Advanced Machine Learning Lecture 16 Word Embeddings 16.01.2017

RWTH Aachen

http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de • Seminar registration period started

• We will offer a lab course in the summer semester "Deep Robot Learning"

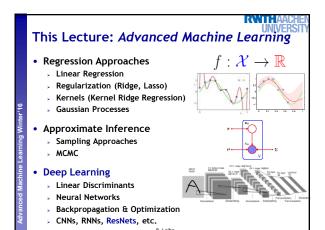
• Topic: Deep reinforcement learning for robot control

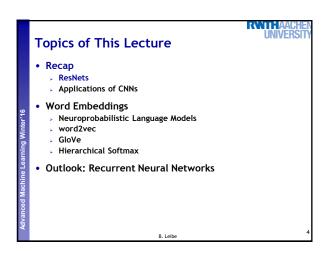
• Either UAV or grasping robot

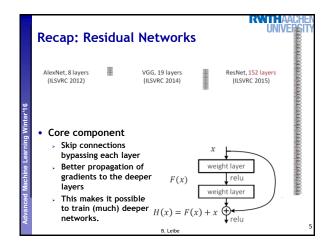
• If you're interested, you can register at http://www.graphics.rwth-aachen.de/apse

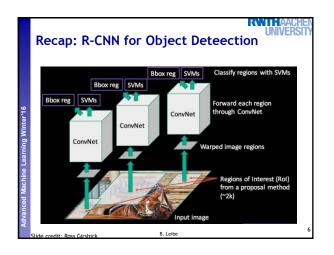
• Registration period: 13.01.2016 - 29.01.2016

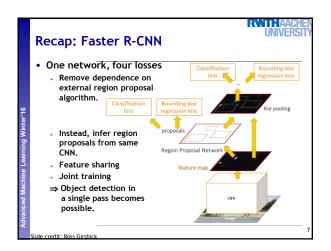
• Quick poll: Who would be interested in that?

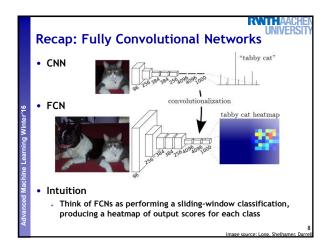


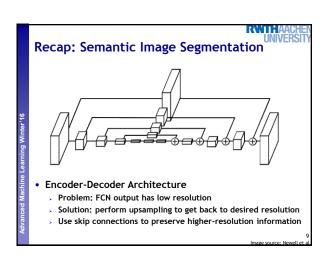


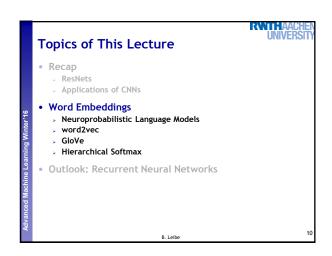






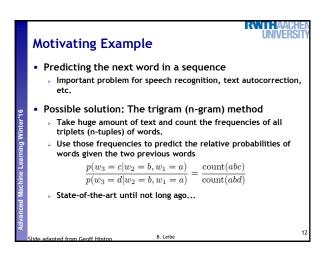


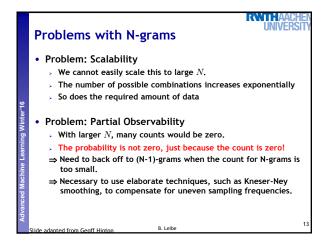


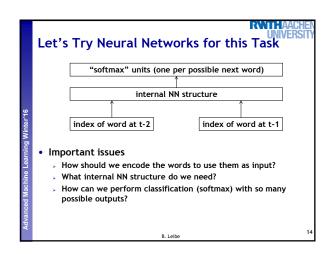


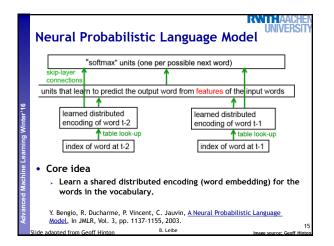
Purposer Processing → Output • Up to now • Simple structure: Input vector → Processing → Output • In the following, we will look at sequence data • Interesting new challenges • Varying input/output length, need to memorize state, long-term dependencies, ... • Currently a hot topic • Early successes of NNs for text / language processing. • Very good results for part-of-speech tagging, automatic translation, sentiment analysis, etc. • Recently very interesting developments for video understanding, image+text modeling (e.g., creating image descriptions), and even single-image understanding (attention processes).

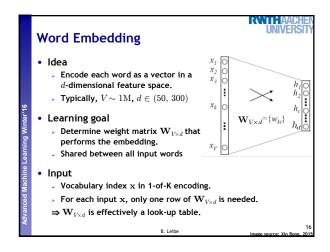
RWITHAAC

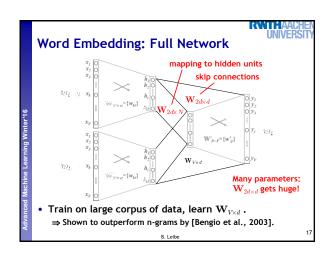


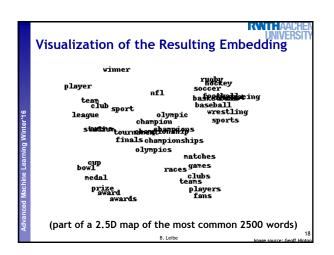


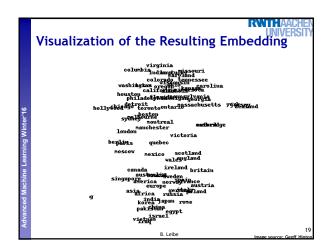


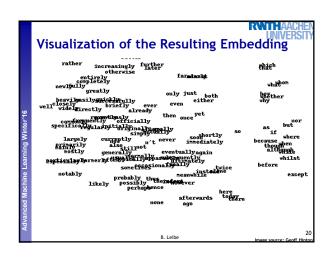


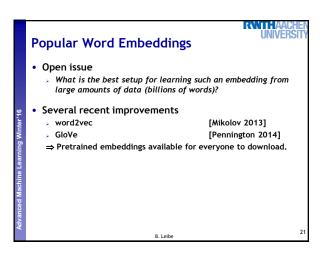


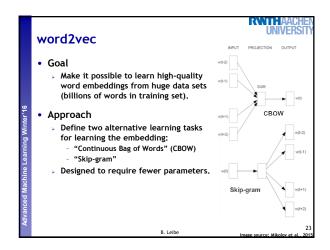


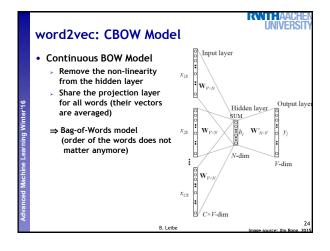


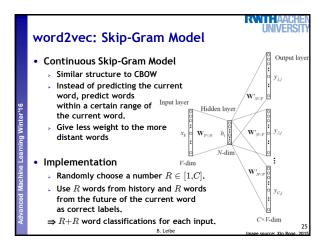










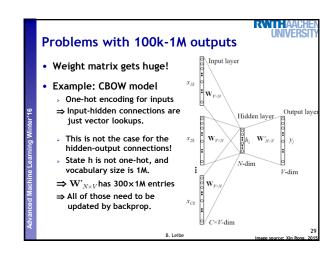


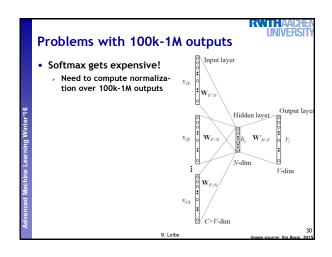
Interesting property • Embedding often preserves linear regularities between words • Analogy questions can be answered through simple algebraic operations with the vector representation of words. • Example • What is the word that is similar to small in the same sense as bigger is to big? • For this, we can simply compute X = vec("bigger") - vec("big") + vec("small") • Then search the vector space for the word closes to X using the cosine distance. ⇒ Result (when words are well trained): vec("smaller").

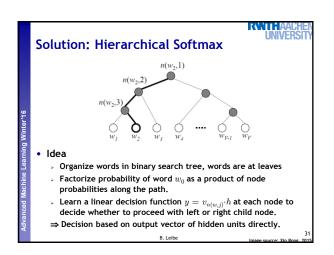
> E.g., vec("King") - vec("Man") + vec("Woman") \approx vec("Queen") $_{26}$

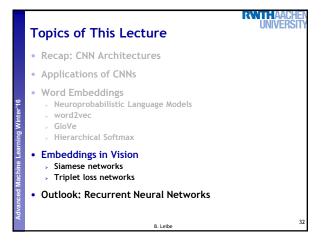
				ions		
	Type of relationship	Word Pair 1		Word Pair 2		
semantic	Common capital city All capital cities Currency	Athens Astana Angola	Greece Kazakhstan kwanza	Oslo Harare Iran	Norway Zimbabwe rial	
Ser	City-in-state Man-Woman	Chicago brother	Illinois sister	Stockton grandson	California granddaughte	
	Adjective to adverb Opposite	apparent possibly	apparently impossibly	rapid ethical	rapidly unethical	
octic	Comparative Superlative	great easy think	greater	lucky read	luckiest	
syntactic	Present Participle Nationality adjective Past tense	Switzerland walking	thinking Swiss walked	Cambodia swimming	reading Cambodian swam	
	Plural nouns Plural verbs	mouse	mice works	dollar	dollars speaks	

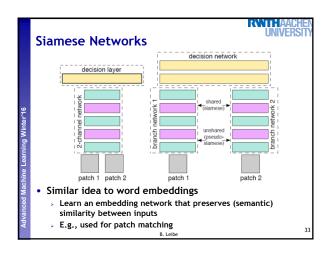
R	esults						RWTHAACH UNIVERSI		
	Model Vector		Training	Accuracy [%]			Training time		
		Dimensionality	words				[days x CPU cores]		
				Semantic	Syntactic	Total			
	NNLM	100	6B	34.2	64.5	50.8	14 x 180		
	CBOW	1000	6B	57.3	68.9	63.7	2 x 140		
	Skip-gram	1000	6B	66.1	65.1	65.6	2.5 x 125		
•	 Results word2vec embedding is able to correctly answer many of those analogy questions. CBOW structure better for syntactic tasks Skip-gram structure better for semantic tasks 								

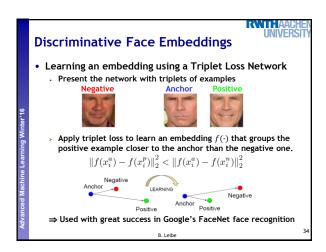


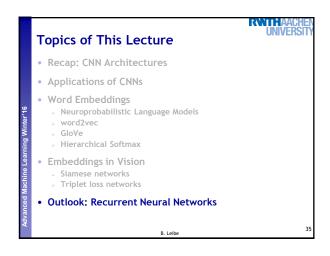


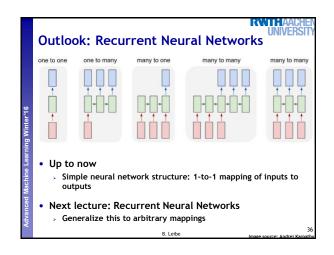












References: Other Embeddings

• Face Embeddings

 F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, in CVPR 2015.

B. Leibe

 A. Radford, L. Metz, S. Chintala, Unsupervise Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016.

7