Computer Vision - Lecture 3

Linear Filters

31.10.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Reminder from Last Lecture

- Convert the image into binary form Thresholding
- Clean up the thresholded image Morphological operators
- Extract individual objects

Connected Components Labeling

- Describe the objects
, Region properties

Region Properties

- From the previous steps, we can obtain separated objects.
- Some useful features can be extracted once we have connected components, including
, Area
, Centroid
, Extremal points, bounding box
, Circularity
, Spatial moments

Area and Centroid

- We denote the set of pixels in a region by R
- Assuming square pixels, we obtain
- Area:

$$
\begin{aligned}
& A=\sum_{(x, y) \in R} 1 \\
& \bar{x}=\frac{1}{A} \sum_{(x, y) \in R} x \\
& \bar{y}=\frac{1}{A} \sum_{(x, y) \in R} y
\end{aligned}
$$

, Centroid:

Circularity

- Measure the deviation from a perfect circle
. Circularity: $C=\frac{\mu_{R}}{\sigma_{R}}$
where μ_{R} and σ_{R}^{2} are the mean and variance of the distance from the centroid of the shape to the boundary pixels $\left(x_{k} y_{k}\right)$.
, Mean radial distance:

$$
\mu_{R}=\frac{1}{K} \sum_{k=0}^{K-1}\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\|
$$

, Variance of radial distance:

$$
\sigma_{R}^{2}=\frac{1}{K} \sum_{k=0}^{K-1}\left[\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\|-\mu_{R}\right]^{2}
$$

Invariant Descriptors

- Often, we want features independent of location, orientation, scale.

Central Moments

- S is a subset of pixels (region).
- Central $(j, k)^{\text {th }}$ moment defined as:

$$
\mu_{j k}=\sum_{(x, y) \in S}(x-\bar{x})^{j}(y-\bar{y})^{k}
$$

- Invariant to translation of S.
- Interpretation:
, $0^{\text {th }}$ central moment: area
, $2^{\text {nd }}$ central moment: variance
, $3^{\text {rd }}$ central moment: skewness
, $4^{\text {th }}$ central moment: kurtosis

Moment Invariants ("Hu Moments")

- Normalized central moments

$$
\eta_{p q}=\frac{\mu_{p q}}{\mu_{00}^{\gamma}}, \quad \gamma=\frac{p+q}{2}+1
$$

- From those, a set of invariant moments can be defined for object description.

$$
\begin{aligned}
& \phi_{1}=\eta_{20}+\eta_{02} \\
& \phi_{2}=\left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2} \\
& \phi_{3}=\left(\eta_{30}-3 \eta_{12}\right)^{2}+\left(3 \eta_{21}-\eta_{03}\right)^{2} \\
& \phi_{4}=\left(\eta_{30}+\eta_{12}\right)^{2}+\left(\eta_{21}+\eta_{03}\right)^{2}
\end{aligned}
$$

- Robust to translation, rotation \& scaling, but don't expect wonders (still summary statistics).

Moment Invariants

$$
\begin{aligned}
\phi_{5}= & \left(\eta_{30}-3 \eta_{12}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +\left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{21}+\eta_{03}\right)\left[3\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
\phi_{6}= & \left(\eta_{20}-\eta_{02}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +4 \eta_{11}\left(\eta_{30}+\eta_{12}\right)\left(\eta_{21}+\eta_{03}\right) \\
\phi_{7}= & =\left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +\left(3 \eta_{12}-\eta_{30}\right)\left(\eta_{21}+\eta_{03}\right)\left[3\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right]
\end{aligned}
$$

Often better to use $\log _{10}\left(\phi_{i}\right)$ instead of ϕ_{i} directly...

Axis of Least Second Moment

- Invariance to orientation?
, Need a common alignment

Axis for which the squared distance to 2D object points is minimized (maximized).
, Compute Eigenvectors of $2^{\text {nd }}$ moment matrix (Matlab: eig(A))

$$
\left.\left[\begin{array}{ll}
\mu_{20} & \mu_{11} \\
\mu_{11} & \mu_{02}
\end{array}\right]=V D V^{T}=\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{22} & v_{22}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
v_{11} \\
v_{21}
\end{array}\right] \begin{array}{l}
v_{12} \\
v_{22}
\end{array}\right]^{T}
$$

\section*{R}
 Summary: Binary Image Processing

- Pros
, Fast to compute, easy to store
, Simple processing techniques
, Can be very useful for constrained scenarios
- Cons
, Hard to get "clean" silhouettes
> Noise is common in realistic scenarios
, Can be too coarse a representation
, Cannot deal with 3D changes

Demo "Haribo Classification"

Code will be available on L2P...

You Can Do It At Home...

Accessing a webcam in Matlab:

function out $=$ webcam
\% uses "Image Acquisition Toolbox,,
adaptorName $=$ 'winvideo';
vidFormat $=$ 'I420_320x240';
vidObj1= videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1 ;
cam $=$ webcam();
img=getsnapshot(cam) ;

Course Outline

- Image Processing Basics
, Image Formation
- Binary Image Processing
, Linear Filters
, Edge \& Structure Extraction
, Color
- Segmentation
- Local Features \& Matching
- Object Recognition and Categorization
- 3D Reconstruction
- Motion and Tracking

Motivation

- Noise reduction/image restoration

- Structure extraction

B. Leibe

Topics of This Lecture

- Linear filters
, What are they? How are they applied?
, Application: smoothing
, Gaussian filter
, What does it mean to filter an image?
- Nonlinear Filters
- Median filter
- Multi-Scale representations
, How to properly rescale an image?
- Filters as templates
, Correlation as template matching

Common Types of Noise

- Salt \& pepper noise
, Random occurrences of black and white pixels
- Impulse noise
, Random occurrences of white pixels

Original

Salt and pepper noise

Gaussian noise

Gaussian Noise

$$
\begin{aligned}
f(x, y)=\overbrace{\overparen{f}(x, y)}^{\text {Ideal Image }}+\overbrace{\eta(x, y)}^{\text {Noise process } \quad} \quad \begin{array}{l}
\text { Gaussian i.i.d. ("white") noise: } \\
\eta(x, y) \sim \mathcal{N}(\mu, \sigma)
\end{array} \\
\gg \text { noise }=\operatorname{randn}(\text { size }(\text { im })) . \text { *sigma; }
\end{aligned}
$$

>> output = im + noise;

Slide credit: Kristen Grauman
B. Leibe

First Attempt at a Solution

- Assumptions:
, Expect pixels to be like their neighbors
, Expect noise processes to be independent from pixel to pixel ("i.i.d. = independent, identically distributed")
- Let's try to replace each pixel with an average of all the values in its neighborhood...

Moving Average in 2D

$$
F[x, y]
$$

$$
G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0								

Computer Vision WS 16/17

Moving Average in 2D

$$
F[x, y]
$$

$$
G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10							

Computer Vision WS 16/17

Moving Average in 2D

$$
F[x, y]
$$

$G[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20						

Computer Vision WS 16/17

Moving Average in 2D

$$
F[x, y]
$$

$G[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30					

Computer Vision WS 16/17

Moving Average in 2D

$$
F[x, y] \quad G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30				

Computer Vision WS 16/17

Moving Average in 2D

$$
F[x, y]
$$

$G[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

Correlation Filtering

- Say the averaging window size is $2 k+1 \times 2 k+1$:

$$
G[i, j]=\frac{1}{(2 k+1)^{2}} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]
$$

Attribute uniform Loop over all pixels in neighborhood weight to each pixel around image pixel $F[i, j]$

- Now generalize to allow different weights depending on neighboring pixel's relative position:

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} \underbrace{H[u, v]}_{\substack{\text { Non-uniform weights } \\ \text { в. Leibe }}} F[i+u, j+v]
$$

Correlation Filtering

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]
$$

- This is called cross-correlation, denoted $G=H \otimes F$
- Filtering an image
, Replace each pixel by a weighted combination of its neighbors.
, The filter "kernel" or "mask" is the prescription for the weights in the linear combination.

Convolution

- Convolution:
, Flip the filter in both dimensions (bottom to top, right to left)
, Then apply cross-correlation

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

$$
G=\underset{\uparrow}{H} \underset{ }{H} \underset{\substack{\text { Notation for } \\ \text { convolution } \\ \text { operator }}}{ }
$$

Correlation vs. Convolution

- Correlation

$$
\begin{array}{rlr}
G[i, j] & =\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v] & \begin{array}{r}
\text { Matlab: } \\
\text { filter2 } \\
\text { imfilter }
\end{array} \\
G & =H \otimes F &
\end{array}
$$

- Convolution

$$
G[i, j]=\sum^{k} \sum^{k} H[u, v] F[i-u, j-v] \quad \begin{gathered}
\text { Matlab: } \\
\text { conv2 }
\end{gathered}
$$

- Note
, If $H[-u,-v]=H[u, v]$, then correlation \equiv convolution.

Shift Invariant Linear System

- Shift invariant:
, Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Linear:
, Superposition: $h *\left(f_{1}+f_{2}\right)=\left(h * f_{1}\right)+\left(h * f_{2}\right)$
, Scaling: $\quad h^{*}(k f)=k\left(h^{*} f\right)$

Properties of Convolution

- Linear \& shift invariant
- Commutative: $f \star g=g \star f$
- Associative: $\quad(f \star g) \star h=f \star(g \star h)$
, Often apply several filters in sequence: $\quad\left(\left(\left(a \star b_{1}\right) \star b_{2}\right) \star b_{3}\right)$
> This is equivalent to applying one filter: $a \star\left(b_{1} \star b_{2} \star b_{3}\right)$

$$
f \star e=f
$$

, for unit impulse $e=[\ldots, 0,0,1,0,0, \ldots]$.

- Differentiation:

$$
\frac{\partial}{\partial x}(f \star g)=\frac{\partial f}{\partial x} \star g
$$

Averaging Filter

- What values belong in the kernel $H[u, v]$ for the moving average example?

$$
G=H \otimes F
$$

Smoothing by Averaging

Original

Filtered
"Ringing" artifacts!

Smoothing with a Gaussian

\square

Original

Filtered

Smoothing with a Gaussian - Comparison

Original

Filtered

Gaussian Smoothing

- Gaussian kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

- Rotationally symmetric
- Weights nearby pixels more than distant ones

, This makes sense as 'probabilistic' inference about the signal
- A Gaussian gives a good model of a fuzzy blob

Gaussian Smoothing

- What parameters matter here?
- Variance σ of Gaussian
, Determines extent of smoothing

$$
\begin{gathered}
\sigma=2 \text { with } 30 \times 30 \\
\text { kernel }
\end{gathered}
$$

$\sigma=5$ with 30×30 kernel

Gaussian Smoothing

- What parameters matter here?
- Size of kernel or mask
, Gaussian function has infinite support, but discrete filters use finite kernels

$$
\begin{gathered}
\sigma=5 \text { with } 10 \times 10 \\
\text { kernel }
\end{gathered}
$$

$\sigma=5$ with 30×30 kernel
, Rule of thumb: set filter half-width to about 3σ !

Gaussian Smoothing in Matlab

>> hsize $=10$;
>> sigma = 5;
>> h = fspecial('gaussian' hsize, sigma);
>> mesh (h);
>> imagesc(h);
>> outim = imfilter(im, h);
>> imshow (outim);

outim

Effect of Smoothing

 More noise $\rightarrow$$\sigma=0.05$

$\sigma=0.1$

$\sigma=0.2$

Wider smoothing kernel \rightarrow

41

Slide credit: Kristen Grauman
B. Leibe

Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
, First convolve each row with a 1D filter

$$
g(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-x^{2} /\left(2 \sigma^{2}\right)\right)
$$

, Then convolve each column with a 1D filter

$$
g(y)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-y^{2} /\left(2 \sigma^{2}\right)\right)
$$

- Remember:
, Convolution is linear - associative and commutative

$$
g_{x} \star g_{y} \star I=g_{x} \star\left(g_{y} \star I\right)=\left(g_{x} \star g_{y}\right) \star I
$$

Filtering: Boundary Issues

- What is the size of the output?
- MATLAB: filter2 (g, f, shape)
, shape = 'full': output size is sum of sizes of f and g
, shape = 'same': output size is same as f
, shape = 'valid': output size is difference of sizes of f and g

Filtering: Boundary Issues

- How should the filter behave near the image boundary?
, The filter window falls off the edge of the image
, Need to extrapolate
, Methods:
- Clip filter (black)
- Wrap around
- Copy edge
- Reflect across edge

Filtering: Boundary Issues

- How should the filter behave near the image boundary?
, The filter window falls off the edge of the image
, Need to extrapolate
, Methods (MATLAB):
- Clip filter (black):

```
imfilter(f,g,0)
imfilter (f,g, 'circular')
imfilter (f,g, 'replicate')
```

- Wrap around:
- Copy edge:
- Reflect across edge: imfilter(f,g,'symmetric')

Topics of This Lecture

- Linear filters
, What are they? How are they applied?
, Application: smoothing
, Gaussian filter
, What does it mean to filter an image?
- Nonlinear Filters

Median filter

- Multi-Scale representations

How to properly rescale an image?

- Filters as templates

Correlation as template matching

Why Does This Work?

- A small excursion into the Fourier transform to talk about spatial frequencies...

$$
3 \cos (x)
$$

$A+B$

$$
+1 \cos (3 x)
$$

B

$+0.8 \cos (5 x)$

$+0.4 \cos (7 x)$
-سッmonn
$+\ldots$
B. Leibe

$A+B+C+D$

The Fourier Transform in Cartoons

- A small excursion into the Fourier transform to talk about spatial frequencies...
\longrightarrow

$A+B$

48
B. Leibe

Fourier Transforms of Important Functions

- Sine and cosine transform to...

?

Fourier Transforms of Important Functions

- Sine and cosine transform to "frequency spikes"

- A Gaussian transforms to...

Fourier Transforms of Important Functions

- Sine and cosine transform to "frequency spikes"

- A Gaussian transforms to a Gaussian

- A box filter transforms to...

Fourier Transforms of Important Functions

- Sine and cosine transform to "frequency spikes"

- A Gaussian transforms to a Gaussian

All of this is symmetric!

- A box filter transforms to a sinc

Duality

- The better a function is localized in one domain, the worse it is localized in the other.

- This is true for any function

Effect of Convolution

- Convolving two functions in the image domain corresponds to taking the product of their transformed versions in the frequency domain.

$$
f \star g \multimap \mathcal{F} \cdot \mathcal{G}
$$

- This gives us a tool to manipulate image spectra.
- A filter attenuates or enhances certain frequencies through this effect.

Effect of Filtering

- Noise introduces high frequencies. To remove them, we want to apply a "low-pass" filter.

- The ideal filter shape in the frequency domain would be a box. But this transfers to a spatial sinc, which has infinite spatial support.

- A compact spatial box filter transfers to a frequency sinc, which creates artifacts.

- A Gaussian has compact support in both domains. This makes it a convenient choice for a low-pass filter.

Low-Pass vs. High-Pass

Quiz: What Effect Does This Filter Have?

Sharpening Filter

Computer Vision WS 16/17

Original

Sharpening filter
 - Accentuates differences with local average

Sharpening Filter

Computer Vision WS 16/17

before

after

Application: High Frequency Emphasis

Original

High Frequency Emphasis

High Frequency Emphasis $+$
Histogram Equalization

Topics of This Lecture

- Linear filters
, What are they? How are they applied?
> Application: smoothing
, Gaussian filter
, What does it mean to filter an image?
- Nonlinear Filters
- Median filter
- Multi-Scale representations
. How to properly rescale an image?
- Image derivatives
, How to compute gradients robustly?

Non-Linear Filters: Median Filter

- Basic idea
, Replace each pixel by the median of its neighbors.
- Properties
, Doesn't introduce new pixel values
, Removes spikes: good for
 impulse, salt \& pepper noise
, Linear?

Median Filter

Salt and pepper noise

Median filtered

Plots of a row of the image

Median Filter

- The Median filter is edge preserving.

Median vs. Gaussian Filtering

3×3

7x7

Gaussian

Median

Slide credit: Svetlana Lazebnik

Topics of This Lecture

- Linear filters
, What are they? How are they applied?
, Application: smoothing
, Gaussian filter
, What does it mean to filter an image?
- Nonlinear Filters
, Median filter
- Multi-Scale representations
, How to properly rescale an image?
- Filters as templates

Correlation as template matching

Motivation: Fast Search Across Scales

Image Pyramid

Low resolution

[^0]
How Should We Go About Resampling?

Let's resample the checkerboard by taking one sample at each circle.

In the top left board, the new representation is reasonable. Top right also yields a reasonable representation.

Bottom left is all black (dubious) and bottom right has checks that are too big.

Fourier Interpretation: Discrete Sampling

- Sampling in the spatial domain is like multiplying with a spike function.

- Sampling in the frequency domain is like...

?

Fourier Interpretation: Discrete Sampling

- Sampling in the spatial domain is like multiplying with a spike function.

- Sampling in the frequency domain is like convolving with a spike function.

Sampling and Aliasing

Sampling and Aliasing

- Nyquist theorem:
- In order to recover a certain frequency f, we need to sample with at least $2 f$.
, This corresponds to the point at which the transformed frequency spectra start to overlap (the Nyquist limit)

Sampling and Aliasing

Aliasing in Graphics

Disintegrating textures

Resampling with Prior Smoothing

Gaussian $\sigma=1$

Gaussian
$\sigma=2$

- Note: We cannot recover the high frequencies, but we can avoid artifacts by smoothing before resampling.

The Gaussian Pyramid

Low resolution

Gaussian Pyramid - Stored Information

Summary: Gaussian Pyramid

- Construction: create each level from previous one
- Smooth and sample
- Smooth with Gaussians, in part because
, a Gaussian*Gaussian = another Gaussian
$>G\left(\sigma_{1}\right){ }^{*} \mathrm{G}\left(\sigma_{2}\right)=\mathrm{G}\left(\operatorname{sqrt}\left(\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}\right)\right)$
- Gaussians are low-pass filters, so the representation is redundant once smoothing has been performed.
\Rightarrow There is no need to store smoothed images at the full original resolution.

The Laplacian Pyramid

Gaussian Pyramid

Laplacian ~ Difference of Gaussian

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.

Topics of This Lecture

- Linear filters
, What are they? How are they applied?
, Application: smoothing
, Gaussian filter
, What does it mean to filter an image?
- Nonlinear Filters
, Median filter
- Multi-Scale representations

How to properly rescale an image?

- Filters as templates
, Correlation as template matching

Note: Filters are Templates

- Applying a filter at some point can be seen as taking a dotproduct between the image and some vector.
- Filtering the image is a set of dot products.
- Insight
, Filters look like the effects they are intended to find.
- Filters find effects they look like.

Where's Waldo?

Scene

Template

Slide credit: Kristen Grauman
B. Leibe

Where's Waldo?

Template

Slide credit: Kristen Grauman
B. Leibe

Where's Waldo?

Correlation map

Correlation as Template Matching

- Think of filters as a dot product of the filter vector with the image region
, Now measure the angle between the vectors

$$
a \cdot b=|a \| b| \cos \theta \quad \cos \theta=\frac{a \cdot b}{|a||b|}
$$

- Angle (similarity) between vectors can be measured by normalizing length of each vector to 1.

Summary: Mask Properties

- Smoothing
, Values positive
, Sum to $1 \Rightarrow$ constant regions same as input
- Amount of smoothing proportional to mask size
, Remove "high-frequency" components; "low-pass" filter
- Filters act as templates
, Highest response for regions that "look the most like the filter"
, Dot product as correlation

Summary Linear Filters

- Linear filtering:
, Form a new image whose pixels are a weighted sum of original pixel values
- Properties
> Output is a shift-invariant function of the input (same at each image location)

Examples:

- Smoothing with a box filter
- Smoothing with a Gaussian
- Finding a derivative
- Searching for a template

Pyramid representations

- Important for describing and searching an image at all scales

References and Further Reading

- Background information on linear filters and their connection with the Fourier transform can be found in Chapters 7 and 8 of
, D. Forsyth, J. Ponce, Computer Vision - A Modern Approach. Prentice Hall, 2003

[^0]: B. Leibe

