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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Topics of This Lecture

• Recap: Reinforcement Learning
 Key Concepts

 Temporal Difference Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications

4
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Recap: Reinforcement Learning

• Motivation

 General purpose framework for decision making.

 Basis: Agent with the capability to interact with its environment

 Each action influences the agent’s future state.

 Success is measured by a scalar reward signal.

 Goal: select actions to maximize future rewards.

 Formalized as a partially observable Markov decision process 

(POMDP)
5

Slide adapted from: David Silver, Sergey Levine
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Recap: Reward vs. Return

• Objective of learning

 We seek to maximize the expected return 𝐺𝑡 as some 

function of the reward sequence 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, …

 Standard choice: expected discounted return

where 0 ≤ 𝛾 ≤ 1 is called the discount rate.

• Difficulty

 We don’t know which past actions caused the reward.

 Temporal credit assignment problem

6
B. Leibe

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … = 

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1
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Recap: Policy

• Definition

 A policy determines the agent’s behavior

 Map from state to action 𝜋: 𝒮 → 𝒜

• Two types of policies

 Deterministic policy: 𝑎 = 𝜋(𝑠)

 Stochastic policy: 𝜋 𝑎 𝑠 = Pr 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

• Note

 𝜋 𝑎 𝑠 denotes the probability of taking action 𝑎 when in state 𝑠.

7
B. Leibe
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Recap: Value Function

• Idea

 Value function is a prediction of future reward

 Used to evaluate the goodness/badness of states

 And thus to select between actions

• Definition

 The value of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋 𝑠 , is the 

expected return when starting in 𝑠 and following 𝜋 thereafter.

 The value of taking action 𝑎 in state 𝑠 under a policy 𝜋, 

denoted 𝑞𝜋 𝑠, 𝑎 , is the expected return starting from 𝑠, 
taking action 𝑎, and following 𝜋 thereafter.

8
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𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Recap: Optimal Value Functions

• Bellman optimality equations

 For the optimal state-value function 𝑣∗:

 𝑣∗ is the unique solution to this system of nonlinear equations.

 For the optimal action-value function 𝑞∗:

 𝑞∗ is the unique solution to this system of nonlinear equations.

 If the dynamics of the environment 𝑝 𝑠′, 𝑟 𝑠, 𝑎 are known, then 

in principle one can solve those equation systems.
9
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𝑣∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎∈𝒜(𝑠)



𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

𝑞∗ 𝑠, 𝑎 = 

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠
′, 𝑎′
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Recap: Exploration-Exploitation Trade-off

• Example: N-armed bandit problem

 Suppose we have the choice between

𝑁 actions 𝑎1, … , 𝑎𝑁.

 If we knew their value functions 𝑞∗(𝑠, 𝑎𝑖),
it would be trivial to choose the best.

 However, we only have estimates based

on our previous actions and their returns.

• We can now

 Exploit our current knowledge 

– And choose the greedy action that has the highest value based on 

our current estimate.

 Explore to gain additional knowledge

– And choose a non-greedy action to improve our estimate of that 

action’s value.

10
B. Leibe

Image source: research.microsoft.com
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Recap: TD-Learning

• Policy evaluation (the prediction problem)

 For a given policy 𝜋, compute the state-value function 𝑣𝜋.

• One option: Monte-Carlo methods

 Play through a sequence of actions until a reward is reached, 

then backpropagate it to the states on the path.

• Temporal Difference Learning – TD(𝜆)

 Directly perform an update using the estimate 𝑉(𝑆𝑡+𝜆+1).

11
B. Leibe

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉(𝑆𝑡)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)

Target: the actual return after time 𝑡

Target: an estimate of the return (here: TD(0))
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Recap: SARSA – On-Policy TD Control

• Idea

 Turn the TD idea into a control method by always updating the 

policy to be greedy w.r.t. the current estimate

• Procedure

 Estimate 𝑞𝜋(𝑠, 𝑎) for the current policy 𝜋 and for all states 𝑠 and 

actions 𝑎.

 TD(0) update equation

 This rule is applied after every transition from a nonterminal 

state 𝑆𝑡.

 It uses every element of the quintuple (𝑆𝑡, 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1).

 Hence, the name SARSA.

12
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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Recap: Q-Learning – Off-Policy TD Control

• Idea

 Directly approximate the optimal action-value function 𝑞∗, 
independent of the policy being followed.

• Procedure

 TD(0) update equation

 Dramatically simplifies the analysis of the algorithm.

 All that is required for correct convergence is that all pairs 

continue to be updated.

13
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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Approaches Towards RL

• Value-based RL

 Estimate the optimal value function 𝑞∗(𝑠, 𝑎)

 This is the maximum value achievable under any policy

• Policy-based RL

 Search directly for the optimal policy 𝜋∗

 This is the policy achieving maximum future reward

• Model-based RL

 Build a model of the environment

 Plan (e.g. by lookahead) using model

14
B. LeibeSlide credit: David Silver
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Topics of This Lecture

• Recap: Reinforcement Learning
 Key Concepts

 Temporal Difference Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications

15
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Deep Reinforcement Learning

• RL using deep neural networks to approximate functions

 Value functions 

– Measure goodness of states or state-action pairs

 Policies

– Select next action

 Dynamics Models

– Predict next states and rewards

16
B. LeibeSlide credit: Sergey Levine
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Deep Reinforcement Learning

• Use deep neural networks to represent

 Value function

 Policy

 Model

• Optimize loss function by stochastic gradient descent

17
B. LeibeSlide credit: David Silver
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Q-Networks

• Represent value function by Q-Network with weights 𝐰

18
B. LeibeSlide credit: David Silver

𝑄 𝑠, 𝑎,𝐰 = 𝑄∗(𝑠, 𝑎)
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Deep Q-Learning

• Idea

 Optimal Q-values should obey Bellman equation

 Treat the right-hand side 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰 as a target

 Minimize MSE loss by stochastic gradient descent

 This converges to 𝑄∗ using a lookup table representation.

 Unfortunately, it diverges using neural networks due to

– Correlations between samples

– Non-stationary targets

19
B. LeibeSlide adapted from David Silver

𝑄∗ 𝑠, 𝑎 = 𝔼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ |𝑠, 𝑎

𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ , 𝐰 − 𝑄 𝑠, 𝑎,𝐰
2
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Deep Q-Networks (DQN): Experience Replay

• Adaptations

 To remove correlations, build a dataset from agent’s own 

experience

 Perform minibatch updates to samples of experience drawn at 

random from the pool of stored samples 

– 𝑠, 𝑎, 𝑟, 𝑠′ ~ 𝑈 𝐷 where 𝐷 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) is the dataset

 Advantages 

– Each experience sample is used in many updates (more efficient)

– Avoids correlation effects when learning from consecutive samples

– Avoids feeback loops from on-policy learning
20

B. LeibeSlide adapted from David Silver
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Deep Q-Networks (DQN): Experience Replay

• Adaptations

 To remove correlations, build a dataset from agent’s own 

experience

 Sample from the dataset and apply an update

 To deal with non-stationary parameters 𝐰−, are held fixed.

– Only update the target network parameters every 𝐶 steps.

– I.e., clone the network 𝑄 to generate a target network 𝑄.

 Again, this reduces oscillations to make learning more stable.
21

B. LeibeSlide adapted from David Silver

𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰− − 𝑄 𝑠, 𝑎, 𝐰
2
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Application: Deep RL in Atari

• Goal: Learning to play Atari games

22
B. Leibe

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518, 

pp. 529-533, 2015

Input: 

pixels

+game 

scores

Output: 

control

commands

Image source: Vlodimir Minh et al.
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• L2 Regression Loss

Idea Behind the Model

• Interpretation

 Assume finite number of actions

 Each number here is a real-valued 

quantity that represents the 

Q function in Reinforcement Learning

• Collect experience dataset:

 Set of tuples {(s,a,s’,r), … }

 (State, Action taken, New state, 

Reward received)

23
B. Leibe

target value predicted value

Current reward + estimate of future reward, discounted by 

Slide credit: Andrej Karpaty
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Results: Breakout

24
B. Leibe

Video source: Vlodimir Minh et al.
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Results: Space Invaders

25
B. Leibe

Video source: Vlodimir Minh et al.

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
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Comparison with Human Performance

26
B. Leibe

Close-up

view

Image source: Vlodimir Minh et al.
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Learned Representation

• t-SNE embedding of DQN last hidden layer (Space Inv.)
27

B. Leibe
Image source: Vlodimir Minh et al.
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Improvements since Nature DQN

• Double DQN

 Remove upward bias caused by max
𝑎

𝑄(𝑠, 𝑎,𝐰)

 Current Q-network w is used to select actions

 Older Q-network w− is used to evaluate actions

• Prioritised replay

 Weight experience according to surprise

 Store experience in priority queue according to DQN error

 Emphasize state transitions from which one can learn the most.

28
B. Leibe

𝐿(𝐰) = 𝑟 + 𝛾𝑄 𝑠′, argmax
𝑎

𝑄(𝑠′, 𝑎′, 𝐰) ,𝐰− − 𝑄 𝑠, 𝑎,𝐰
2

𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰− − 𝑄 𝑠, 𝑎, 𝐰

Slide adapted from David Silver

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Improvements since Nature DQN (2)

• Duelling network

 Split Q-network into two channels

 Action-independent value function 𝑉(𝑠, 𝑣)

 Action-dependent advantage function 𝐴(𝑠, 𝑎,𝐰)

 Intuition: network can learn which states are valuable without 

having to learn the effect of each action for each state.

• Combined Algorithm

 3 mean Atari score vs. Nature DQN

29
B. LeibeSlide adapted from David Silver

𝑄 𝑠, 𝑎 = 𝑉 𝑠, 𝑣 + 𝐴(𝑠, 𝑎,𝐰)
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Topics of This Lecture

• Recap: Reinforcement Learning
 Key Concepts

 Temporal Difference Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications

30
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Deep Policy Networks

• Idea

 Represent policy by deep network with weights u

 Define objective function as total discounted reward

 Optimize effective end-to-end by SGD

 I.e., adjust policy parameters 𝐮 to achieve more reward

31
B. LeibeSlide credit: David Silver

𝑎 = 𝜋 𝑎 𝑠, 𝐮 𝐨𝐫 𝑎 = 𝜋(𝑠, 𝐮)

𝐿 𝐮 = 𝔼 𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + … | 𝜋(∙, 𝐮)
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Policy Gradients

• How to make high-value actions more likely

 The gradient of the stochastic policy 𝜋 𝑠, 𝐮 is given by

• Wait – how do we calculate that?

 Any ideas?

32
B. LeibeSlide adapted from David Silver

𝜕𝐿(𝐮)

𝜕𝐮
=

𝜕

𝜕𝐮
𝔼 𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + … | 𝜋(∙, 𝐮)

= … ?
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Policy Gradients

• Deriving the gradient of an expectation

 General case

33
B. Leibe

𝛻𝜃𝔼𝑝(𝑥;𝜃) 𝑓(𝑥) = 𝛻𝜃 
𝑥
𝑝 𝑥; 𝜃 𝑓(𝑥)

= 
𝑥
𝛻𝜃𝑝 𝑥; 𝜃 𝑓(𝑥)

= 
𝑥
𝑝 𝑥; 𝜃

𝛻𝜃𝑝 𝑥; 𝜃

𝑝 𝑥; 𝜃
𝑓(𝑥)

= 
𝑥
𝑝 𝑥; 𝜃 𝛻𝜃 log 𝑝(𝑥; 𝜃) 𝑓(𝑥)

= 𝔼𝑝 𝑥;𝜃 𝛻𝜃 log 𝑝(𝑥; 𝜃) 𝑓(𝑥)
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Policy Gradients

• How to make high-value actions more likely

 The gradient of a stochastic policy 𝜋 𝑠, 𝐮 is given by

 The gradient of a deterministic policy 𝑎 = 𝜋(𝑠) is given by

if 𝑎 is continuous and 𝑄 is differentiable.

34
B. LeibeSlide adapted from David Silver

𝜕𝐿(𝐮)

𝜕𝐮
=

𝜕

𝜕𝐮
𝔼𝜋 𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + … | 𝜋(∙, 𝐮)

= 𝔼𝜋
𝜕 log 𝜋 𝑎 𝑠, 𝒖

𝜕𝒖
𝑄𝜋(𝑠, 𝑎)

𝜕𝐿(𝐮)

𝜕𝐮
= 𝔼𝜋

𝜕𝑄𝜋(𝑠, 𝑎)

𝜕𝑎

𝜕𝑎

𝜕𝐮
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Actor-Critic Algorithm

• Procedure

 Estimate value function 𝑄 𝑠, 𝑎,𝐰 ≈ 𝑄𝜋(𝑠, 𝑎)

 Update policy parameters u by stochastic gradient ascent

 or

35
B. Leibe

𝜕𝐿(𝐮)

𝜕𝐮
=
𝜕 log 𝜋 𝑎 𝑠, 𝒖

𝜕𝒖
𝑄(𝑠, 𝑎,𝐰)

𝜕𝐿(𝐮)

𝜕𝐮
=
𝜕𝑄(𝑠, 𝑎,𝐰)

𝜕𝑎

𝜕𝑎

𝜕𝐮

stochastic 

policy

deterministic 

policy

Slide adapted from David Silver
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Asynchronous Advantage Actor-Critic (A3C)

• Further improvement

 Estimate state-value function

 Q-value estimated by an 𝑛-step sample

 Actor is updated towards target

 Critic is updated to minimize MSE w.r.t. target

 Combined effect: 4 mean Atari score vs. Nature DQN

36
B. Leibe

𝑉 𝑠 ≈ 𝔼 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + … | 𝑠

𝑞𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + … + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉(𝑠𝑡+𝑛, 𝐯)

𝜕𝐿(𝐮)

𝜕𝐮
=
𝜕 log 𝜋 𝑎𝑡 𝑠𝑡, 𝒖

𝜕𝒖
𝑞𝑡 − 𝑉(𝑠𝑡, 𝐯)

Slide credit: David Silver

𝐿𝐯 = 𝑞𝑡 − 𝑉 𝑠𝑡, 𝐯
2
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Deep Policy Gradients (DPG)

• DPG is the continuous analogue of DQN

 Experience replay: build data-set from agent's experience

 Critic estimates value of current policy by DQN

 To deal with non-stationarity, targets 𝐮−, 𝐰−are held fixed

 Actor updates policy in direction that improves Q

 In other words critic provides loss function for actor.

37
B. Leibe

𝐿𝐰(𝐰) = 𝑟 + 𝛾𝑄 𝑠′, 𝜋(𝑠′, 𝐮−),𝐰− − 𝑄 𝑠, 𝑎, 𝐰
2

𝜕𝐿𝐮(𝐮)

𝜕𝐮
=
𝜕𝑄(𝑠, 𝑎, 𝐰)

𝜕𝑎

𝜕𝑎

𝜕𝐮

Slide credit: David Silver
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Summary

• The future looks bright!

 Soon, you won’t have to play video games anymore…

 Your computer can do it for you (and beat you at it)

• Reinforcement Learning is a very promising field

 Currently limited by the need for data

 At the moment, mainly restricted to simulation settings

38
B. Leibe
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Topics of This Lecture

• Recap: Reinforcement Learning
 Key Concepts

 Temporal Difference Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications
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Often Used in Games, E.g. Alpha Go

40
B. Leibe
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References and Further Reading

• More information on Reinforcement Learning can be 

found in the following book

• The complete text is also freely available online

B. Leibe
43

Richard S. Sutton, Andrew G. Barto

Reinforcement Learning: An Introduction

MIT Press, 1998

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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References and Further Reading

• DQN paper

 www.nature.com/articles/nature14236

• AlphaGo paper

 www.nature.com/articles/nature16961
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