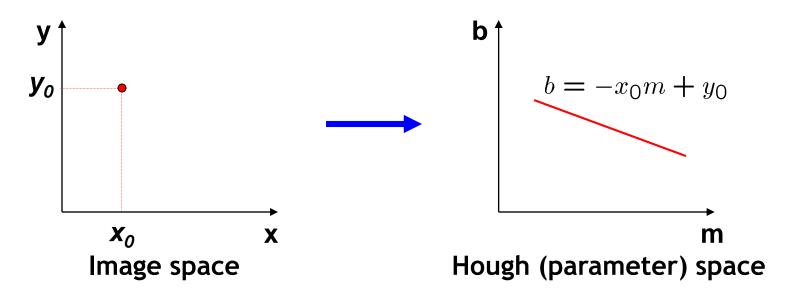
- Given points that belong to a line, what is the line?
- How many lines are there?
- Which points belong to which lines?
- The Hough Transform is a voting technique that can be used to answer all of these
- Main idea:
 - 1. Vote for all possible lines on which each edge point could lie.
 - 2. Look for lines that get many votes.
 - 3. Noise features will cast votes too, but their votes should be inconsistent



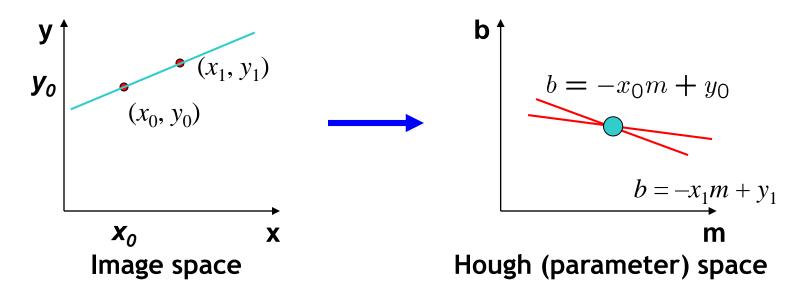




- Connection between image (x,y) and Hough (m,b) spaces
 - > A line in the image corresponds to a point in Hough space.
 - To go from image space to Hough space:
 - Given a set of points (x,y), find all (m,b) such that y=mx+b



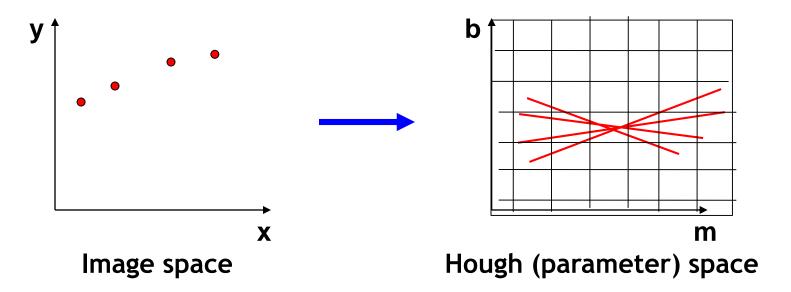
- Connection between image (x,y) and Hough (m,b) spaces
 - > A line in the image corresponds to a point in Hough space.
 - To go from image space to Hough space:
 - Given a set of points (x,y), find all (m,b) such that y=mx+b
 - Nhat does a point (x_0, y_0) in the image space map to?
 - Answer: the solutions of $b = -x_0 m + y_0$
 - This is a line in Hough space.



- What are the line parameters for the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines

$$b = -x_0 m + y_0 \text{ and }$$

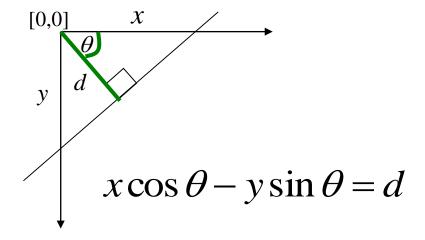
$$b = -x_1 m + y_1$$



- How can we use this to find the most likely parameters (m,b) for the most prominent line in the image space?
 - Let each edge point in image space *vote* for a set of possible parameters in Hough space.
 - Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.

Polar Representation for Lines

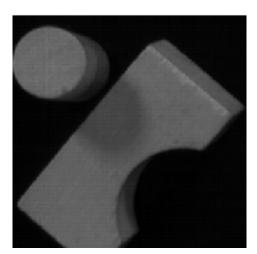
• Issues with usual (m,b) parameter space: can take on infinite values, undefined for vertical lines.



Point in image space
 ⇒ Sinusoid segment in
 Hough space

d: perpendicular distance from line to origin

 θ : angle the perpendicular makes with the x-axis



Hough Transform Algorithm

Using the polar parameterization:

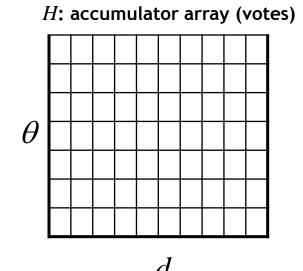
$$x\cos\theta + y\sin\theta = d$$

Basic Hough transform algorithm

- 1. Initialize $H[d, \theta] = 0$.
- 2. For each edge point (x,y) in the image

for
$$\theta$$
 = 0 to 180 // some quantization $d = x \cos \theta + y \sin \theta$ H[d, θ] += 1

- 3. Find the value(s) of (d,θ) where $H[d,\theta]$ is maximal.
- 4. The detected line in the image is given by $d = x \cos \theta + y \sin \theta$
- Time complexity (in terms of number of votes)?



Example: HT for Straight Lines

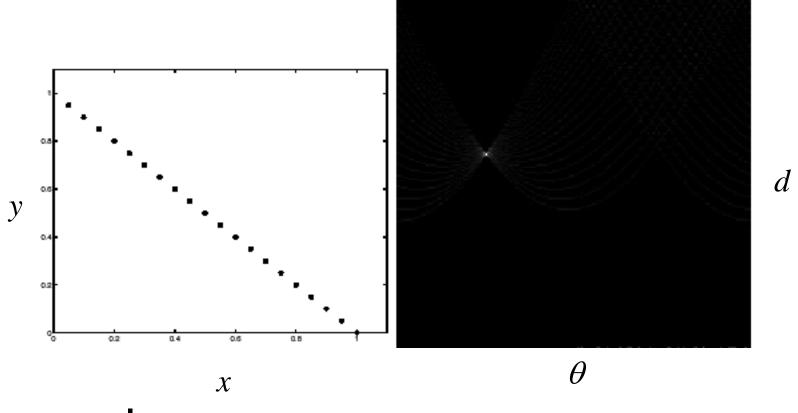


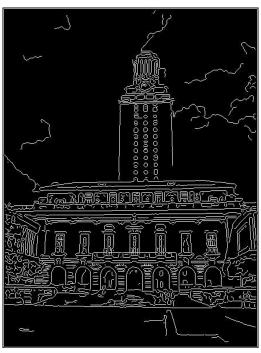
Image space edge coordinates

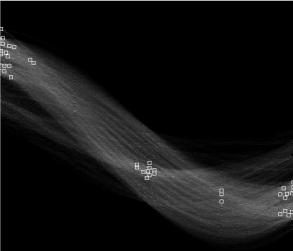
Votes

Bright value = high vote count Black = no votes

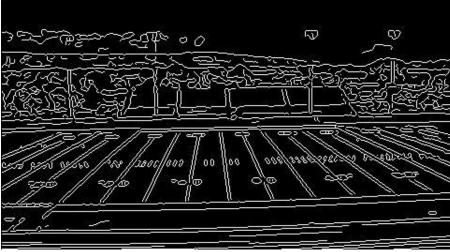
RWTHAACHEN UNIVERSITY

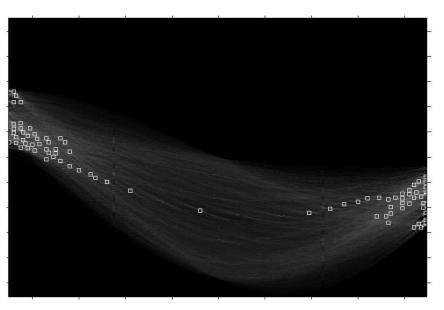
Real-World Examples





Slide credit: Kristen Grauman





Showing longest segments found

Slide credit: Kristen Grauman

B. Leibe

Impact of Noise on Hough Transform

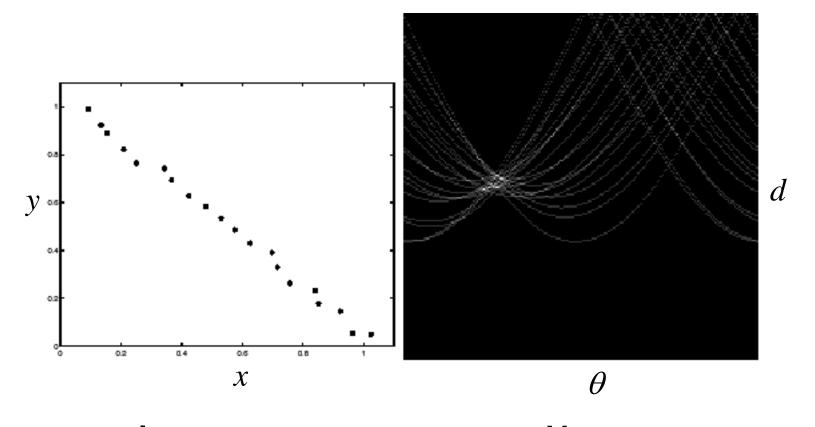


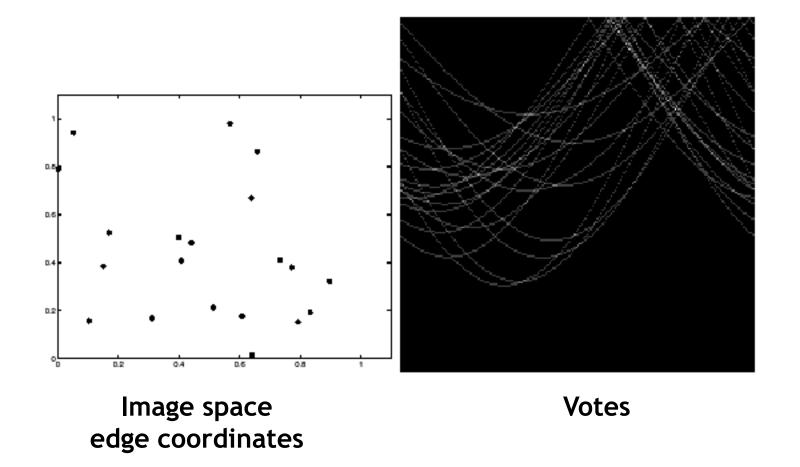
Image space edge coordinates

Votes

What difficulty does this present for an implementation?

4 I

Impact of Noise on Hough Transform



Here, everything appears to be "noise", or random edge points, but we still see peaks in the vote space.

Extensions

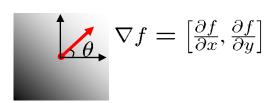
Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image

$$\theta$$
 = gradient at (x,y)
 $d = x \cos \theta - y \sin \theta$
 $H[d,\theta] += 1$

- 3. same
- 4. same

(Reduces degrees of freedom)



$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image compute unique (d,θ) based on image gradient at (x,y) $H[d,\theta] += 1$
- same
- 4. same

(Reduces degrees of freedom)

Extension 2

Give more votes for stronger edges (use magnitude of gradient)

Extension 3

Change the sampling of (d, θ) to give more/less resolution

Extension 4

The same procedure can be used with circles, squares, or any other shape...

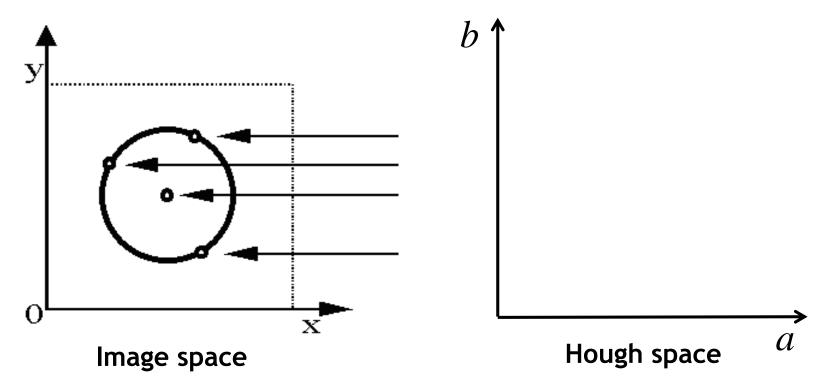
Slide credit: Kristen Grauman

B. Leibe

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For a fixed radius r, unknown gradient direction

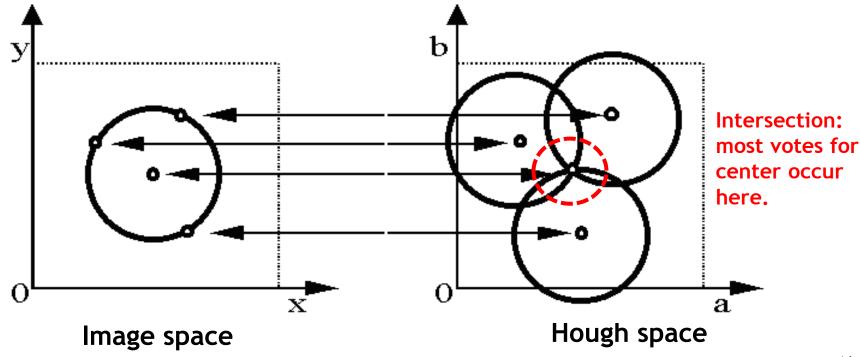


45

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For a fixed radius r, unknown gradient direction

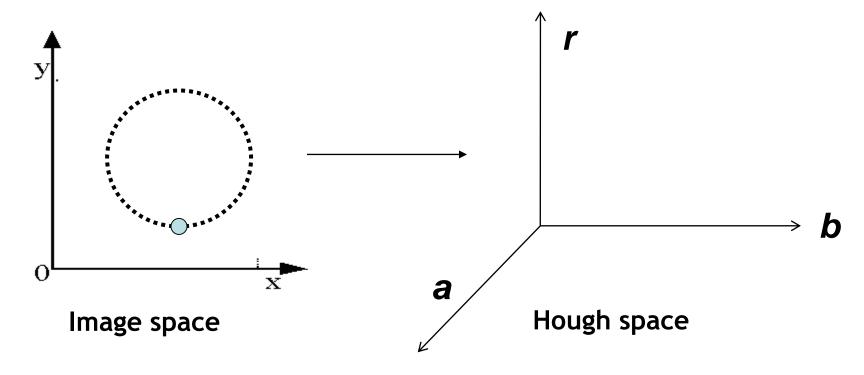


46

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

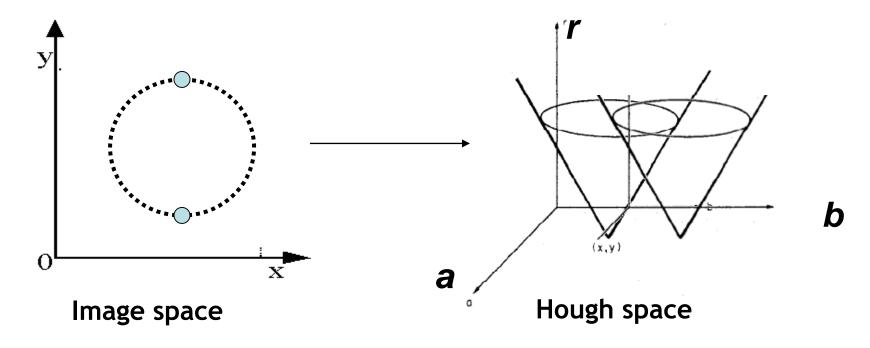
• For an unknown radius r, unknown gradient direction



• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, unknown gradient direction

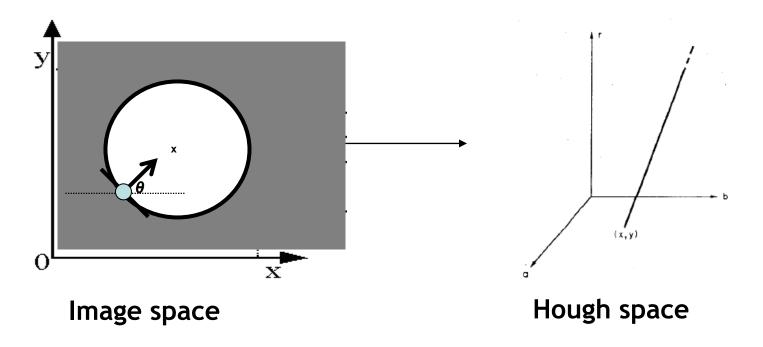


48

• Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

• For an unknown radius r, known gradient direction

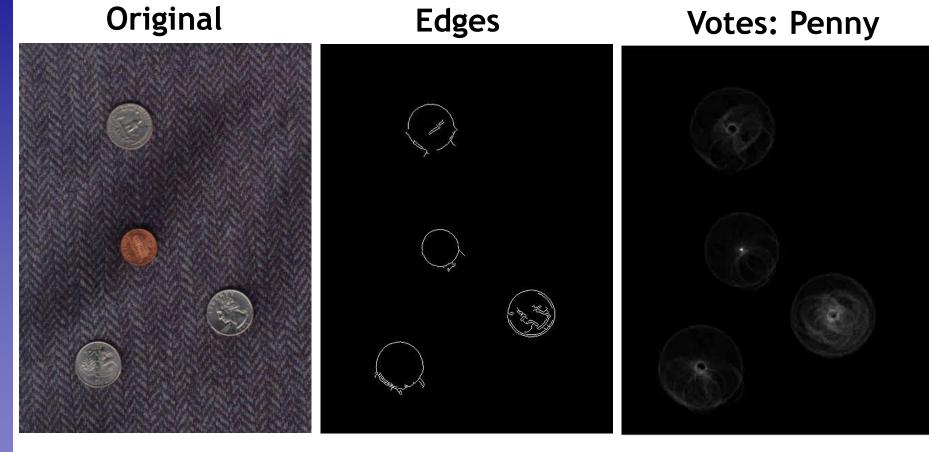



```
For every edge pixel (x,y):
  For each possible radius value r:
     For each possible gradient direction \theta:
         // or use estimated gradient
     a = x - r \cos(\theta)
     b = y + r \sin(\theta)
     H[a,b,r] += 1
  end
end
```

Example: Detecting Circles with Hough

Crosshair indicates results of Hough transform, bounding box found via motion differencing.

Example: Detecting Circles with Hough



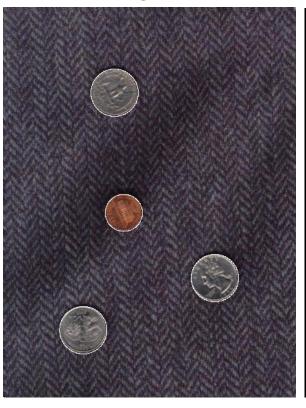
Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

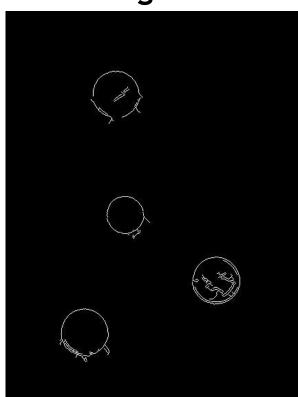
Example: Detecting Circles with Hough

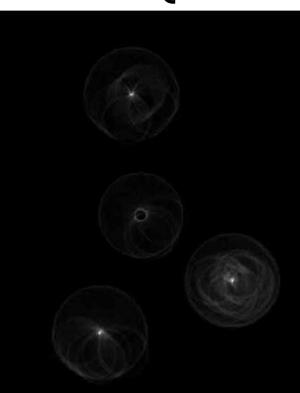
Comb**Oreginal**tections

Edges

Votes: Quarter







Voting: Practical Tips

- Minimize irrelevant tokens first (take edge points with significant gradient magnitude)
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Vote for neighbors, also (smoothing in accumulator array)
- Utilize direction of edge to reduce free parameters by 1
- To read back which points voted for "winning" peaks, keep tags on the votes.

Hough Transform: Pros and Cons

Pros

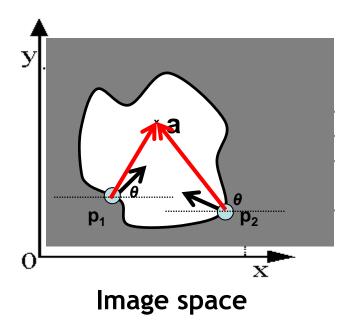
- All points are processed independently, so can cope with occlusion
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: hard to pick a good grid size

Generalized Hough Transform

 What if want to detect arbitrary shapes defined by boundary points and a reference point?



At each boundary point, compute displacement

vector: $r = a - p_i$.

For a given model shape: store these vectors in a table indexed by gradient orientation θ .

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

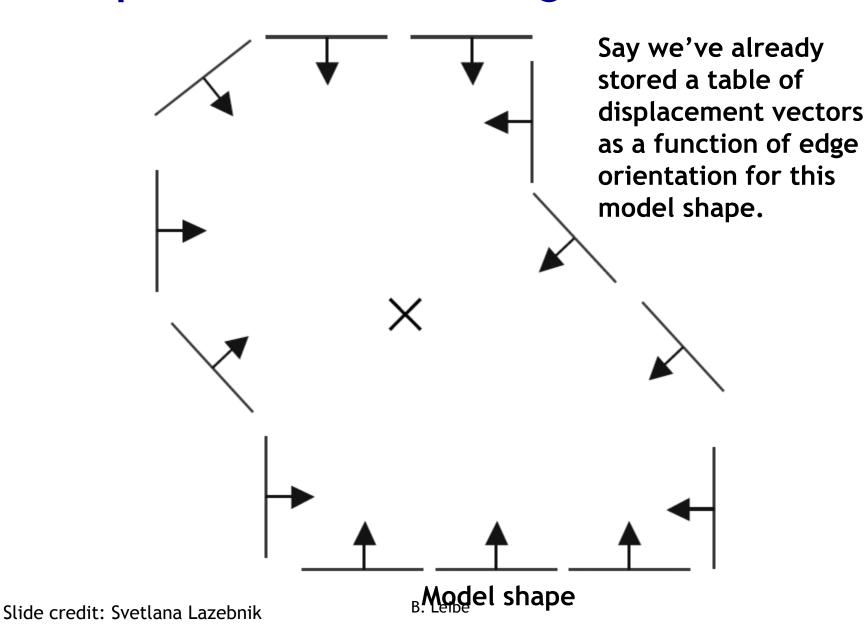
Generalized Hough Transform

To detect the model shape in a new image:

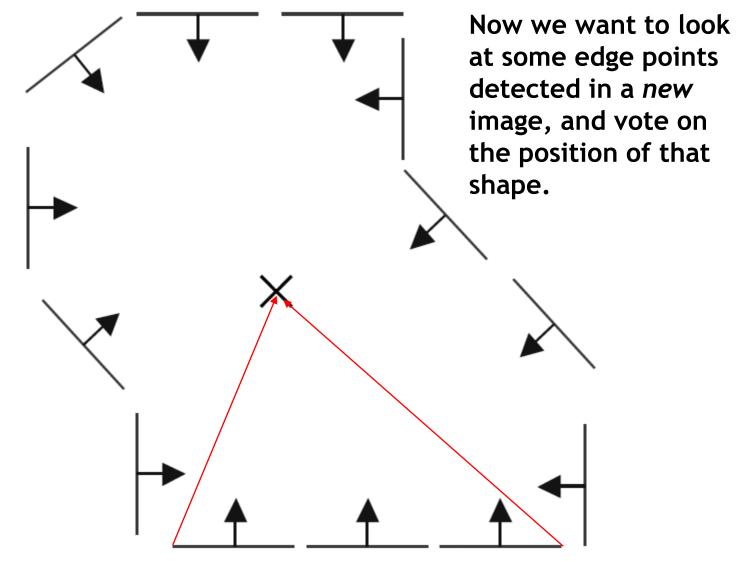
- For each edge point
 - \succ Index into table with its gradient orientation heta
 - Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Example: Generalized Hough Transform

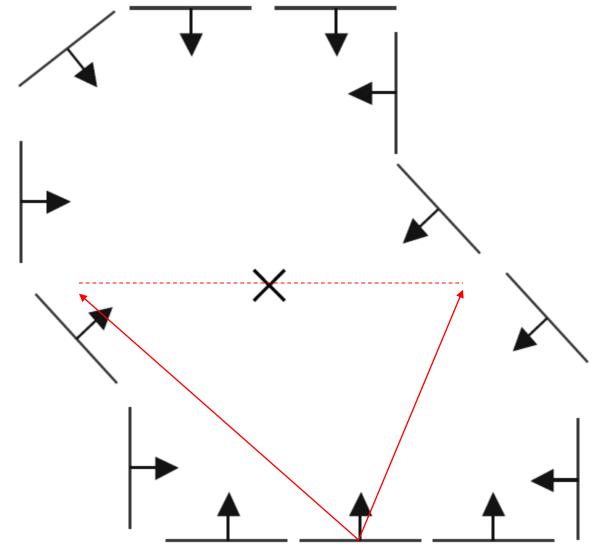


Example: Generalized Hough Transform



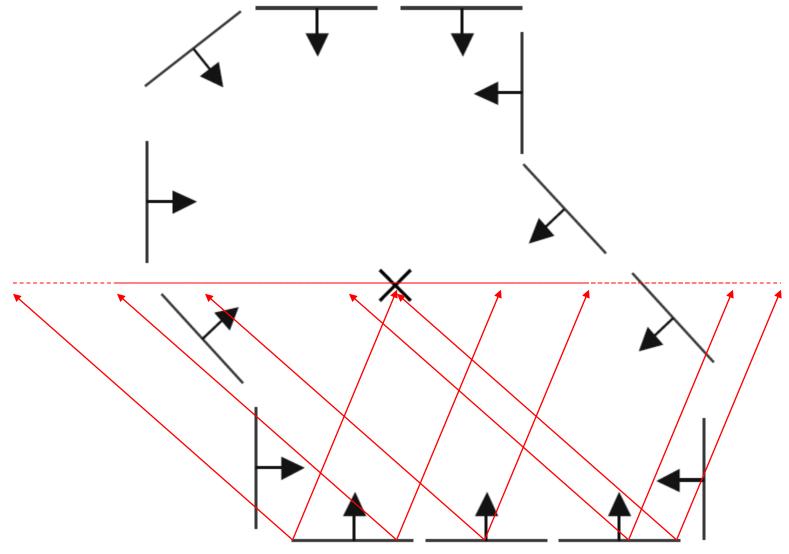
Displacement vectors for model points

Example: Generalized Hough Transform



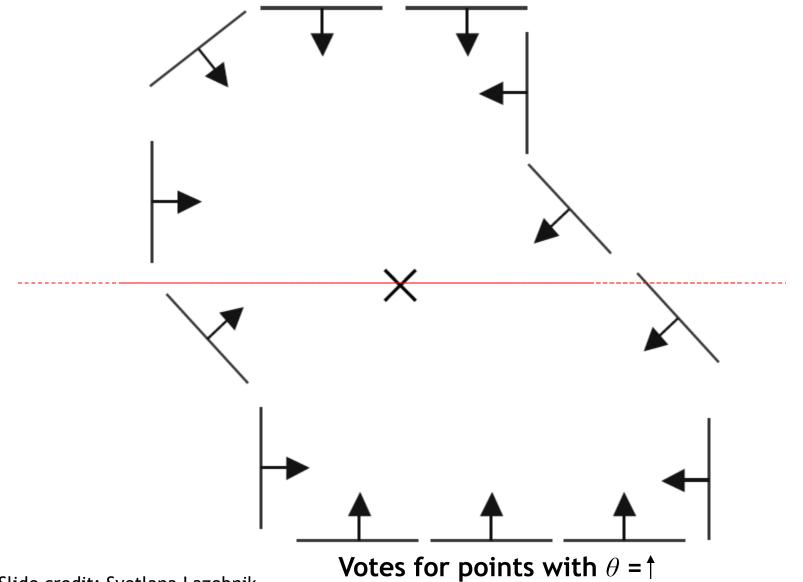
Range of voting locations for test point Slide credit: Svetlana Lazebnik

Example: Generalized Hough Transform



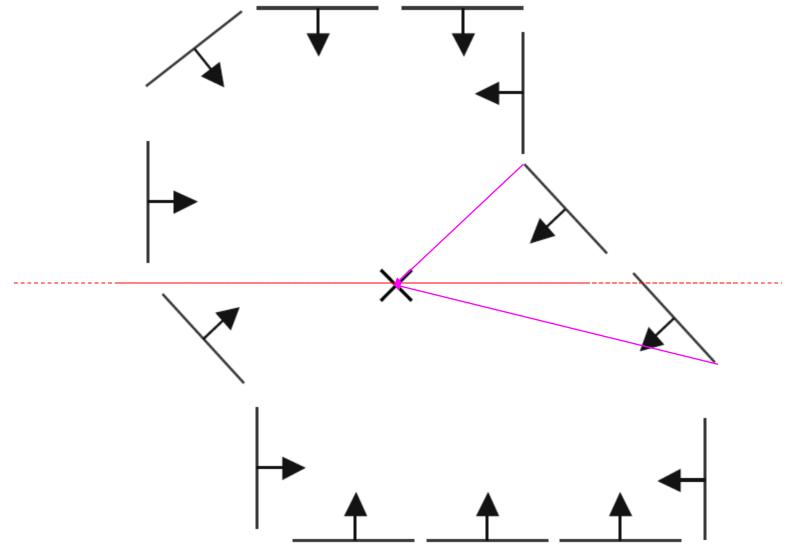
Range of voting locations for test point Slide credit: Svetlana Lazebnik

Example: Generalized Hough Transform



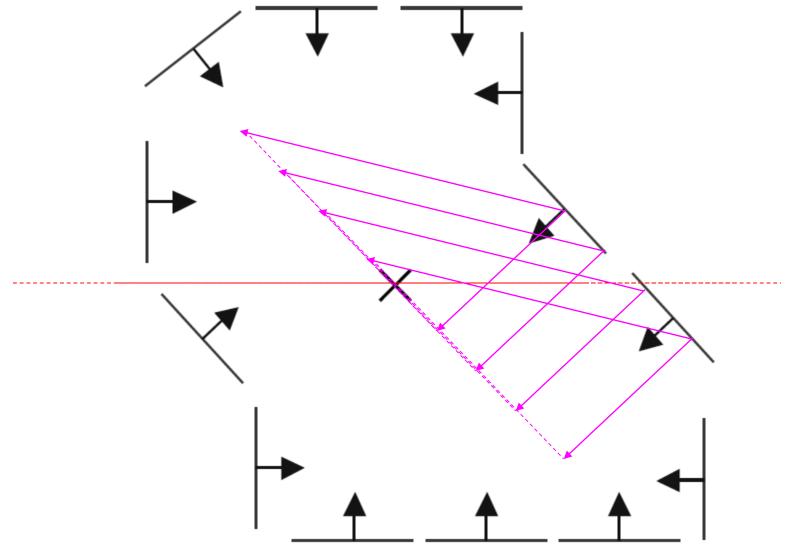
62

Example: Generalized Hough Transform



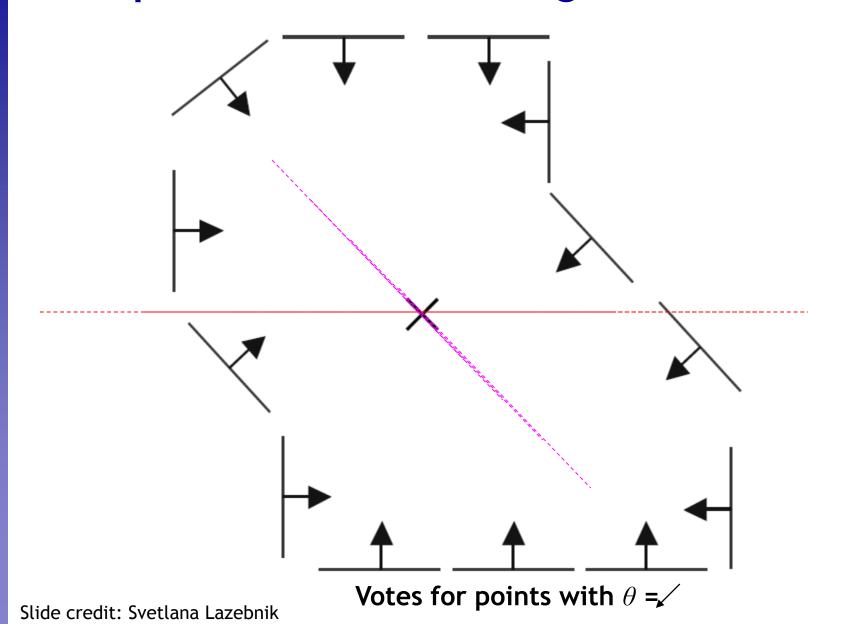
Displacement vectors for model points
Slide credit: Svetlana Lazebnik

Example: Generalized Hough Transform



Range of voting locations for test point Slide credit: Svetlana Lazebnik

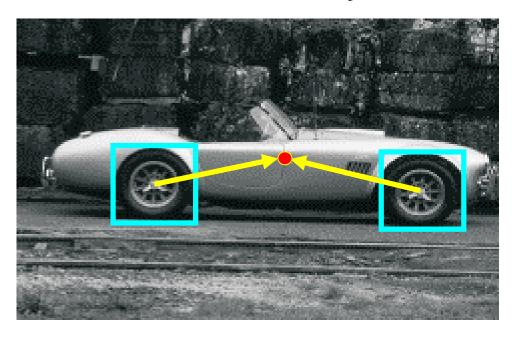
Example: Generalized Hough Transform



65

Application in Recognition

 Instead of indexing displacements by gradient orientation, index by "visual codeword".



Visual codeword with displacement vectors

B. Leibe, A. Leonardis, and B. Schiele, <u>Robust Object Detection with Interleaved</u>
<u>Categorization and Segmentation</u>, International Journal of Computer Vision, Vol. 77(1-3), 2008.

Application in Recognition

 Instead of indexing displacements by gradient orientation, index by "visual codeword".

Test image

We'll hear more about this method in a later lecture...

References and Further Reading

- Background information on edge detection can be found in Chapter 8 of
 - D. Forsyth, J. Ponce,
 Computer Vision A Modern Approach.
 Prentice Hall, 2003
- Read Ballard & Brown's description of the Generalized Hough Transform in Chapter 4.3 of
 - D.H. Ballard & C.M. Brown, Computer Vision, Prentice Hall, 1982 (available from the class homepage)

