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Region Properties

¢ From the previous steps, we can
obtain separated objects.

¢ Some useful features can be
extracted once we have connected
components, including

Area

Centroid

Extremal points, bounding box
Circularity

Spatial moments

B. Leibe
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Circularity
¢ Measure the deviation from a perfect circle
Circularity: C = He (%)
Or e

Source: Shapiro & B. Leibe

where L, and GRZ are the mean and vari-
ance of the distance from the centroid of |
the shape to the boundary pixels (X,Y\)-
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B. Leibe Image Source: D, Kim et al., Cytometry 35(1), 199
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Area and Centroid

* We denote the set of pixels in a region by R
¢ Assuming square pixels, we obtain

. Area: A= 21 UI‘Z|3‘4‘567
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Source: Shapiro & Stockman B. Leibe
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Invariant Descriptors
« Often, we want features independent of
location, orientation, scale.
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Central Moments

¢ Sis a subset of pixels (region).
 Central (j,k)t moment defined as:
Vi G\k
Hi = Z(X_X)J(y_ y)
(x,y)es
e Invariant to translation of S.

¢ Interpretation:
» 0th central moment: area
» 2nd central moment: variance
» 3rd central moment: skewness
» 4t central moment: Kkurtosis
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lide credit: Kristen Grauman B. Leibe

Moment Invariants

Bs = (30— 31112) (7730 + 7712)[(7730 + 7712)2 =30, + 7703)2J
+ (31721 = 103) (111 + 7703)[3(7730 +17,) = (1 + ’703)2]

B = (1720~ ’702)[(7730 +71,)" = (17,0 + 7703)2]
+ 41711 (30 + 112) (1721 + 7703)

B = (3721 = 103) (130 + 7712)[(7730 + 7712)2 =301, + 7703)2J
+ (312 = 1130) (11 + 7703)[3(7730 +173,)% = (1 + 7703)2]
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Often better to use logy(¢;) instead of ¢, directly...

B. Leibe

TRWTH/ACHEN
Summary: Binary Image Processing

e Pros
» Fast to compute, easy to store
» Simple processing techniques
» Can be very useful for constrained scenarios

e Cons
» Hard to get “clean” silhouettes
» Noise is common in realistic scenarios
» Can be too coarse a representation
» Cannot deal with 3D changes
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Slide credit; Kristen Grauman B. Leibe
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Moment Invariants (“Hu Moments”)

¢ Normalized central moments

Hpq p+q
= =——+1
A r=
* From those, a set of invariant moments can be defined
for object description.
A =N+ 105,
@ = (175 77702)2 + 477121
&= (175 737712)2 + (3175, — 7703)2
By = (1750 + o) + (17, + 7703)2

¢ Robust to translation, rotation & scaling,
but don’t expect wonders (still summary statistics).

pa
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Axis of Least Second Moment

¢ Invariance to orientation?
» Need a common alignment

Axis for which the
squared distance to 2D
object points is minimized

( )-

» Compute Eigenvectors of 2" moment matrix (Matlab: eig(A))
T
|:,uzo M1:|:VDVT :|:V1 V12:||:2'1 O} Vi1 V12]
M Hop Vo Voo || 0 A [Vay) Vao
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Demo “Haribo Classification”
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Code will be available on L2P...

B. Leibe
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You Can Do It At Home...

Accessing a webcam in Matlab:

function out = webcam

% uses "Image Acquisition Toolbox,
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObjl= videoinput (adaptorName, 1, vidFormat);
set(vidObjl, 'ReturnedColorSpace', 'rgb');
set(vidObjl, 'FramesPerTrigger',6 1);

out = vidObjl ;

cam = webcam() ;
img=getsnapshot (cam) ;

B. Leibe
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Motivation

* Noise reduction/image restoration
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Common Types of Noise

¢ Salt & pepper noise

» Random occurrences of
black and white pixels

¢ Impulse noise

» Random occurrences of
white pixels

Original Salt and

¢ Gaussian noise

» Variations in intensity drawn
from a Gaussian (“Normal”)
distribution.

¢ Basic Assumption

» Noise is i.i.d. (independent &
identically distributed)

Impulse noise Gaus

B. Leibe

pepper noise

sian noise

ource: Steve Sei:

Course Outline

¢ Image Processing Basics
» Image Formation
Binary Image Processing
» Linear Filters
» Edge & Structure Extraction
» Color

v

¢ Segmentation
¢ Local Features & Matching
¢ Object Recognition and Categorization

¢ 3D Reconstruction
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¢ Motion and Tracking

B. Leibe

Topics of This Lecture

¢ Linear filters
» What are they? How are they applied?
» Application: smoothing
» Gaussian filter
» What does it mean to filter an image?

¢ Nonlinear Filters
» Median filter

Multi-Scale representations
» How to properly rescale an image?

Filters as templates
» Correlation as template matching

Computer Vision WS 16/17

B. Leibe

Gaussian Noise

n(z,y) ~ N(p,0)

>> noise = randn(size(im)).*sigma;
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E 1069l Image  Noise process Gaussian 1.i.d. ("white") noise:
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>> output = im + noise;
ide credit; Kristen Grauman B. Leibe

lmage Source: Martial Hebers
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First Attempt at a Solution Moving Average in 2D

¢ Assumptions:
» Expect pixels to be like their neighbors

» Expect noise processes to be independent from pixel to pixel
(“i.i.d. = independent, identically distributed”)

Flz,y] Glz, y]

e Let’s try to replace each pixel with an average of all the
values in its neighborhood...
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lide credit: Kristen Grauman B. Leibe B. Leibe qurce: §. Seit;
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Moving Average in 2D Moving Average in 2D
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Moving Average in 2D

Correlation Filtering

ko k
Gli,jl= > > Hlu,v]F[i+u,j+ ]

u=—kv=—k

¢ This is called cross-correlation, denoted G = H ® F

¢ Filtering an image

~ Replace each pixel by a i PR
weighted combination of H
its neighbors.
The filter “kernel” or “mask” F
is the prescription for the
weights in the linear
combination. Ll

v

Computer Vision WS 16/17

Slide credit; Kristen Grauman B. Leibe
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B. Leibe Qurce: S Seit:

Correlation vs. Convolution

¢ Correlation
k

Note the difference!
¢ Convolution

k k
Glijl= 3 3 HluolFli—uj—]

u=—kv=—k

G=Hx*F

Matlab:

conv2

* Note
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> If H[-u,-v] = H[u,v], then correlation = convolution.

Slide credit; Kristen Grauman B. Leibe

Matlab:
o ) . filter2
Gli,jl= Y. > Huv]F[li4+u,j+] i;nfiif:er
u=—kv=—k
G=H®F
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Correlation Filtering

* Say the averaging window size is 2k+1 x 2k+1:
1 k k
Gli,j] = ——== Fli4+u,j+wv
61=Gr e 2, 2, Pl
%/—/

Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F[i,j]

* Now generalize to allow different weights depending on
neighboring pixel’s relative position:

k k
Gli,jl= > > Hluv]Fli+u,j+7]
u=—kv=—k
Non-uniform weights

27
ide credit: Kristen Grauman B. Leibe

Convolution

¢ Convolution:
» Flip the filter in both dimensions (bottom to top, right to left)
» Then apply cross-correlation

k k
Glijl= > > HluolFli—u,j— ]

u=—kv=—k

v Y |00

G=HxF H

T z !

Notation for
convolution
operator

(NN;

29

ide credit; Kristen Grauman B. Leibe
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Shift Invariant Linear System

¢ Shift invariant:

» Operator behaves the same everywhere, i.e. the value of the
output depends on the pattern in the image neighborhood, not
the position of the neighborhood.

e Linear:
» Superposition:

h*(fi+ £)=Gh*f)+ (h*f)
h* (kf) = k(R * f)

» Scaling:

ide credit; Kristen Grauman B. Leibe




Properties of Convolution

¢ Linear & shift invariant

e Commutative: fxg=gxf

¢ Associative: (fxg)xh=fx(gxh)

» Often apply several filters in sequence:  (((a x b;) x by) x b3)
» This is equivalent to applying one filter: a x* (b; x b,  b3)

o Identity: frxe=f

» for unit impulse e =1...,0,0,1,0,0, ...].

of

« Differentiation: ﬂ(f* =9,
o T " 8t
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lide credit: Kristen Grauman B. Leibe

Smoothing by Averaging

depicts box filter:
<~ white = high value, black = low value

Original Filtered
“Ringing” artifacts!

Computer Vision WS 16/17

34

Slide credit; Kristen Grauman B. Leibe Jmage Source: Forsvth & Poncd

Smoothing with a Gaussian - Comparison

Original Filtered
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B. Leibe Jmage Source: Forsyth & Poncd
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Averaging Filter

« What values belong in the kernel H[u,v] for the moving
average example?

F['Ta y] & Hlu,v] = G[ZIJ, y]
—
1(1(1 o [10]20]aq[=o]f
90 oo [90[ 0] 90 =t
90 oo [e0[ 0] o0 )
90 [0 60] 50| % 9
N %0 0 [ 90 | 90 111
< 90 | 90 | 90 | 90 | %0
=
“ 3 ”
2 o box filter
=
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@
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g
z G=HQ®F
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ide credit: Kristen Grauman B. Leibe

Smoothing with a Gaussian

Original Filtered

Computer Vision WS 16/17
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B. Leibe lmage Source: Forsvth & Poncd

Gaussian Smoothing

¢ Gaussian kernel -
1 (x4
— e ﬁ_g_lz

p— a-
27o2

a

¢ Rotationally symmetric
¢ Weights nearby pixels more
than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

¢ A Gaussian gives a good model
of a fuzzy blob
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B. Leibe Image Source: Forsvth & Poncd




Gaussian Smoothing

* What parameters matter here?

¢ Variance c of Gaussian
» Determines extent of smoothing
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lide credit: Kristen Grauman B. Leibe

Gaussian Smoothing in Matlab
>> hsize = 10;
>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

-

>> mesh (h) ; -y
>> imagesc (h) ; E

>> outim = imfilter(im, h);
>> imshow (outim) ;

Computer Vision WS 16/17

§ outim 40
slide credit; Kristen Grauman B. Leibe
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Efficient Implementation

¢ Both, the BOX filter and the Gaussian filter are
separable:

. First convolve each row with a 1D filter Lo H—

1 2 2
g(x)= Nor s exp(—x° /(207)) |

» Then convolve each column with a 1D filter I
1 2 ma Igv 5
80 =5 exp(-y*/(20)) I

2ro

v

¢ Remember:
» Convolution is linear - associative and commutative

Ge* Gy *x I =gpx(gy*I) = (gz*gy) * I

=
S
©
S
Y
=
=
S
s
>
g
5
2
£
o
8

2

Slide credit; Bernt Schiele B. Leibe

Gaussian Smoothing

¢ What parameters matter here?
¢ Size of kernel or mask

» Gaussian function has infinite support, but discrete filters use
finite kernels

o =5 with 10x10

o =5 with 30x30
kernel kernel

> Rule of thumb: set filter half-width to about 3c!

Computer Vision WS 16/17

ide credit: Kristen Grauman B. Leibe

Effect of Smoothing

More noise 2>
0=0.05 o=0.1

& |9uIdy Sulyjoows ISPLM
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lmage Source: Forsvth & Poncd

ide credit; Kristen Grauman B. Leibe

Filtering: Boundary Issues

¢ What is the size of the output?
e MATLAB: filter2 (g, £, shape)
» shape = ‘full’: output size is sum of sizes of f and g
» shape = ‘same’: output size is same as f
» shape = ‘valid’: output size is difference of sizes of f and g

same valid

Computer Vision WS 16/17

ide credit; Svetlana Lazebnik 5. Leibe
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Filtering: Boundary Issues

¢ How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods: -
- Clip filter (black)

- Wrap around
- Copy edge
- Reflect across edge S
44

B. Leibe

Computer Vision WS 16/17

ource: S, Marschner

Topics of This Lecture

¢ Linear filters
~ What are they? How are they applied?
» Application: smoothing
» Gaussian filter
~ What does it mean to filter an image?

Computer Vision WS 16/17

46
B. Leibe
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The Fourier Transform in Cartoons

¢ A small excursion into the Fourier transform to talk
about spatial frequencies... “high” “T” “high”

/_\_/ﬁ ° ‘HHH‘

FrequencJ spectrum
Jeosy A N4 /—\_/\
+1cos@Bx) B T /v\/\/V\ A+B

/VV\/V\/VV\Amw
W

A+B+C+D

L~ IFrequency coefficients B. Leibe 8

ource: Michal lran;
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Filtering: Boundary Issues

¢ How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
> Methods (MATLAB):
- Clip filter (black): imfilter(f,g,0)
- Wrap around: imfilter(f,g, ‘circular’)
- Copy edge: imfilter(f,g, ‘replicate’)
- Reflect across edge: imfilter(f,g, ‘symmetric’)

Computer Vision WS 16/17

45

ource: S, Marschner

B. Leibe
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Why Does This Work?

¢ A small excursion into the Fourier transform to talk
about spatial frequencies...

A VA

3cos(x) A N4 /\/\

S

Bl +1cos@x) B T /\’-\,\/—\,\ A+B

12

B

H +08c0s(5X) € VAANANAN [VV\/\/\/VV\

2 | A+B+C

g

= +0.4 cos(7x) D IRAATAAAAVAVAVAVAVY

E A+B+C+D

© . ’ &
B. Leibe ource: Michal lran]
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Fourier Transforms of Important Functions

¢ Sine and cosine transform to...

N
S
©
g
1
=
.
S
o
>
g
E
2
£
o
o

49

lmage Source: S, Chenpey

B. Leibe
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Fourier Transforms of Important Functions

TRWTH/JCHEN
Fourier Transforms of Important Functions

* Sine and cosine transform to “frequency spikes” ¢ Sine and cosine transform to “frequency spikes”

¢ A Gaussian transforms to...

¢ A Gaussian transforms to a Gaussian

¢ A box filter transforms to...

-~
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Computer Vision WS 16/17

B. Leibe

Image Source: S, Chenn B. Leibe

Image Source: S, Chenney
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Fourier Transforms of Important Functions

RWTH CHET
Duality

* Sine and cosine transform to “frequency spikes”

¢ A Gaussian transforms to a Gaussian

- All of th
‘ ° ‘ symmet

e A box filter transforms to a sinc

" sinx
5 sinc(x) =——
X
52
B. Leibe

lmage Source: S, Chepne:

e The better a function is localized in one domain, the
worse it is localized in the other.

¢ This is true for any function

B. Leibe
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Effect of Convolution Effect of Filtering

¢ Convolving two functions in the image domain
corresponds to taking the product of their transformed
versions in the frequency domain.

* Noise introduces high frequencies.

To remove them, we want to apply a ,_J\‘_ a /j:
“low-pass” filter. B

The ideal filter shape in the
frequency domain would be a box. o
But this transfers to a spatial sinc, |

which has infinite spatial support.

¢ A compact spatial box filter
transfers to a frequency sinc, which o
creates artifacts. 5

* A Gaussian has compact support in
both domains. This makes it a
convenient choice for a low-pass 5
filter. B

B. Leibe

fxg—F-G

¢ This gives us a tool to manipulate image spectra.

» A filter attenuates or enhances certain frequencies through this
effect.
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B. Leibe




RWTH/CHET RWTH CHET
. UNIVERSITY] . N UNIVERSITY]
Low-Pass vs. High-Pass Quiz: What Effect Does This Filter Have?
Low-pass
filtered 20
N ?
§ § 0 0
[ 2
2 2
s High-pass 5
2 P filtered B
S Original image S
8 8
B. Leibe Image Source: S, Chenne, B. Leibe ource: D 10
RWTH/CHET RWTH CHET
. . UNIVERSITY] . . UNIVERSITY]
Sharpening Filter Sharpening Filter
20
2 Original 2
2 Sharpening filter z
5 - Accentuates differences g before after
g ~'p Wwith local average g
o ! 58 2 ' 59
B. Leibe urce: D 1 owd B. Leibe ource: D | owd
RWTH/CHET RWTH CHET
. . . UNIVERSITY] . . UNIVERSITY]
Application: High Frequency Emphasis Topics of This Lecture
Original High pass Filter
¢ Nonlinear Filters
~ N » Median filter
E E
é‘ ligh F quency High Frequency Ephasis é
8 Emphasis . o 8
§ Histogram Equalization 60 . 61
ide credit: Michallrani B. Leibe B. Leibe




Non-Linear Filters: Median Filter Median Filter

* Basic idea

Median
” filtered

» Replace each pixel by the

median of its neighbors. 10115120

2319027
3113 l Sort
Median value 31130

* Properties 10 lim 30 31 33 90

» Doesn’t introduce new pixel Mo[15]20 l Replace

(

§ values 23[27]27] ;\D:
] » Removes spikes: good for 33[31]30 (%)
2 - . 2
< impulse, salt & pepper noise <
E » Linear? E
] g v
2 2
g E Plots of a row of the image
lide credit: Kristen Grauman B. Leibe & ide credit: Kristen Grauman B. Leibe Image Source: Martial Hebert
Median Filter Median vs. Gaussian Filtering
3x3 5x5
¢ The Median filter is edge preserving. 7
. .
sssss sus . INPUT Gaussian
PP
.
. veesssens o MEDIAN 5
g o g
Y seen n
B B
c . c
o . s
s ceatrre, W MEAN = Median
g . . 5
2 feae” 2
£ 3
o o
o 64 o
Slide credit; Kristen Grauman B. Leibe
Topics of This Lecture Motivation: Fast Search Across Scales
.search &
%@ .search
* W L% IX
o ] e N
B . . @ .search m
2 I Multi-Scale representations g
< » How to properly rescale an image? <
2 @
2 >
g g
2 2
£ 3
o o
o 66 S ) 67
B. Leibe B. Leibe Jmage Source: Irani & Basr
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Image Pyramid How Should We Go About Resampling?

Low resolution 2
.

Let’s resample the
checkerboard by taking
one sample at each
circle.

In the top left board, the
new representation is
reasonable. Top right
also yields a reasonable
representation.

Bottom left is all black
(dubious) and bottom
right has checks that are
too big.

Computer Vision WS 16/17
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High resolution

B. Leibe

B. Leibe

Image Source: Forsvth & Poncd
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Fourier Interpretation: Discrete Sampling

TRWTH/JCHEN
Fourier Interpretation: Discrete Sampling

« Sampling in the spatial domain is like multiplying with a
spike function.

N
Mxyﬁﬂ\»“m

¢ Sampling in the spatial domain is like multiplying with a
spike function.

SN
ol

~ ~
§ ¢ Sampling in the frequency domain is like... § ¢ Sampling in the frequency domain is like convolving with
2 2 a spike function.
5 s
5] 3 * —
z z [MMMM Mdﬂ[
8 5 LI
70 7
B. Leibe

ource: S, Chenpey B. Leibe

ource: S, Chenpe

Sampling and Aliasing Sampling and Aliasing
Fourier Fourier
Transform Magnitude Transform Magnitude
Signal R e A Spectrum Signal —_— Speetrum
e S T —
‘ . — SN "
liummh J Copy and l*‘r‘mrlt l Copy and
Shill Shift
S ded Tourics S e ouric
Signal Transtorm Mogpitude Sn Mngritte
AN o :

* Nyquist theorem:

» In order to recover a certain frequency f, we need to sample with at
least 2f.

» This corresponds to the point at which the transformed frequency
spectra start to overlap (the Nyquist limit)

Cut out by

multiplication
Accurately — with box filter
R

structed Fourier
Magnitude
Spectrum
72

Transform
lmage Source: Forsvth & Poncd
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B. Leibe Image Source: Forsvth & Poncd




Sampling and Aliasing

Fourier

. Transform Magnitude
Signal _— /-"\ Speetrum

Sample Copy and
Shift

Sampled Fourier

Signal Transform Mugnitude
N —_— l Spectrum

~

=

<

=

£

= Cut out by

2 multiplication
@ Inaccurately Inverse with hox filter
> Reconstructed Fourier

8 Signal Teansform

E Magnitude
g Spectrum
£

S T

o

4

7-
Image Source: Forsvth & Pong

B. Leibe

no
smoothing

Gaussian
o=1

Gaussian
0=2

* Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.

Computer Vision WS 16/17

76
B. Leibe

lmage Source: Forsvth & Poncd

Gaussian Pyramid - Stored Information

Kol All the extra
o levels add very
little overhead
for memory or

computation!

o
|
\

B. Leibe
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78

ource: lrani & Ba:

Aliasing in Graphics

Disintegrating textures

Computer Vision WS 16/17

B. Leibe

75

Image Source: Alexei Efro:

The Gaussian Pyramid
G, = (G, *gaussian) 4 2 J
- 5 40

* QA ERANTE2

Low resolution

blur 2l
G, =(G, ~gaussian) ¢ 2

Computer Vision WS 16/17

High resolution
B. Leibe

77

Qurce. lrani & Bass

Summary: Gaussian Pyramid

¢ Construction: create each level from previous one
» Smooth and sample

¢ Smooth with Gaussians, in part because
» a Gaussian*Gaussian = another Gaussian
- G(oy) * G(oy) = G(sqrt(c, 2% 6, 2))
¢ Gaussians are low-pass filters, so the representation is

redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

N
S
©
g
1
=
.
S
o
s
g
E
2
£
o
o

ide credit; David Lowe B. Leibe

79

13



RWTH/ACHEN RWTH/ACHEN
UNIVERSITY UNIVERSITY]

The Laplacian Pyramid
Li = G; —expand(Gy,,)

Gaussian Pyramid Laplacian Pyramid

G G; = L; +expand(G;,,)

Laplacian ~ Difference of Gaussian

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.

— Ln=Gn

L
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Why is this useful?
N B
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Topics of This Lecture Note: Filters are Templates
* Applying a filter at some point ¢ Insight
can be seen as taking a dot- . Filters look like the effects
product between the image they are intended to find.
and some vector. » Filters find effects they
¢ Filtering the image is a set of look like.
dot products.
S S
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3 » Correlation as template matching : 3
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Where’s Waldo?

Correlation map

lide credit: Kristen Grauman B. Leibe

Summary: Mask Properties

¢ Smoothing
» Values positive
» Sum to 1 = constant regions same as input
» Amount of smoothing proportional to mask size
» Remove “high-frequency” components; “low-pass” filter

o Filters act as templates
» Highest response for regions that “look the most like the filter”
» Dot product as correlation

Slide credit: Kristen Grauman B. Leibe
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References and Further Reading

¢ Background information on linear filters and their
connection with the Fourier transform can be found in
Chapters 7 and 8 of
» D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003
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Correlation as Template Matching

¢ Think of filters as a dot product of the filter vector with
the image region
» Now measure the angle between the vectors

Template

a-b
a-b=a|b|cose cosé =
lallb]
» Angle (similarity) between vectors can be measured by
= normalizing length of each vector to 1.
g
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Summary Linear Filters

e Linear filtering:
~ Form a new image whose
pixels are a weighted sum
of original pixel values

Examples:
* Smoothing with a box filter
* Smoothing with a Gaussian
* Finding a derivative
* Searching for a template
¢ Properties
» Output is a shift-invariant
function of the input (same
at each image location)

Pyramid representations
* Important for describing and
searching an image at all

scales
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