

Advanced Machine Learning Lecture 20

Deep Reinforcement Learning II

02.02.2017

Bastian Leibe

RWTH Aachen

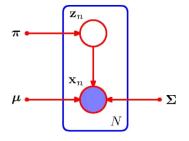
http://www.vision.rwth-aachen.de/

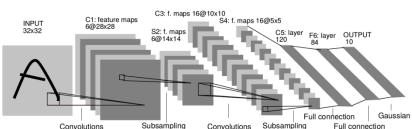
leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes
- Approximate Inference
 - Sampling Approaches
 - > MCMC
- Deep Learning
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, ResNets, RNNs, Deep RL, etc.







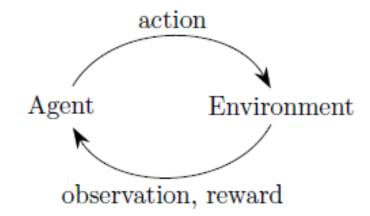
Topics of This Lecture

- Recap: Reinforcement Learning
 - Key Concepts
 - Temporal Difference Learning
- Deep Reinforcement Learning
 - Value based Deep RL
 - Policy based Deep RL
 - Model based Deep RL
- Applications

Recap: Reinforcement Learning

Motivation

- General purpose framework for decision making.
- > Basis: Agent with the capability to interact with its environment
- Each action influences the agent's future state.
- Success is measured by a scalar reward signal.
- Goal: select actions to maximize future rewards.



 Formalized as a partially observable Markov decision process (POMDP)

Recap: Reward vs. Return

Objective of learning

- We seek to maximize the expected return G_t as some function of the reward sequence $R_{t+1}, R_{t+2}, R_{t+3}, ...$
- Standard choice: expected discounted return

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where $0 \le \gamma \le 1$ is called the discount rate.

Difficulty

- We don't know which past actions caused the reward.
- ⇒ Temporal credit assignment problem

Recap: Policy

Definition

- A policy determines the agent's behavior
- > Map from state to action $\pi: \mathcal{S} \to \mathcal{A}$

Two types of policies

> **Deterministic policy:** $a = \pi(s)$

> Stochastic policy: $\pi(a|s) = \Pr\{A_t = a|S_t = s\}$

Note

 $\pi(a|s)$ denotes the probability of taking action a when in state s.

Recap: Value Function

Idea

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And thus to select between actions

Definition

The value of a state s under a policy π , denoted $v_{\pi}(s)$, is the expected return when starting in s and following π thereafter.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]$$

The value of taking action a in state s under a policy π , denoted $q_{\pi}(s,a)$, is the expected return starting from s, taking action a, and following π thereafter.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$$

Recap: Optimal Value Functions

- Bellman optimality equations
 - \succ For the optimal state-value function v_* :

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$
$$= \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r|s, a) [r + \gamma v_*(s')]$$

- > v_* is the unique solution to this system of nonlinear equations.
- \triangleright For the optimal action-value function q_* :

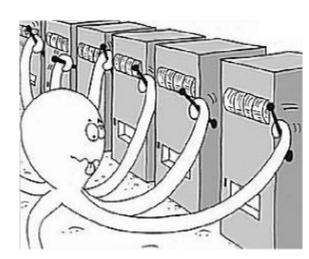
$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

- $ightarrow q_*$ is the unique solution to this system of nonlinear equations.
- \Rightarrow If the dynamics of the environment p(s',r|s,a) are known, then in principle one can solve those equation systems.

Recap: Exploration-Exploitation Trade-off

Example: N-armed bandit problem

- Suppose we have the choice between N actions $a_1, ..., a_N$.
- If we knew their value functions $q_*(s, a_i)$, it would be trivial to choose the best.
- However, we only have estimates based on our previous actions and their returns.



We can now

- Exploit our current knowledge
 - And choose the greedy action that has the highest value based on our current estimate.
- Explore to gain additional knowledge
 - And choose a non-greedy action to improve our estimate of that action's value.

Recap: TD-Learning

- Policy evaluation (the prediction problem)
 - ightarrow For a given policy π , compute the state-value function v_{π} .
- One option: Monte-Carlo methods
 - Play through a sequence of actions until a reward is reached, then backpropagate it to the states on the path.

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

Target: the actual return after time t

- Temporal Difference Learning TD(λ)
 - > Directly perform an update using the estimate $V(S_{t+\lambda+1})$.

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

Target: an estimate of the return (here: TD(0))

Recap: SARSA - On-Policy TD Control

Idea

Turn the TD idea into a control method by always updating the policy to be greedy w.r.t. the current estimate

Procedure

- Estimate $q_{\pi}(s, a)$ for the current policy π and for all states s and actions a.
- TD(0) update equation

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- > This rule is applied after every transition from a nonterminal state S_t .
- It uses every element of the quintuple $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$.
- \Rightarrow Hence, the name SARSA.

Recap: Q-Learning - Off-Policy TD Control

Idea

> Directly approximate the optimal action-value function q_{st} , independent of the policy being followed.

Procedure

TD(0) update equation

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- Dramatically simplifies the analysis of the algorithm.
- All that is required for correct convergence is that all pairs continue to be updated.

Approaches Towards RL

- Value-based RL
 - > Estimate the optimal value function $q_*(s,a)$
 - This is the maximum value achievable under any policy
- Policy-based RL
 - ightarrow Search directly for the optimal policy π_*
 - > This is the policy achieving maximum future reward
- Model-based RL
 - Build a model of the environment
 - Plan (e.g. by lookahead) using model

Topics of This Lecture

- Recap: Reinforcement Learning
 - Key Concepts
 - Temporal Difference Learning
- Deep Reinforcement Learning
 - Value based Deep RL
 - Policy based Deep RL
 - Model based Deep RL
- Applications

Deep Reinforcement Learning

- RL using deep neural networks to approximate functions
 - Value functions
 - Measure goodness of states or state-action pairs
 - Policies
 - Select next action
 - Dynamics Models
 - Predict next states and rewards

Deep Reinforcement Learning

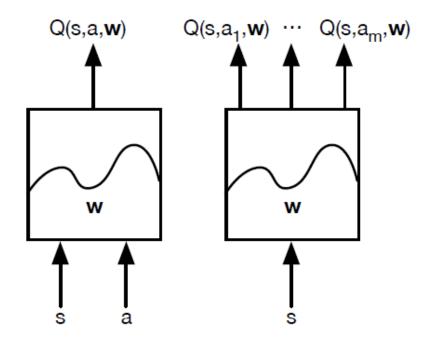
- Use deep neural networks to represent
 - Value function
 - Policy
 - Model
- Optimize loss function by stochastic gradient descent

17

Q-Networks

Represent value function by Q-Network with weights w

$$Q(s, a, \mathbf{w}) = Q_*(s, a)$$



Deep Q-Learning

Idea

Optimal Q-values should obey Bellman equation

$$Q_*(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q(s',a') \mid s,a\right]$$

- > Treat the right-hand side $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimize MSE loss by stochastic gradient descent

$$L(\mathbf{w}) = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}$$

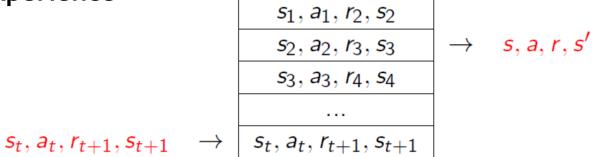
- ightarrow This converges to Q_st using a lookup table representation.
- Unfortunately, it diverges using neural networks due to
 - Correlations between samples
 - Non-stationary targets

Deep Q-Networks (DQN): Experience Replay

Adaptations

To remove correlations, build a dataset from agent's own

experience



- Perform minibatch updates to samples of experience drawn at random from the pool of stored samples
 - $(s, a, r, s') \sim U(D)$ where $D = \{(s_t, a_t, r_{t+1}, s_{t+1})\}$ is the dataset
- Advantages
 - Each experience sample is used in many updates (more efficient)
 - Avoids correlation effects when learning from consecutive samples
 - Avoids feeback loops from on-policy learning

Deep Q-Networks (DQN): Experience Replay

Adaptations

To remove correlations, build a dataset from agent's own

experience

$$\begin{array}{c} s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c} s, a, r, s' \\ \hline s_{t}, a_{t}, r_{t+1}, s_{t+1} \\ \hline \end{array}$$

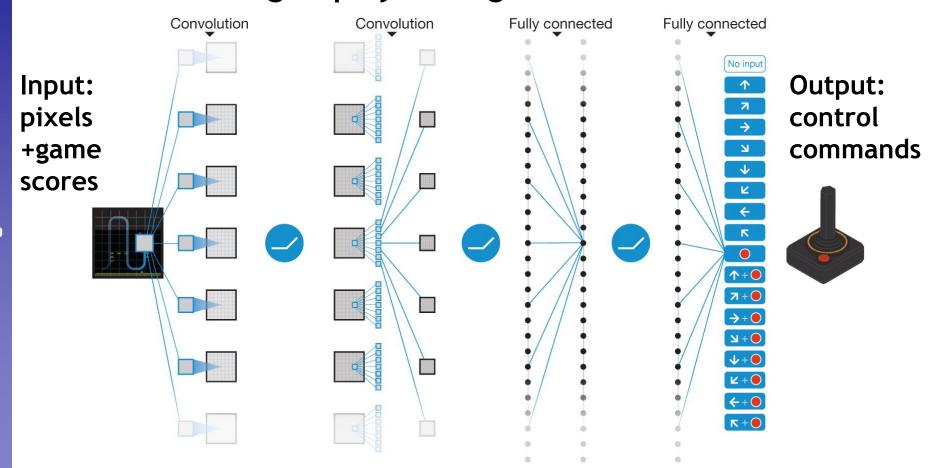
Sample from the dataset and apply an update

$$L(\mathbf{w}) = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

- To deal with non-stationary parameters w⁻, are held fixed.
 - Only update the target network parameters every $\mathcal C$ steps.
 - I.e., clone the network Q to generate a target network \widehat{Q} .
 - \Rightarrow Again, this reduces oscillations to make learning more stable.

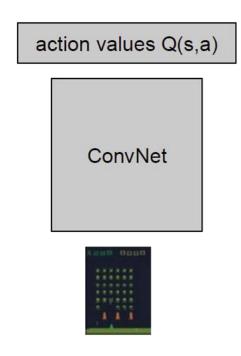
Application: Deep RL in Atari

Goal: Learning to play Atari games



V. Mnih et al., <u>Human-level control through deep reinforcement learning</u>, Nature Vol. 518, pp. 529-533, 2015

Idea Behind the Model

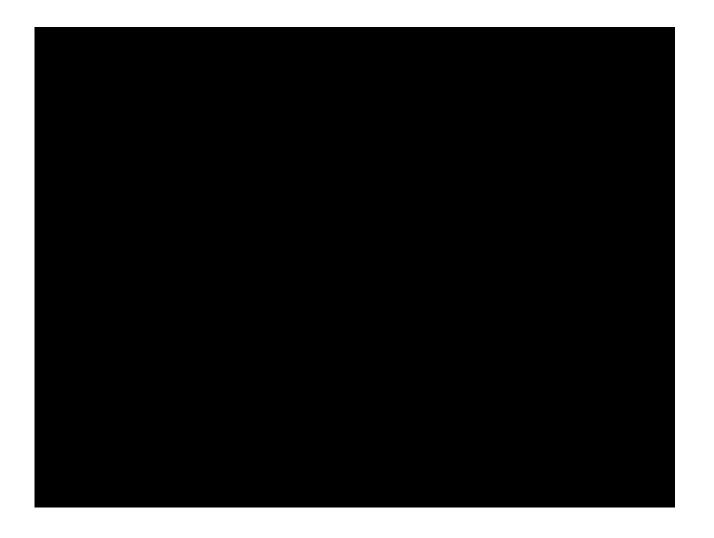


- Interpretation
 - Assume finite number of actions
 - Each number here is a real-valued quantity that represents the Q function in Reinforcement Learning
- Collect experience dataset:
 - Set of tuples {(s,a,s',r), ... }
 - (State, Action taken, New state, Reward received)
- L2 Regression Loss

target value predicted value
$$L_{i}(\theta_{i}) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i}^{-}) - Q(s,a;\theta_{i}) \right)^{2} \right]$$

Current reward + estimate of future reward, discounted by γ

Results: Breakout



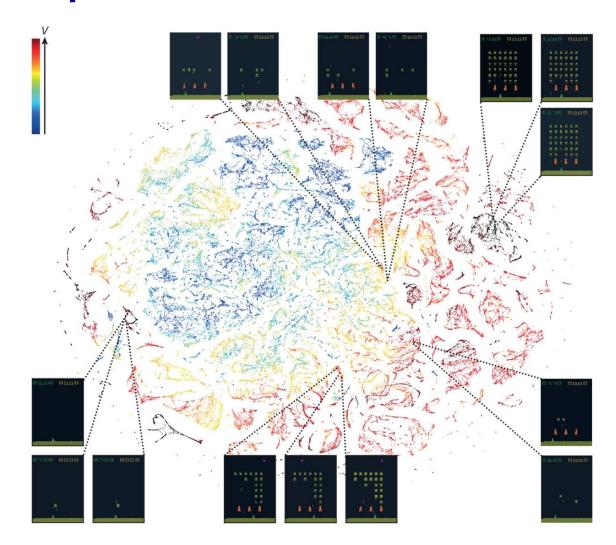
Results: Space Invaders

RWTHAACHEN UNIVERSITY

Comparison with Human Performance



Learned Representation



t-SNE embedding of DQN last hidden layer (Space Inv.)

Improvements since Nature DQN

Double DQN

- Remove upward bias caused by $\max_{a} Q(s, a, \mathbf{w})$
- Current Q-network w is used to select actions
- Older Q-network w⁻ is used to evaluate actions

$$L(\mathbf{w}) = \left(r + \gamma Q\left(s', \operatorname{argmax}_{a} Q(s', a', \mathbf{w}), \mathbf{w}^{-}\right) - Q(s, a, \mathbf{w})\right)^{2}$$

Prioritised replay

- Weight experience according to surprise
- Store experience in priority queue according to DQN error

$$\left|r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w})\right|$$

⇒ Emphasize state transitions from which one can learn the most.

Improvements since Nature DQN (2)

Duelling network

- Split Q-network into two channels
- Action-independent value function V(s, v)
- Action-dependent advantage function $A(s, a, \mathbf{w})$

$$Q(s,a) = V(s,v) + A(s,a,\mathbf{w})$$

 $Q(s,a) = V(s,v) + A(s,a,\mathbf{w})$ Intuition: network can learn which states are valuable without having to learn the effect of each action for each state.

Combined Algorithm

3× mean Atari score vs. Nature DQN

Topics of This Lecture

- Recap: Reinforcement Learning
 - Key Concepts
 - Temporal Difference Learning
- Deep Reinforcement Learning
 - Value based Deep RL
 - Policy based Deep RL
 - Model based Deep RL
- Applications

Deep Policy Networks

- Idea
 - Represent policy by deep network with weights u

$$a = \pi(a|s, \mathbf{u})$$
 or $a = \pi(s, \mathbf{u})$

Define objective function as total discounted reward

$$L(\mathbf{u}) = \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \mathbf{u})]$$

- Optimize effective end-to-end by SGD
- I.e., adjust policy parameters u to achieve more reward

Policy Gradients

- How to make high-value actions more likely
 - > The gradient of the stochastic policy $\pi(s, \mathbf{u})$ is given by

$$\frac{\partial L(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial}{\partial \mathbf{u}} \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \mathbf{u})]$$
$$= \dots?$$

- Wait how do we calculate that?
 - Any ideas?

Policy Gradients

- Deriving the gradient of an expectation
 - General case

$$\nabla_{\theta} \mathbb{E}_{p(x;\theta)}[f(x)] = \nabla_{\theta} \sum_{x} p(x;\theta) f(x)$$

$$= \sum_{x} \nabla_{\theta} p(x;\theta) f(x)$$

$$= \sum_{x} p(x;\theta) \frac{\nabla_{\theta} p(x;\theta)}{p(x;\theta)} f(x)$$

$$= \sum_{x} p(x;\theta) \nabla_{\theta} \log p(x;\theta) f(x)$$

$$= \mathbb{E}_{p(x;\theta)} [\nabla_{\theta} \log p(x;\theta) f(x)]$$

Policy Gradients

- How to make high-value actions more likely
 - > The gradient of a stochastic policy $\pi(s, \mathbf{u})$ is given by

$$\frac{\partial L(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial}{\partial \mathbf{u}} \mathbb{E}_{\pi} [r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \mathbf{u})]$$

$$= \mathbb{E}_{\pi} \left[\frac{\partial \log \pi(a|s, \boldsymbol{u})}{\partial \boldsymbol{u}} Q_{\pi}(s, a) \right]$$

> The gradient of a deterministic policy $a = \pi(s)$ is given by

$$\frac{\partial L(\mathbf{u})}{\partial \mathbf{u}} = \mathbb{E}_{\pi} \left[\frac{\partial Q_{\pi}(s, a)}{\partial a} \frac{\partial a}{\partial \mathbf{u}} \right]$$

if a is continuous and Q is differentiable.

Actor-Critic Algorithm

Procedure

- ► Estimate value function $Q(s, a, \mathbf{w}) \approx Q_{\pi}(s, a)$
- > Update policy parameters u by stochastic gradient ascent

$$\frac{\partial L(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial \log \pi(a|s, \mathbf{u})}{\partial \mathbf{u}} Q(s, a, \mathbf{w})$$
 stochastic policy

or

$$\frac{\partial L(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial Q(s, a, \mathbf{w})}{\partial a} \frac{\partial a}{\partial \mathbf{u}}$$

deterministic policy

Asynchronous Advantage Actor-Critic (A3C)

- Further improvement
 - Estimate state-value function

$$V(s) \approx \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots \mid s]$$

Q-value estimated by an n-step sample

$$q_t = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V(s_{t+n}, \mathbf{v})$$

Actor is updated towards target

$$\frac{\partial L(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial \log \pi(a_t|s_t, \mathbf{u})}{\partial \mathbf{u}} (q_t - V(s_t, \mathbf{v}))$$

Critic is updated to minimize MSE w.r.t. target

$$L_{\mathbf{v}} = \left(q_t - V(s_t, \mathbf{v})\right)^2$$

 \Rightarrow Combined effect: $4 \times$ mean Atari score vs. Nature DQN

36

Deep Policy Gradients (DPG)

- DPG is the continuous analogue of DQN
 - Experience replay: build data-set from agent's experience
 - Critic estimates value of current policy by DQN

$$L_{\mathbf{w}}(\mathbf{w}) = (r + \gamma Q(s', \pi(s', \mathbf{u}^{-}), \mathbf{w}^{-}) - Q(s, a, \mathbf{w}))^{2}$$

- To deal with non-stationarity, targets u⁻, w⁻ are held fixed
- Actor updates policy in direction that improves Q

$$\frac{\partial L_{\mathbf{u}}(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial Q(s, a, \mathbf{w})}{\partial a} \frac{\partial a}{\partial \mathbf{u}}$$

In other words critic provides loss function for actor.

Summary

- The future looks bright!
 - Soon, you won't have to play video games anymore...
 - Your computer can do it for you (and beat you at it)
- Reinforcement Learning is a very promising field
 - Currently limited by the need for data
 - At the moment, mainly restricted to simulation settings

Topics of This Lecture

- Recap: Reinforcement Learning
 - Key Concepts
 - Temporal Difference Learning
- Deep Reinforcement Learning
 - Value based Deep RL
 - Policy based Deep RL
 - Model based Deep RL
- Applications

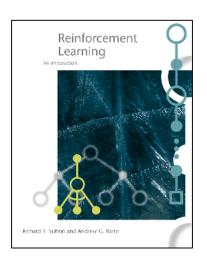
RWTHAACHEN UNIVERSITY

Often Used in Games, E.g. Alpha Go

References and Further Reading

 More information on Reinforcement Learning can be found in the following book

> Richard S. Sutton, Andrew G. Barto Reinforcement Learning: An Introduction MIT Press, 1998



 The complete text is also freely available online https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

References and Further Reading

- DQN paper
 - www.nature.com/articles/nature14236

- AlphaGo paper
 - www.nature.com/articles/nature16961

