

Advanced Machine Learning Lecture 13

Convolutional Neural Networks

15.12.2016

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes
- Approximate Inference
 - Sampling Approaches
 - > MCMC
- Deep Learning
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, RNNs, ResNets, etc.

Full connection

Full connection

Subsampling

Gaussian

B. Leibe

Convolutions

Subsampling

Convolutions

Topics of This Lecture

- Tricks of the Trade
 - > Recap

Convolutional Neural Networks

- Neural Networks for Computer Vision
- Convolutional Layers
- Pooling Layers

• CNN Architectures

- LeNet
- > AlexNet
- > VGGNet
- GoogLeNet

Recap: Choosing the Right Learning Rate

- Convergence of Gradient Descent
 - Simple 1D example

$$W^{(\tau-1)} = W^{(\tau)} - \eta \frac{\mathrm{d}E(W)}{\mathrm{d}W}$$

- » What is the optimal learning rate $\eta_{
 m opt}$?
- > If E is quadratic, the optimal learning rate is given by the inverse of the Hessian

$$\eta_{\rm opt} = \left(\frac{\mathrm{d}^2 E(W^{(\tau)})}{\mathrm{d}W^2}\right)^{-1}$$

- Advanced optimization techniques try to approximate the Hessian by a simplified form.
- If we exceed the optimal learning rate, bad things happen!

Don't go beyond

Learning rate (logarithmic scale

this point!

Recap: Advanced Optimization Techniques

• Momentum

- Instead of using the gradient to change the position of the weight "particle", use it to change the velocity.
- Effect: dampen oscillations in directions of high curvature
- Nesterov-Momentum: Small variation in the implementation
- RMS-Prop
 - Separate learning rate for each weight: Divide the gradient by a running average of its recent magnitude.
- AdaGrad
- AdaDelta
- Adam

Some more recent techniques, work better for some problems. Try them.

Trick: Patience

Saddle points dominate in high-dimensional spaces!

 \Rightarrow Learning often doesn't get stuck, you just may have to wait...

B. Leibe

6

Recap: Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.

• Effect

- Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.
- Be careful: Do not turn down the learning rate too soon!
 - > Further progress will be much slower after that.

Topics of This Lecture

- Tricks of the Trade
 - » Recap

Convolutional Neural Networks

- Neural Networks for Computer Vision
- Convolutional Layers
- Pooling Layers

• CNN Architectures

- > LeNet
- > AlexNet
- > VGGNet
- GoogLeNet

RWTHAACHEN UNIVERSITY Neural Networks for Computer Vision

• How should we approach vision problems?

Face Y/N?

- Architectural considerations
 - Input is 2D
 - > No pre-segmentation
 - Vision is hierarchical
 - Vision is difficult

- \Rightarrow 2D layers of units
- \Rightarrow Need robustness to misalignments
- \Rightarrow Hierarchical multi-layered structure
- \Rightarrow Network should be deep

RWTHAACHEN UNIVERSITY Why Hierarchical Multi-Layered Models?

• Motivation 1: Visual scenes are hierarchically organized

UNIVERSIT Why Hierarchical Multi-Layered Models?

Motivation 2: Biological vision is hierarchical, too

ObjectFace11Object partsEyes, nose, ...11Primitive featuresOriented edges11Input imageFace image

cortex V4: different textures

Inferotemporal

V1: simple and complex cells

Photoreceptors, retina

Inspiration: Neuron Cells

Hubel/Wiesel Architecture

- D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)
 - Visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Why Hierarchical Multi-Layered Models?

Motivation 3: Shallow architectures are inefficient at representing complex functions

An MLP with 1 hidden layer can implement *any* function (universal approximator) However, if the function is deep, a very large hidden layer may be required.

Slide adapted from Richard Turner

UNIVERSIT What's Wrong With Standard Neural Networks?

- Complexity analysis
 - How many parameters does this network have?

 $|\theta| = 3D^2 + D$

- > For a small 32×32 image $|\theta| = 3 \cdot 32^4 + 32^2 \approx 3 \cdot 10^6$
- Consequences
 - Hard to train
 - Need to initialize carefully
 - Convolutional nets reduce the number of parameters!

RWTHAACHEN UNIVERSITY Convolutional Neural Networks (CNN, ConvNet)

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to</u> <u>document recognition</u>, Proceedings of the IEEE 86(11): 2278-2324, 1998.

- Fully connected network
 - E.g. 1000×1000 image
 1M hidden units
 - \Rightarrow 1T parameters!

- Ideas to improve this
 - Spatial correlation is local

- E.g. 1000×1000 image
 1M hidden units
 10×10 receptive fields
- \Rightarrow 100M parameters!

- Ideas to improve this
 - Spatial correlation is local
 - Want translation invariance

• Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Learn *multiple* filters

- > E.g. 1000×1000 image 100 filters 10×10 filter size
- \Rightarrow 10k parameters
- **Result:** Response map
 - > size: 1000×1000×100
 - Only memory, not params!

B. Leibe

Important Conceptual Shift

Example image: 32×32×3 volume

Before: Full connectivity 32×32×3 weights

Now: Local connectivity One neuron connects to, e.g., $5 \times 5 \times 3$ region. \Rightarrow Only $5 \times 5 \times 3$ shared weights.

• Note: Connectivity is

- > Local in space (5 \times 5 inside 32 \times 32)
- But full in depth (all 3 depth channels)

All Neural Net activations arranged in 3 dimensions

Multiple neurons all looking at the same input region, stacked in depth

Advanced Machine Learning Winter'16

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - > Form a single $[1 \times 1 \times depth]$ depth column in output volume.

Slide credit: FeiFei Li, Andrej Karpathy

Advanced Machine Learning Winter'16

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2?

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2?

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2? \Rightarrow 3×3 output

0	0	0	0	0		
0						
0						
0						
0						

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2? $\Rightarrow 3 \times 3$ output

- Replicate this column of hidden neurons across space, with some stride.
- In practice, common to zero-pad the border.
 - Preserves the size of the input spatially.

Activation Maps of Convolutional Filters

Activation maps

Effect of Multiple Convolution Layers

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Slide credit: Yann LeCun

- Let's assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

- Let's assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

• Solution:

By pooling (e.g., max or avg) filter responses at different spatial locations, we gain robustness to the exact spatial location of features.

Max Pooling

Single depth slice

max pool with 2x2 filters and stride 2

Advanced Machine Learning Winter'16

- Make the representation smaller without losing too much information
- Achieve robustness to translations

٧

Slide adapted from FeiFei Li, Andrej Karpathy ^{B. Leibe}

Max Pooling

Single depth slice

4

8

0

4

٧

max pool with 2x2 filters and stride 2

Pooling happens independently across each slice, preserving the number of slices.

CNNs: Implication for Back-Propagation

- Convolutional layers
 - Filter weights are shared between locations
 - \Rightarrow Gradients are added for each filter location.

Topics of This Lecture

- Tricks of the Trade
 - > Recap
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

• CNN Architectures

- LeNet
- > AlexNet
- > VGGNet
- GoogLeNet

CNN Architectures: LeNet (1998)

- Early convolutional architecture
 - > 2 Convolutional layers, 2 pooling layers
 - Fully-connected NN layers for classification
 - Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to</u> <u>document recognition</u>, Proceedings of the IEEE 86(11): 2278-2324, 1998.

ImageNet Challenge 2012

- ImageNet
 - ~14M labeled internet images
 - > 20k classes
 - Human labels via Amazon
 Mechanical Turk

- Challenge (ILSVRC)
 - 1.2 million training images
 - > 1000 classes
 - Goal: Predict ground-truth class within top-5 responses

[Deng et al., CVPR'09]

Currently one of the top benchmarks in Computer Vision

CNN Architectures: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - > More data (10⁶ images instead of 10³)
 - > GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep</u> <u>Convolutional Neural Networks</u>, NIPS 2012.

Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

45

RWTHAACHEN UNIVERSITY

ILSVRC 2012 Results

- AlexNet almost halved the error rate
 - > 16.4% error (top-5) vs. 26.2% for the next best approach
 - \Rightarrow A revolution in Computer Vision
 - Acquired by Google in Jan '13, deployed in Google+ in May '13

AlexNet Results

48 B. Leibe Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

AlexNet Results

Test image

Retrieved images

49 Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

CNN Architectures: VGGNet (2014/15)

K. Simonyan, A. Zisserman, <u>Very Deep Convolutional Networks for Large-Scale</u> <u>Image Recognition</u>, ICLR 2015

CNN Architectures: VGGNet (2014/15)

- Main ideas
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation
 of all components

• Results

Improved ILSVRC top-5 error rate to 6.7%.

ConvNet Configuration								
А	A-LRN	В	С	D	Е			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
	maxpool							
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
	maxpool							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
	·	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
		max	pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
	maxpool							
FC-4096 Mainty used								
FC-4096								
FC-1000								
soft-max								

Advanced Machine Learning Winter'16

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Main ideas

- "Inception" module as modular component
- Learns filters at several scales within each module

C. Szegedy, W. Liu, Y. Jia, et al, <u>Going Deeper with Convolutions</u>, arXiv:1409.4842, 2014.

GoogLeNet Visualization

RWTHAACHEN UNIVERSITY

Results on ILSVRC

Mathad	top 1 yel orror (%)	$\frac{1}{100}$ top 5 yel error (96)	top 5 test error $(9/2)$
Method	top-1 val. error (%)	10p-3 val. entor (76)	10p-3 test entor (70)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

References and Further Reading

• LeNet

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based</u> <u>learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278-2324, 1998.

• AlexNet

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification</u> with Deep Convolutional Neural Networks, NIPS 2012.

• VGGNet

 K. Simonyan, A. Zisserman, <u>Very Deep Convolutional Networks for</u> <u>Large-Scale Image Recognition</u>, ICLR 2015

• GoogLeNet

C. Szegedy, W. Liu, Y. Jia, et al, <u>Going Deeper with Convolutions</u>, arXiv:1409.4842, 2014.

References

- ReLu
 - X. Glorot, A. Bordes, Y. Bengio, <u>Deep sparse rectifier neural</u> <u>networks</u>, AISTATS 2011.
- Batch Normalization
 - S. loffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep</u> <u>Network Training by Reducing Internal Covariate Shift</u>, ArXiV 1502.03167, 2015.