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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, RNNs, ResNets, etc.
B. Leibe
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Topics of This Lecture

• Recap: Data (Pre-)processing 
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout

3
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Recap: Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
4

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer
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Recap: Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs)

 Normalize all inputs that an input unit sees to zero-mean, 

unit covariance.

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion).

5
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Recap: Glorot Initialization      [Glorot & Bengio, ‘10]

• Variance of neuron activations

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y. 

 We want the variance of the input and output of a unit to be 

the same, therefore n Var(Wi) should be 1. This means

 Or for the backpropagated gradient

 As a compromise, Glorot & Bengio propose to use

 Randomly sample the weights with this variance. That’s it.
6
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Recap: He Initialization                  [He et al., ‘15]

• Extension of Glorot Initialization to ReLU units

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Same basic idea: Output should have the input variance 

 However, the Glorot derivation was based on tanh units, 

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, proposed to use instead

7
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Topics of This Lecture

• Recap: Data (Pre-)processing 
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout
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Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent

 Consider a simple 1D example first

 What is the optimal learning rate ´opt? 

 If E is quadratic, the optimal learning rate is given by the 

inverse of the Hessian

 What happens if we exceed this learning rate?

9
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Choosing the Right Learning Rate

• Behavior for different learning rates

10
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Learning Rate vs. Training Error

11
B. Leibe Image source: Goodfellow & Bengio book

Do not go beyond

this point!

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour 

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

12
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

13
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

The Momentum Method

• Idea

 Instead of using the gradient to change the position of the 

weight “particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has 

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high 

curvature by combining gradients with 

opposite signs.

 Build up speed in directions with a 

gentle but consistent gradient.

14
B. Leibe Image source: Geoff HintonSlide credit: Geoff Hinton
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The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject 

to a decay by ® < 1.

 Set the weight change to the current velocity

15
B. LeibeSlide credit: Geoff Hinton
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The Momentum Method: Behavior

16
B. Leibe

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal 

velocity

– If the momentum ® is close to 1, this is much faster than simple 

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are 

stuck in a ravine, the momentum can be smoothly raised to its final 

value (e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent 

oscillations without the momentum.

Slide credit: Geoff Hinton
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Improvement: Nesterov-Momentum

• Standard Momentum method

 First compute the gradient at the current location 

 Then jump in the direction of the updated accumulated gradient

• Improvement [Sutskever 2012]

 (Inspiration: Nesterov method for optimizing convex functions.)

 First jump in the direction of the previous accumulated gradient

 Then measure the gradient where you end up and make a 

correction.

 Intuition: It’s better to correct a mistake after you’ve made it.
17

B. LeibeSlide adapted from Geoff Hinton

Standard Momentum

Jump

Correction

Accumulated gradient
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

18
B. LeibeSlide adapted from Geoff Hinton
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights 

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight 

(determined empirically)
19

B. LeibeSlide adapted from Geoff Hinton
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Adaptive Learning Rates

• One possible strategy

 Start with a local gain of 1 for every weight

 Increase the local gain if the gradient for the weight does not 

change the sign.

 Use small additive increases and multiplicative decreases (for 

mini-batch)

 Big gains will decay rapidly once oscillation starts.

20
B. LeibeSlide adapted from Geoff Hinton
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Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for 

different weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign 

of the gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)). 

21
B. LeibeSlide adapted from Geoff Hinton
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Other Optimizers (Lucas)

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less 

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

22
B. Leibe
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Behavior in a Long Valley

23
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp
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Behavior around a Saddle Point

24
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp
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Visualization of Convergence Behavior

25
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn
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Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
26

B. Leibe Image source: Yoshua Bengio
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Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower after that.
27
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Reduced

learning rate
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Slide adapted from Geoff Hinton
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Topics of This Lecture

• Recap: Data (Pre-)processing 
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout

28
B. Leibe

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Batch Normalization         [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

• Effect

 Much improved convergence

29
B. Leibe
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Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training.

 Change network architecture for each data point, effectively 

training many different variants of the network.

 When applying the trained network, multiply activations with 

the probability that the unit was set to zero.

 Greatly improved performance
30
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References and Further Reading

• More information on many practical tricks can be found 

in Chapter 1 of the book

B. Leibe
31

G. Montavon, G. B. Orr, K-R Mueller (Eds.)

Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.
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