

Advanced Machine Learning Lecture 12

Tricks of the Trade II

12.12.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

Regression Approaches

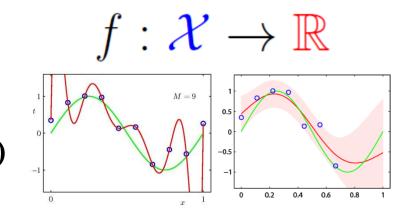
- Linear Regression
- Regularization (Ridge, Lasso)
- Kernels (Kernel Ridge Regression)
- Gaussian Processes

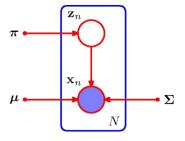
Approximate Inference

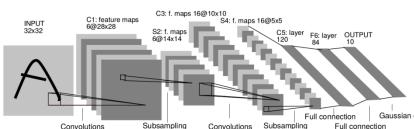
- Sampling Approaches
- > MCMC

Deep Learning

- Linear Discriminants
- Neural Networks
- Backpropagation & Optimization
- CNNs, RNNs, ResNets, etc.







Topics of This Lecture

- Recap: Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization
- Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers
- Other Tricks
 - Batch Normalization
 - Dropout

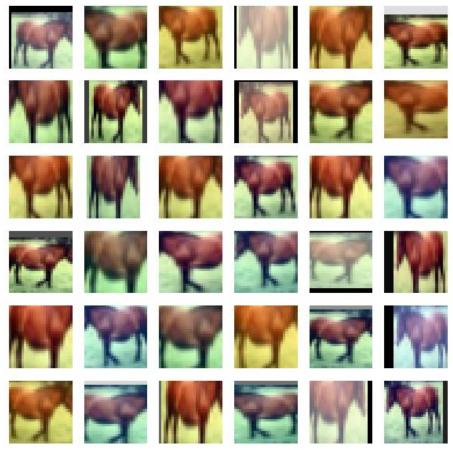
Recap: Data Augmentation

Effect

- Much larger training set
- Robustness against expected variations

During testing

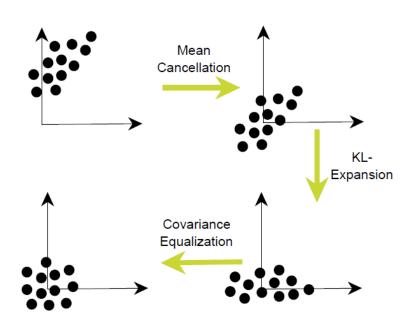
- When cropping was used during training, need to again apply crops to get same image size.
- Beneficial to also apply flipping during test.
- Applying several ColorPCA
 variations can bring another
 1% improvement, but at a
 significantly increased runtime.



Augmented training data (from one original image)

Recap: Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.



- Advisable normalization steps (for MLPs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).

RWTHAACHEN UNIVERSITY

Recap: Glorot Initialization

[Glorot & Bengio, '10]

- Variance of neuron activations
 - > Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y.
 - We want the variance of the input and output of a unit to be the same, therefore $n \operatorname{Var}(W_i)$ should be 1. This means

$$\operatorname{Var}(W_i) = \frac{1}{n} = \frac{1}{n_{\mathrm{in}}}$$

Or for the backpropagated gradient

$$\operatorname{Var}(W_i) = \frac{1}{n_{\mathrm{out}}}$$

As a compromise, Glorot & Bengio propose to use

$$Var(W) = \frac{2}{n_{in} + n_{out}}$$

⇒ Randomly sample the weights with this variance. That's it.

RWTHAACHEN UNIVERSITY

Recap: He Initialization

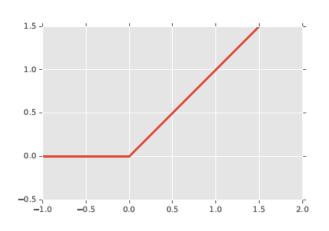
[He et al., '15]

- Extension of Glorot Initialization to ReLU units
 - Use Rectified Linear Units (ReLU)

$$g(a) = \max\{0, a\}$$

Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$$



- Same basic idea: Output should have the input variance
 - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
 - He et al. made the derivations, proposed to use instead

$$\operatorname{Var}(W) = rac{2}{n_{ ext{in}}}$$

Topics of This Lecture

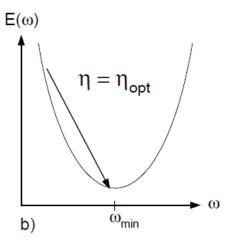
- Recap: Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization
- Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers
- Other Tricks
 - Batch Normalization
 - Dropout

Choosing the Right Learning Rate

- Analyzing the convergence of Gradient Descent
 - Consider a simple 1D example first

$$W^{(\tau-1)} = W^{(\tau)} - \eta \frac{\mathrm{d}E(W)}{\mathrm{d}W}$$

> What is the optimal learning rate η_{opt} ?



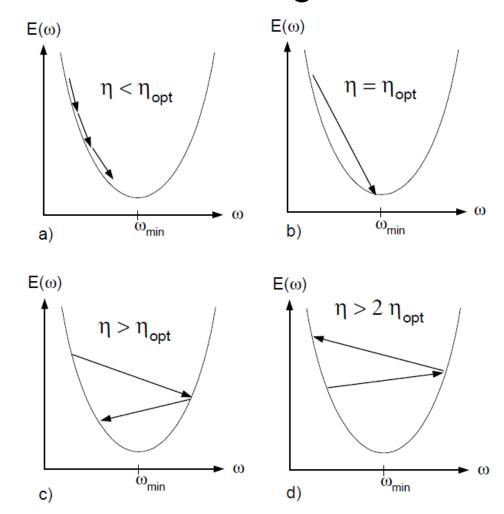
 \blacktriangleright If E is quadratic, the optimal learning rate is given by the inverse of the Hessian

$$\eta_{\text{opt}} = \left(\frac{\mathrm{d}^2 E(W^{(\tau)})}{\mathrm{d}W^2}\right)^{-1}$$

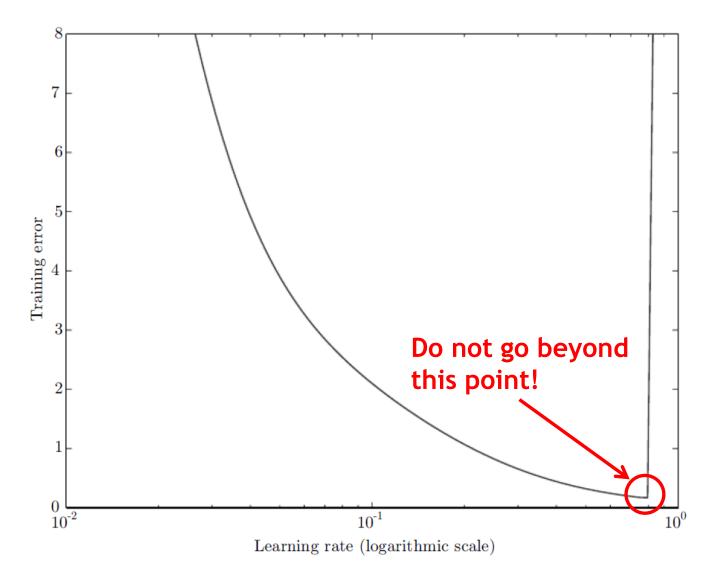
What happens if we exceed this learning rate?

Choosing the Right Learning Rate

Behavior for different learning rates



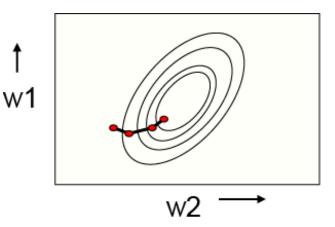
Learning Rate vs. Training Error



Batch vs. Stochastic Learning

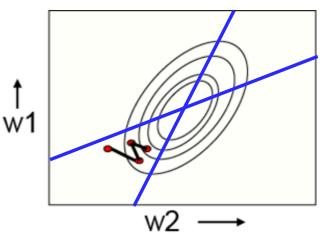
Batch Learning

- Simplest case: steepest decent on the error surface.
- ⇒ Updates perpendicular to contour lines



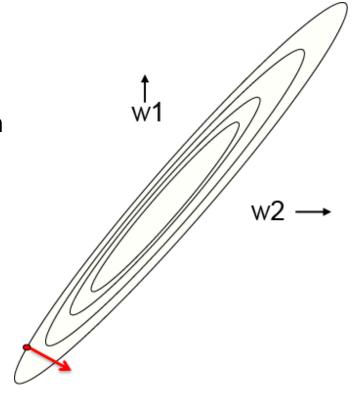
Stochastic Learning

- Simplest case: zig-zag around the direction of steepest descent.
- ⇒ Updates perpendicular to constraints from training examples.



Why Learning Can Be Slow

- If the inputs are correlated
 - The ellipse will be very elongated.
 - The direction of steepest descent is almost perpendicular to the direction towards the minimum!



This is just the opposite of what we want!

The Momentum Method

Idea

Instead of using the gradient to change the position of the weight "particle", use it to change the velocity.

Intuition

- Example: Ball rolling on the error surface
- It starts off by following the error surface, but once it has accumulated momentum, it no longer does steepest decent.

Effect

- Dampen oscillations in directions of high curvature by combining gradients with opposite signs.
- Build up speed in directions with a gentle but consistent gradient.

The Momentum Method: Implementation

- Change in the update equations
 - Figure 2. Effect of the gradient: increment the previous velocity, subject to a decay by $\alpha < 1$.

$$\mathbf{v}(t) = \alpha \mathbf{v}(t-1) - \varepsilon \frac{\partial E}{\partial \mathbf{w}}(t)$$

Set the weight change to the current velocity

$$\begin{split} \Delta \mathbf{w} &= \mathbf{v}(t) \\ &= \alpha \mathbf{v}(t-1) - \varepsilon \frac{\partial E}{\partial \mathbf{w}}(t) \\ &= \alpha \Delta \mathbf{w}(t-1) - \varepsilon \frac{\partial E}{\partial \mathbf{w}}(t) \end{split}$$

The Momentum Method: Behavior

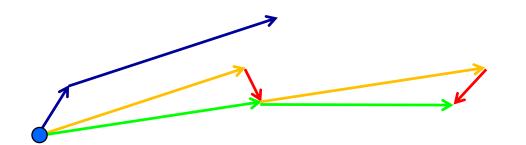
Behavior

If the error surface is a tilted plane, the ball reaches a terminal velocity

$$\mathbf{v}(\infty) = \frac{1}{1-\alpha} \left(-\varepsilon \frac{\partial E}{\partial \mathbf{w}} \right)$$

- If the momentum α is close to 1, this is much faster than simple gradient descent.
- At the beginning of learning, there may be very large gradients.
 - Use a small momentum initially (e.g., lpha=0.5).
 - Once the large gradients have disappeared and the weights are stuck in a ravine, the momentum can be smoothly raised to its final value (e.g., $\alpha=0.90$ or even $\alpha=0.99$).
- ⇒ This allows us to learn at a rate that would cause divergent oscillations without the momentum.

Improvement: Nesterov-Momentum



Standard Momentum

Jump

Correction

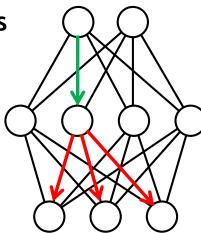
Accumulated gradient

- Standard Momentum method
 - First compute the gradient at the current location
 - Then jump in the direction of the updated accumulated gradient
- Improvement [Sutskever 2012]
 - (Inspiration: Nesterov method for optimizing convex functions.)
 - > First jump in the direction of the previous accumulated gradient
 - Then measure the gradient where you end up and make a correction.
 - ⇒ Intuition: It's better to correct a mistake after you've made it.

Separate, Adaptive Learning Rates

Problem

- In multilayer nets, the appropriate learning rates can vary widely between weights.
- The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - ⇒ Gradients can get very small in the early layers of deep nets.



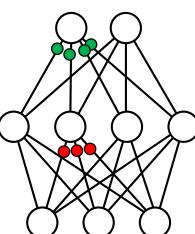
Separate, Adaptive Learning Rates

Problem

- In multilayer nets, the appropriate learning rates can vary widely between weights.
- The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - ⇒ Gradients can get very small in the early layers of deep nets.
- The fan-in of a unit determines the size of the "overshoot" effect when changing multiple weights simultaneously to correct the same error.
 - The fan-in often varies widely between layers

Solution

 Use a global learning rate, multiplied by a local gain per weight (determined empirically)



Adaptive Learning Rates

- One possible strategy
 - Start with a local gain of 1 for every weight
 - Increase the local gain if the gradient for the weight does not change the sign.
 - Use small additive increases and multiplicative decreases (for mini-batch)

$$\Delta w_{ij} = -\varepsilon g_{ij} \frac{\partial E}{\partial w_{ij}}$$
if $\left(\frac{\partial E}{\partial w_{ij}}(t) \frac{\partial E}{\partial w_{ij}}(t-1)\right) > 0$
then $g_{ij}(t) = g_{ij}(t-1) + 0.05$
else $g_{ij}(t) = g_{ij}(t-1) * 0.95$

 \Rightarrow Big gains will decay rapidly once oscillation starts.

Better Adaptation: RMSProp

Motivation

- The magnitude of the gradient can be very different for different weights and can change during learning.
- This makes it hard to choose a single global learning rate.
- For batch learning, we can deal with this by only using the sign of the gradient, but we need to generalize this for minibatches.

Idea of RMSProp

Divide the gradient by a running average of its recent magnitude

$$MeanSq(w_{ij}, t) = 0.9 MeanSq(w_{ij}, t - 1) + 0.1 \left(\frac{\partial E}{\partial w_{ij}}(t)\right)^{2}$$

Divide the gradient by $\operatorname{sqrt}(MeanSq(w_{ii},\!t))$.

Other Optimizers (Lucas)

• AdaGrad [Duchi '10]

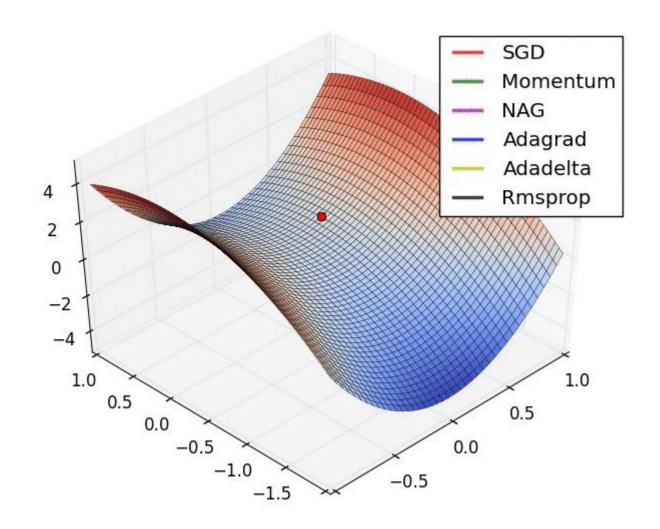
• AdaDelta [Zeiler '12]

• Adam [Ba & Kingma '14]

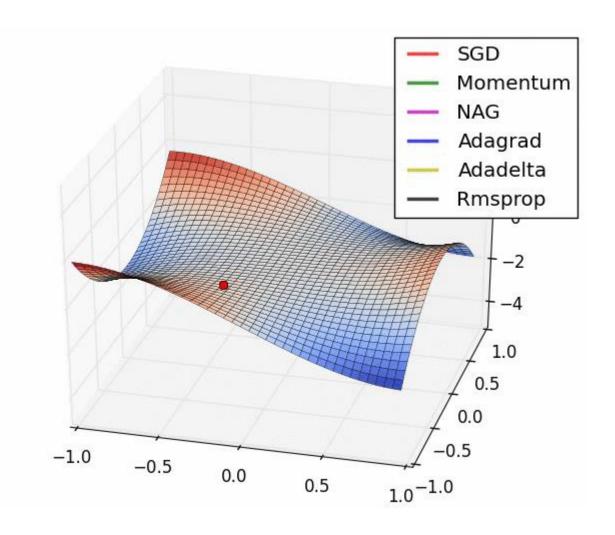
Notes

- All of those methods have the goal to make the optimization less sensitive to parameter settings.
- Adam is currently becoming the quasi-standard

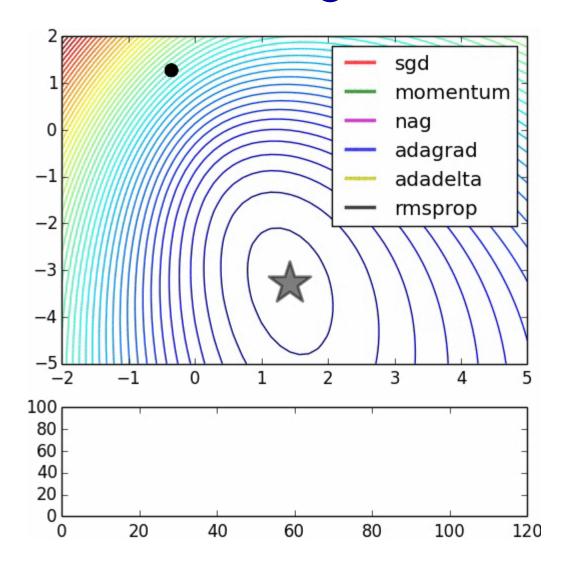
Behavior in a Long Valley



Behavior around a Saddle Point

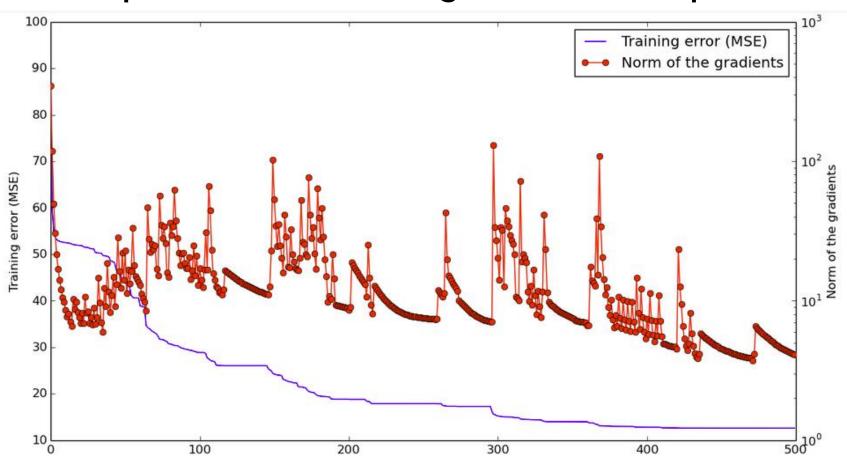


Visualization of Convergence Behavior



Trick: Patience

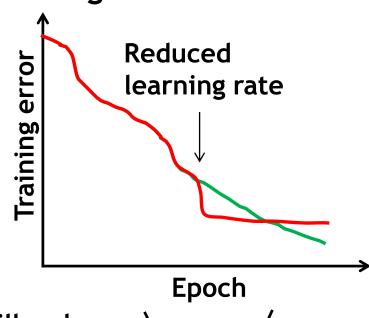
Saddle points dominate in high-dimensional spaces!



⇒ Learning often doesn't get stuck, you just may have to wait...

Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.



- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.
- Be careful: Do not turn down the learning rate too soon!
 - Further progress will be much slower after that.

Topics of This Lecture

- Recap: Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization
- Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers
- Other Tricks
 - Batch Normalization
 - Dropout

RWTHAACHEN UNIVERSITY [loffe & Szegedy '14]

Batch Normalization

Motivation

> Optimization works best if all inputs of a layer are normalized.

Idea

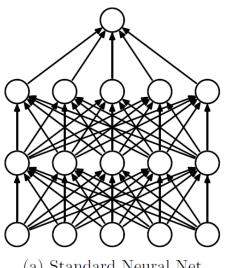
- Introduce intermediate layer that centers the activations of the previous layer per minibatch.
- I.e., perform transformations on all activations and undo those transformations when backpropagating gradients

Effect

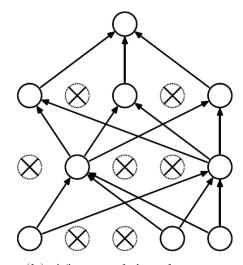
Much improved convergence

Dropout

[Srivastava, Hinton '12]



(a) Standard Neural Net



(b) After applying dropout.

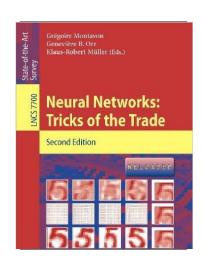
Idea

- Randomly switch off units during training.
- Change network architecture for each data point, effectively training many different variants of the network.
- When applying the trained network, multiply activations with the probability that the unit was set to zero.
- ⇒ Greatly improved performance

References and Further Reading

 More information on many practical tricks can be found in Chapter 1 of the book

> G. Montavon, G. B. Orr, K-R Mueller (Eds.) Neural Networks: Tricks of the Trade Springer, 1998, 2012



Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller Efficient BackProp, Ch.1 of the above book., 1998.

References

ReLu

X. Glorot, A. Bordes, Y. Bengio, <u>Deep sparse rectifier neural</u> <u>networks</u>, AISTATS 2011.

Initialization

- X. Glorot, Y. Bengio, <u>Understanding the difficulty of training</u> <u>deep feedforward neural networks</u>, AISTATS 2010.
- K. He, X.Y. Zhang, S.Q. Ren, J. Sun, <u>Delving Deep into</u> <u>Rectifiers: Surpassing Human-Level Performance on ImageNet</u> <u>Classification</u>, ArXiV 1502.01852v1, 2015.
- A.M. Saxe, J.L. McClelland, S. Ganguli, <u>Exact solutions to the</u> <u>nonlinear dynamics of learning in deep linear neural networks</u>, ArXiV 1312.6120v3, 2014.

References and Further Reading

Batch Normalization

S. Ioffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift</u>, ArXiV 1502.03167, 2015.

Dropout

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, <u>Dropout: A Simple Way to Prevent Neural</u> Networks from Overfitting, JMLR, Vol. 15:1929-1958, 2014.