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Gradients & Edges
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Course Outline

* Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

¢ Segmentation

¢ Local Features & Matching

¢ Object Recognition and Categorization
¢ 3D Reconstruction

¢ Motion and Tracking

B. Leibe
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Recap: Gaussian Smoothing

¢ Gaussian kernel

_ 1 7!:5224-?2
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a

¢ Rotationally symmetric
¢ Weights nearby pixels more
than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

¢ A Gaussian gives a good model
of a fuzzy blob

B. Leibe Jmage Source: Forsyth & Poncd
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Announcements

¢ Exercise sheet 2 is available
» Thresholding, Morphology
» Gaussian smoothing
» Image gradients
» Edge Detection
= Deadline: Sunday night, 13.11. (in two weeks).

¢ Reminder

» You’re encouraged to form teams of up to 3 people!
» Hints:
- Turn in everything as a single zip archive.
- Use the provided Matlab framework.
- For each exercise, you need to implement the corresponding
apply function. If the screen output matches the expected output
(shown in class), you will know that your solution is correct.

- Matlab helps you to find errors (red lines under your code)!
B. Leibe

Topics of This Lecture

¢ Recap: Linear Filters

¢ Multi-Scale representations
» How to properly rescale an image?

¢ Filters as templates
» Correlation as template matching

¢ Image gradients
» Derivatives of Gaussian

¢ Edge detection
» Canny edge detector

o

B. Leibe
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RWTH CHET
Recap: Smoothing with a Gaussian

e Parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

: n } : D |
- -
e o

T ARCOm: 135 O e

for sigma=1:3:10
h = fspecial ('gaussian‘, fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;

end ’ 7
slide credit: Kristen Grauman 5. Leibe
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Recap: Effect of Filtering Recap: Low-Pass vs. High-Pass
¢ Noise introduces high frequencies.
To remove them, we want to apply a J-J\‘_ <
“low-pass” filter. S
Low-pass
¢ The ideal filter shape in the filtered
frequency domain would be a box. -
But this transfers to a spatial sinc, |
which has infinite spatial support.
= ¢ A compact spatial box filter ] 5
g transfers to a frequency sinc, which 0 g ; :
2 creates artifacts. - 2 e :
S X . H High-pass
1| * A Gaussian has compact support in o — —  filtered
> both domains. This makes it a > Original image
E convenient choice for a low-pass a g =
= filter. N £
8 8

B. Leibe
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Image Source: S, Chenney
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Topics of This Lecture Motivation: Fast Search Across Scales

¢ Multi-Scale representations . search &

» How to properly rescale an image?
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B. Leibe B. Leibe Lmage Source: Irani & Basr
RWTH/CHET RWTH CHET
. L. UNIVERSITY . L. UNIVERSITY
Recap: Sampling and Aliasing Recap: Sampling and Aliasing
Fourier
Transform Magnitude

Fourier
~ Transform Magnitudc
Signal _— A Spectrum

Surnple Copy and
Shill

Sampled Fourier

Signal —_— Spectrum
D
ISMP‘L‘ l Copy and
Shift

Sampled Fouricr

Signal Transform Magnitude Signal Transform Magnitude

o Spectrum e S Spectrum
= ~
5 Fftees AN /‘T\/\ g ] t. m
S + =
= -
g 2
= Cut out by =
S multiplication S
o Accurately o with box filter D
> Reconstructed Fourier S
ol Signal Transform o
5 e Magnitude =
a Spectrum o
E =
8 - 8
12 13
B. Leibe

lmage Source: Forsvth & Poncd B. Leibe

Image Source: Forsvth & Poncd
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Recap: Sampling and Aliasing Recap: Resampling with Prior Smoothing
ll'tx:‘;sl?;rm Magnitude B4 x 64 32x 32 18 % 16
Lﬂgm\ —_— /-’l\ Speetrum Artifacts!
‘ I no
lsﬂnnw: l Copy and smoothing
Shift
iR e Masrivue Gaussian
i pocirum
5 LT_LL KPR 5 7=
g g
£ 2
= Cut out by = Gaussian
o ) b o e g o=2
S s S i S =
Gl Signal Transform T
3 A ’—ll\ Magnitude %i * Note: We cannot recover the high frequencies, but we
§ | § can avoid artifacts by smoothing before resampling.
B. Leibe Image Source: Forsyth & Pn:\: B. Leibe Image Source: Forsvth & Polc
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Gaussian Pyramid - Stored Information

All the extra

levels add very

little overhead

for memory or

computation!
-

il
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The Gaussian Pyramid

Low resolution G, =(G,
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High resolution

16

17

Qurce. lrani & Bass

B. Leibe

ource: lrani & Ba: B. Leibe
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Summary: Gaussian Pyramid The Laplacian Pyramid
L. =G, —expand(G;
Gaussian Pyramid : ! P ( Hl) Laplacian Pyramid

G; = L; +expand(G;,;) __

¢ Construction: create each level from previous one
» Smooth and sample

—— L,=G,
¢ Smooth with Gaussians, in part because L,
» a Gaussian*Gaussian = another Gaussian

- G(sy) * G(oy) = G(sart(s; 2* 6, 2))

L

* Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.
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Why is this useful?
N B

Slide credit; David Lowe B. Leibe
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Laplacian ~ Difference of Gaussian Topics of This Lecture

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.

¢ Filters as templates
» Correlation as template matching

iy
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B. Leibe
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B. Leibe
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Note: Filters are Templates Where_’s Waldo?

78 5

* Applying a filter at some point ¢ Insight

can be seen as taking a dot- » Filters look like the effects
product between the image they are intended to find.
and some vector. . Filters find effects they
Filtering the image is a set of look like.

dot products.

= 2
© 2 © Scene 23
B. Leibe ide credit: Kristen Grauman B. Leibe
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Where’s Waldo? Where’s Waldo?
T AN Sy hp e
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Slide credit; Kristen Grauman eibe

ide credit; Kristen Grauman B. Leibe




Correlation as Template Matching

¢ Think of filters as a dot product of the filter vector with
the image region
» Now measure the angle between the vectors
a-b
a-balb|cos& cosf =
lallb]

» Angle (similarity) between vectors can be measured by
normalizing the length of each vector to 1 and taking the dot
product.

D

Template

Computer Vision WS 16/17

Image region
B. Leibe

Vector interpretation 2

Derivatives and Edges...

1st derivative

- i
' Maxima of first
A — derivative
- ”Wm
~
= |
— - I 1 .
g - i | \
= . | 2nd derivative
S \ | 1 e
= T T——— “zcro crossings”
= ol second
2
£ derivative
3
28
B. Leibe

Partial Derivatives of an Image

Which shows changes with respect to x?

Computer Vision WS 16/17

Slide credit; Kristen Grauman B. Leibe
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Topics of This Lecture

¢ Image gradients
» Derivatives of Gaussian

27

B. Leibe

Differentiation and Convolution

« For the 2D function f(X,y), the partial derivative is:
AC) 10602160

&0 &

« For discrete data, we can approximate this using finite
differences:

Ay fOx+Ly)—f(xy)
ox 1

¢ To implement the above as convolution, what would be
the associated filter?

[1]1]

29
ide credit; Kristen Grayman B. Leibe

Assorted Finite Difference Filters

Sobel: M,

Roberts:

>> My = fspecial(‘sobel’);

>> outim = imfilter (double (im), My);
>> imagesc (outim) ;

>> colormap gray;

ide credit; Kristen Grauman 5. Leibe
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Image Gradient
¢ The gradient of an image:
— [of of
vi= 555

¢ The gradient points in the direction of most rapid intensity change

v

=[4L.0]

T L vr =155
vr=pg e

¢ The gradient direction (orientation of edge normal) is given by:

f =tan~1 (%/%)

¢ The edge strength is given by the gradient magnitude

V71 = /GD* + (&)

xr

lide credit: Steve Seitz B. Leibe

Solution: Smooth First

s
Signal

0 200 400 600 800

1000 1200 1400

1600 1800 2000

>
Kernal

T

L
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1600 1800 2000

£
hxf 2
S- B . S o
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§ T N S
i) 5
FaCh* ) g
&L I I i i
2 0 200 400 600 800 1000 1200 1400 1600 1800 2000
; )
Where is the edge? Look for Peaks in %(h * f) 34
slide credit; Steve Seit; B. Lethe
Derivative of Gaussian Filter
g*(h*l) = (g*h)=*I
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
1 —1 * 0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030
Why is this preferable?
36

Slide adapted from Kristen Grauman
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Effect of Noise

¢ Consider a single row or column of the image
» Plotting intensity as a function of position gives a signal

0 200 400 800 800 000 1200 1400 1800 1800 2000
Where is the edge?
ide credit: Steve Seitz B. Leibe 3
RWTHTHEN
Derivative Theorem of Convolution
L(hrf) = (Zh)+f
¢ Differentiation property of convolution.
Sigma = 50
f / 1
200 400 600 800 1000 1200 1400 1600 18’00 2(;00
Kl s
81']' £ i\ /
i : !
o @o a0 oo a0 0% Tam0 o 7600 700 200
£ N\
CrOET [\
8 N ]
OD 260 460 ﬁéO B‘OD 10‘00 12'00 1400 15‘00 TBIDC 2000
ide credit; Steve Seitz B. Leibe »
RWTHTHEN
Derivative of Gaussian Filters
x-direction y-direction
37
B. Leibe ource: Svetlana Lazebnil
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Laplacian of Gaussian (LoG)

« Consider ;Té(h*f)

Sigma = 50
PR SO p————
0 200 400 600 800 1000 1200 1400 1000 1800 2000
2, gq/\\‘.[\
022 2 l:ff
v i i
O 20 40 600 800 1000 1200 1400 1600 1800 2000
A
: Y
g
2, s : A :
(F=h)~f 2o I .
O 8 : V/ :
L M

0 200 400 60D 80D 1000 1200 1400 1600 1800 2000

Where is the edge? Zero-crossings of bottom graph
lide credit: Steve Seit B. Leibe

Topics of This Lecture

* Edge detection
» Canny edge detector

B. Leibe
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Designing an Edge Detector

¢ Criteria for an “optimal” edge detector:

» Good detection: the optimal detector should minimize the
probability of false positives (detecting spurious edges caused by
noise), as well as that of false negatives (missing real edges).
Good localization: the edges detected should be as close as
possible to the true edges.

» Single response: the detector should return one point only for
each true edge point; that is, minimize the number of local
maxima around the true edge.

v

rue Poor robustness Poor Too many
edge to noise localization respanses

42
5. Leibe Source: Li Fei-Feil
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RWTH/ACHEN
Summary: 2D Edge Detection Filters

Laplacian of Gaussian

T

Gaussian Derivative of Gaussian b i
1 242 9 5 iy
ho(u,v) = oy 20 ahg(lhl‘) Vehe(u,v) il
u
)
« V2is the Laplacian operator:
2p _ 02f L O°f
Vef= 9z2 + ay2
39
ide credit: Kristen Grauman B. Leibe
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Edge Detection

¢ Goal: map image from 2D array of pixels to a set of
curves or line segments or contours.

« Why?

)

"
L]

~
V3 ! %;f:\._?
P ooy

Figure from J. Shotton et al., PAMI 2007

(¢

¢ Main idea: look for strong gradients, post-process

41

ide credit; Kristen Grauman, David Lowe B Leibe

Gradients — Edges

Primary edge detection steps

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast
3. Edge localization

> Determine which local maxima from filter output are actually
edges vs. noise

»  Thresholding, thinning

¢ Two issues
» At what scale do we want to extract structures?
» How sensitive should the edge extractor be?

adapted from Kristen Grauman B. Leibe
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Scale: Effect of o on Derivatives

o = 1 pixel

o = 3 pixels

¢ The apparent structures differ depending on Gaussian’s
scale parameter.

= Larger values: larger-scale edges detected
= Smaller values: finer features detected

45

lide credit: Kristen Grauman B. Leibe

Original Image

47

Slide credit; Kristen Grauman
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Thresholding with a Lower Threshol
W AN

o ‘,/‘/f R

49

B. Leibe

Slide credit; Kristen Grauman
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Sensitivity: Recall Thresholding

¢ Choose a threshold t

¢ Set any pixels less than t
to zero (off).

¢ Set any pixels greater than
or equal t to one (on).

FT[i’j]:{l, ifF[i, j]>t

0, otherwise

B. Leibe

Gradient Magnitude Image

ide credit; Kristen Grauman
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Thresholding with a Higher Threshold
‘ : ¥ S

[y

RWTHACHE
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Canny Edge Detector

e Probably the most widely used edge detector in
computer vision

¢ Theoretical model: step-edges corrupted by additive
Gaussian noise

¢ Canny has shown that the first derivative of the
Gaussian closely approximates the operator that
optimizes the product of signal-to-noise ratio and
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localization.
J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
51
B. Leibe Source: Li Fei-Feil
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The Canny Edge Detector
Gradient magnitude
53
slide credit; Kristen Grauman B. Lethe
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Non-Maximum Suppression

¢ Check if pixel is local maximum along gradient direction,
select single max across width of the edge
» Requires checking interpolated pixels p and r
= Linear interpolation based on gradient direction

B. Leibe

56
Source: Forsyth & Ponce
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ide credit; Kristen Grauman B. Leibe
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The Canny Edge Detector
Original image (Lenna)
52

ide credit: Kristen Grauman B. Leibe
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The Canny Edge Detector

How to turn

these thick

regions of

the gradient
into curves?

The Canny Edge Detector

Thinning
(non-maximum suppression)

ide credit; Kristen Grauman B. Leibe
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Problem: pixels
along this edge
didn’t survive
the thresholding.



http://www.graphics.pku.edu.cn/members/chenyisong/lectures/readings/Canny86pami.pdf
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Solution: Hysteresis Thresholding

¢ Hysteresis: A lag or momentum factor
* Idea: Maintain two thresholds k;;; and k,,,,
» Use ky,,, to find strong edges to start edge chain
» Use ky,,, to find weak edges which continue edge chain
¢ Typical ratio of thresholds is roughly
khigh/ Ko = 2

58
B. Leibe Source: D. Lowe, S. Seit:

Summary: Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
» Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high
» Use the high threshold to start edge curves and the low

Computer Vision WS 16/17

threshold to continue them
e MATLAB:
>> edge (image, ‘canny’);
>> help edge
60
B. Leibe Source: D. Lowe, L. Fei-Fei
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Edge Detection is Just the Beginning...

Image

Human segmentation

Gradient magnitude

¢ Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

62
B. Leibe Source: L. Lazebnik

Hysteresis Thresholding
J
| RCELPY
— ,'l“- - -.?l'.

: - 2 . I
e —
Original image

coutes of G. Loy
High threshold Hysteresis threshold
(strong edges)

Low threshold
(weak edges)

B. Leibe
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59
Source: L, Fei:-Fei

Object Boundaries vs. Edges
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o Background Texture Shadows
ide credit; Kristen Grauman B. Leibe

References and Further Reading

¢ Background information on linear filters and their
connection with the Fourier transform can be found in
Chapter 7 of F&P. Additional information on edge
detection is available in Chapter 8.
» D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003
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. 63
B. Leibe
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

