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Talk Announcement

• Yann LeCun (FaceBook AI)

28.11. 15:00-16:30h, SuperC 6th floor 
The rapid progress of AI in the last few years are largely the result of advances in deep

learning and neural nets, combined with the availability of large datasets and fast

GPUs. We now have systems that can recognize images with an accuracy that rivals

that of humans. This will lead to revolutions in several domains such as autonomous

transportation and medical image analysis. But all of these systems currently use

supervised learning in which the machine is trained with inputs labeled by humans. The

challenge of the next several years is to let machines learn from raw, unlabeled data,

such as video or text. This is known as predictive (or unsupervised) learning. Intelligent

systems today do not possess "common sense", which humans and animals acquire by

observing the world, by acting in it, and by understanding the physical constraints of

it. I will argue that the ability of machines to learn predictive models of the world is a

key component of that will enable significant progress in AI. The main technical

difficulty is that the world is only partially predictable. A general formulation of

unsupervised learning that deals with partial predictability will be presented. The

formulation connects many well-known approaches to unsupervised learning, as well as

new and exciting ones such as adversarial training.

• No lecture next Monday - go see the talk!
2

B. Leibe
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation

 CNNs, RNNs, RBMs, etc.
B. Leibe
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Recap: Importance Sampling

• Approach

 Approximate expectations directly

(but does not enable to draw samples from p(z) directly).

 Goal:

• Idea

 Use a proposal distribution q(z) from which it is easy to sample.

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z).

4
B. LeibeSlide adapted from Bernt Schiele

Importance weights

Image source: C.M. Bishop, 2006
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• Overview

 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea

 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Approach

 At each time step, we generate a candidate 

sample from the proposal distribution and 

accept the sample according to a criterion.

 Different variants of MCMC for different

criteria.

Recap: MCMC – Markov Chain Monte Carlo

5
B. LeibeSlide adapted from Bernt Schiele Image source: C.M. Bishop, 2006
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Recap: Markov Chains – Properties

• Invariant distribution

 A distribution is said to be invariant (or stationary) w.r.t. a 

Markov chain if each step in the chain leaves that distribution 

invariant.

 Transition probabilities:

 For homogeneous Markov chain, distribution p*(z) is invariant if:

• Detailed balance

 Sufficient (but not necessary) condition to ensure that a 

distribution is invariant:

 A Markov chain which respects detailed balance is reversible.
6

B. Leibe

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Recap: MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

 New candidate samples always accepted if                        .

 The algorithm sometimes accepts a state with lower probability.

• Metropolis-Hastings algorithm

 Generalization: Proposal distribution not necessarily symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of considered transitions.
7

B. Leibe

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

~p(z?) ¸ ~p(z(¿))

Slide adapted from Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶
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Random Walks

• Example: Random Walk behavior

 Consider a state space consisting of the integers z 2 Z with 

initial state z(1) = 0 and transition probabilities

• Analysis

 Expected state at time ¿ : 

 Variance:

 After ¿ steps, the random walk has only traversed a distance 

that is on average proportional to ¿.

 Central goal in MCMC is to avoid random walk behavior!

8
B. Leibe

E[z(¿)] = 0

E[(z(¿))2] = ¿=2
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MCMC – Metropolis-Hastings Algorithm

• Schematic illustration

 For continuous state spaces, a common 

choice of proposal distribution is a 

Gaussian centered on the current state.

 What should be the variance of the

proposal distribution?

– Large variance: rejection rate will be high for complex problems.

– The scale ½ of the proposal distribution should be as large as 

possible without incurring high rejection rates.

 ½ should be of the same order as the smallest length scale ¾min.

 This causes the system to explore the distribution by means of a 

random walk.

– Undesired behavior: number of steps to arrive at state that is 

independent of original state is of order (¾max/¾min)
2.

– Strong correlations can slow down the Metropolis(-Hastings) 

algorithm! 9
B. Leibe Image source: C.M. Bishop, 2006
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Gibbs Sampling

• Approach

 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).

– This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 

choosing the next variable.

10
B. LeibeSlide adapted from Bernt Schiele
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Gibbs Sampling

• Example

 Assume distribution p(z1, z2, z3).

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 And so on…

11
B. LeibeSlide credit: Bernt Schiele

z
(¿)
1

z
(¿)
2

z
(¿)
3

z
(¿+1)
1 » p(z1jz(¿)2 ; z

(¿)
3 )

z
(¿+1)
2 » p(z2jz(¿+1)1 ; z

(¿)
3 )

z
(¿+1)
3 » p(z3jz(¿+1)1 ; z

(¿+1)
2 )
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Gibbs Sampling

• Properties

 Since the components are unchanged by sampling: z*\k = z\k.

 The factor that determines the acceptance probability in the 

Metropolis-Hastings is thus determined by

 (we have used qk(z*|z) = p(z*
k|z\k) and p(z) = p(zk|z\k) p(z\k)).

 I.e. we get an algorithm which always accepts!

 If you can compute (and sample from) the conditionals, you can 

apply Gibbs sampling.

 The algorithm is completely parameter free.

 Can also be applied to subsets of variables.
12

B. LeibeSlide adapted from Zoubin Ghahramani
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Discussion

• Gibbs sampling benefits from few free choices and 

convenient features of conditional distributions:

 Conditionals with a few discrete settings can be explicitly 

normalized:

 Continuous conditionals are often only univariate.

 amenable to standard sampling methods.

 In case of graphical models, the conditional distributions depend 

only on the variables in the corresponding Markov blankets.

13
B. Leibe

This sum is small

and easy.

Slide adapted from Iain Murray
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Gibbs Sampling

• Example

 20 iterations of Gibbs sampling on a bivariate Gaussian.

 Note: strong correlations can slow down Gibbs sampling.

14
B. LeibeSlide credit: Zoubin Ghahramani
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How Should We Run MCMC?

• Arbitrary initialization means starting iterations are bad

 Discard a “burn-in” period.

• How do we know if we have run for long enough?

 You don’t. That’s the problem.

• The samples are not independent

 Solution 1: Keep only every Mth sample (“thinning”).

 Solution 2: Keep all samples and use the simple Monte Carlo 

estimator on MCMC samples

– It is consistent and unbiased if the chain has “burned in”.

 Use thinning only if computing f(x(s)) is expensive.

• For opinion on thinning, multiple runs, burn in, etc.
 Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 

7(4):473{483, 1992. (http://www.jstor.org/stable/2246094)

16
B. LeibeSlide adapted from Iain Murray

http://www.jstor.org/stable/2246094
http://www.jstor.org/stable/2246094
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Summary: Approximate Inference

• Exact Bayesian Inference often intractable.

• Rejection and Importance Sampling

 Generate independent samples.

 Impractical in high-dimensional state spaces.

• Markov Chain Monte Carlo (MCMC)

 Simple & effective (even though typically computationally 

expensive).

 Scales well with the dimensionality of the state space.

 Issues of convergence have to be considered carefully.

• Gibbs Sampling

 Used extensively in practice.

 Parameter free

 Requires sampling conditional distributions.
17
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation

 CNNs, RNNs, RBMs, etc.
B. Leibe
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We’ve finally got there! 

19
B. Leibe

Deep Learning
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Deep Learning

• We’ve finally got there! Yay! But...

 What is it?

 Why is it a thing?

 Why is it a thing now?

• In order to understand that, let’s look at some 

background first:

 Linear Discriminants (this lecture)

 Neural Networks

 Backpropagation

 How to get them to work

 Specific types of networks (CNN, RNN, ResNets, ...)

20
B. Leibe



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Topics of This Lecture

• Linear Discriminants Revisited (from ML lecture)
 Linear Discriminants

 Least-Squares Classification

 Generalized Linear Discriminants

 Gradient Descent

• Logistic Regression
 Probabilistic discriminative models

 Logistic sigmoid (logit function)

 Cross-entropy error

 Gradient descent

 Note on error functions

• Softmax Regression
 Multi-class generalization

 Properties
21
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Recap: Linear Discriminant Functions

• Basic idea

 Directly encode decision boundary

 Minimize misclassification probability directly.

• Linear discriminant functions

 w, w0 define a hyperplane in RD.

 If a data set can be perfectly classified by a linear discriminant, 

then we call it linearly separable.
22

B. Leibe

y(x) =wTx+ w0

weight vector “bias”

(= threshold)

Slide adapted from Bernt Schiele
22

y = 0
y > 0

y < 0
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Recap: Least-Squares Classification

• Simplest approach

 Directly try to minimize the sum-of-squares error

 Setting the derivative to zero yields

 Exact, closed-form solution for the parameters. 

23
B. Leibe

E(w) =

NX

n=1

(y(xn;w)¡ tn)2
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Recap: Multi-Class Case

• General classification problem

 Let’s consider K classes described by linear models

 We can group those together using vector notation

where

 The output will again be in 1-of-K notation.

 We can directly compare it to the target value                           .
24
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yk(x) =wT
k x+ wk0; k = 1; : : : ;K

y(x) = fWTex

fW = [ew1; : : : ; ewK ] =

2
6664

w10 : : : wK0

w11 : : : wK1

...
. . .

...

w1D : : : wKD

3
7775

t = [t1; : : : ; tk]
T
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Recap: Multi-Class Case

• Classification problem in matrix notation

 For the entire dataset, we can write

and compare this to the target matrix T where

 Result of the comparison: 

25
B. Leibe

Y(eX) = eXfW

fW = [ew1; : : : ; ewK ]

eX =

2
64
xT1
...

xTN

3
75 T =

2
64
tT1
...

tTN

3
75

eXfW¡T Goal: Choose      such

that this is minimal!

fW
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Recap: Multi-Class Least-Squares

• Multi-class case

 We can formulate the sum-of-squares error in matrix notation

 Setting the derivative to zero yields

 We then obtain the discriminant function as

 Exact, closed-form solution for the discriminant function 

parameters. 
26
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Recap: Problems with Least Squares

• Least-squares is very sensitive to outliers! 

 The error function penalizes predictions that are “too correct”.
28

B. Leibe Image source: C.M. Bishop, 2006
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Recap: Generalized Linear Models

29
B. Leibe

• Generalized linear model

 g( ¢ ) is called an activation function and may be nonlinear.

 The decision surfaces correspond to

 If g is monotonous (which is typically the case), the resulting 

decision boundaries are still linear functions of x.

• Advantages of the non-linearity

 Can be used to bound the influence of outliers 

and “too correct” data points.

 When using a sigmoid for g(¢), we can interpret

the y(x) as posterior probabilities.
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yk(x) =

MX

j=0

wkjÁj(x)

Recap: Extension to Nonlinear Basis Fcts.

• Generalization

 Transform vector x with M nonlinear basis functions Áj(x):

 Basis functions Áj(x) allow non-linear decision boundaries.

 By choosing the right Áj, every continuous function can (in 

principle) be approximated with arbitrary accuracy.

 Disadvantage: minimization no longer in closed form.

• Notation

31
B. Leibe

yk(x) =

MX

j=1

wkjÁj(x) + wk0

with Á0(x) = 1

Slide credit: Bernt Schiele



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Recap: Gradient Descent

• Problem

 The error function can in general no longer be minimized in 

closed form.

• ldea (Gradient Descent)

 Iterative minimization

 Start with an initial guess for the parameter values        .

 Move towards a (local) minimum by following the gradient.

 This simple scheme corresponds to a 1st-order Taylor expansion 

(There are more complex procedures available).

32
B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

: Learning rate

w
(0)

kj
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Recap: Gradient Descent

• Iterative minimization

 Start with an initial guess for the parameter values        .

 Move towards a (local) minimum by following the gradient.

• Basic strategies

 “Batch learning”

 “Sequential updating”

where

34
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Recap: Gradient Descent

• Example: Quadratic error function

• Sequential updating leads to delta rule (=LMS rule)

 where

 Simply feed back the input data point, weighted by the 

classification error.
35
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w
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= w
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±kn = yk(xn;w)¡ tkn

Slide adapted from Bernt Schiele

E(w) =

NX

n=1

(y(xn;w)¡ tn)2
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Recap: Gradient Descent

• Cases with differentiable, non-linear activation function

• Gradient descent (again with quadratic error function)
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yk(x) = g(ak) = g

0
@

MX

j=0

wkiÁj(xn)

1
A

@En(w)

@wkj
=

@g(ak)

@wkj
(yk(xn;w)¡ tkn)Áj(xn)

w
(¿+1)

kj = w
(¿)

kj ¡ ´±knÁj(xn)

±kn =
@g(ak)

@wkj
(yk(xn;w)¡ tkn)

Slide adapted from Bernt Schiele
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Summary: Generalized Linear Discriminants

• Properties

 General class of decision functions.

 Nonlinearity g(¢) and basis functions Áj allow us to address 

linearly non-separable problems.

 Shown simple sequential learning approach for parameter 

estimation using gradient descent.

• Limitations / Caveats

 Flexibility of model is limited by curse of dimensionality

– g(¢) and Áj often introduce additional parameters.

– Models are either limited to lower-dimensional input space

or need to share parameters.

 Linearly separable case often leads to overfitting.

– Several possible parameter choices minimize training error.

37
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Topics of This Lecture

• Linear Discriminants Revisited
 Linear Discriminants

 Least-Squares Classification

 Generalized Linear Discriminants

 Gradient Descent

• Logistic Regression
 Probabilistic discriminative models

 Logistic sigmoid (logit function)

 Cross-entropy error

 Gradient descent

 Note on error functions

• Softmax Regression
 Multi-class generalization

 Properties
38
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Recap: Probabilistic Discriminative Models

• Consider models of the form

with

• This model is called logistic regression.

• Properties

 Probabilistic interpretation

 But discriminative method: only focus on decision hyperplane

 Advantageous for high-dimensional spaces, requires less 

parameters than explicitly modeling p(Á|Ck) and p(Ck).

39
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p(C1jÁ) = y(Á) = ¾(wTÁ)

p(C2jÁ) = 1¡ p(C1jÁ)
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Recap: Logistic Sigmoid

• Properties

 Definition:

 Inverse:

 Symmetry property:

 Derivative:

40
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d¾

da
= ¾(1¡ ¾)

¾(a) =
1

1 + exp(¡a)

a = ln

µ
¾

1¡ ¾

¶

¾(¡a) = 1¡¾(a)

“logit” function
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Recap: Logistic Regression

• Let’s consider a data set {Án,tn} with n = 1,…,N,

where                     and                 ,                            .

• With yn = p(C1|Án), we can write the likelihood as

• Define the error function as the negative log-likelihood

 This is the so-called cross-entropy error function.
41

Án = Á(xn) tn 2 f0;1g

p(tjw) =

NY

n=1

ytnn f1¡ yng1¡tn

E(w) = ¡ ln p(tjw)

= ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

t = (t1; : : : ; tN)T
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• Error function

• Gradient

Gradient of the Error Function

42
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rE(w) = ¡
NX

n=1

(
tn

d
dw

yn

yn
+ (1¡ tn)

d
dw

(1¡ yn)

(1¡ yn)

)

= ¡
NX

n=1

½
tn

yn(1¡ yn)

yn
Án ¡ (1¡ tn)

yn(1¡ yn)

(1¡ yn)
Án

¾

= ¡
NX

n=1

f(tn ¡ tnyn ¡ yn + tnyn)Áng

=

NX

n=1

(yn ¡ tn)Án

E(w) = ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

yn = ¾(wTÁn)

dyn

dw
= yn(1¡ yn)Án
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Gradient of the Error Function

• Gradient for logistic regression

• Does this look familiar to you?

• This is the same result as for the Delta (=LMS) rule

• We can use this to derive a sequential estimation 

algorithm.

 However, this will be quite slow…
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rE(w) =

NX

n=1

(yn ¡ tn)Án
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Recap: Iteratively Reweighted Least Squares

• Result of applying Newton-Raphson to logistic regression

 where R is an NN diagonal matrix with                              .

• Very similar form to pseudo-inverse (normal equations)

 But now with non-constant weighing matrix R (depends on w).

 Need to apply normal equations iteratively.

 Iteratively Reweighted Least-Squares (IRLS) 44

w(¿+1) =w(¿) ¡ (©TR©)¡1©T (y¡ t)

= (©TR©)¡1
n
©TR©w(¿) ¡©T (y¡ t)

o

= (©TR©)¡1©TRz

z =©w(¿) ¡R¡1(y¡ t)with

Rnn = yn(1¡ yn)
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Summary: Logistic Regression

• Properties

 Directly represent posterior distribution p(Á|Ck)

 Requires fewer parameters than modeling the likelihood + prior.

 Very often used in statistics.

 It can be shown that the cross-entropy error function is concave

– Optimization leads to unique minimum

– But no closed-form solution exists

– Iterative optimization (IRLS)

 Both online and batch optimizations exist

• Caveat

 Logistic regression tends to systematically overestimate odds 

ratios when the sample size is less than ~500.

45
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Topics of This Lecture

• Linear Discriminants Revisited
 Linear Discriminants

 Least-Squares Classification

 Generalized Linear Discriminants

 Gradient Descent

• Logistic Regression
 Probabilistic discriminative models

 Logistic sigmoid (logit function)

 Cross-entropy error

 Gradient descent

 Note on error functions

• Softmax Regression
 Multi-class generalization

 Properties
46
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A Note on Error Functions

• Ideal misclassification error function (black)

 This is what we want to approximate, 

 Unfortunately, it is not differentiable.

 The gradient is zero for misclassified points.

 We cannot minimize it by gradient descent. 47
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tny(xn)
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A Note on Error Functions

• Squared error used in Least-Squares Classification

 Very popular, leads to closed-form solutions.

 However, sensitive to outliers due to squared penalty.

 Penalizes “too correct” data points

 Generally does not lead to good classifiers. 48
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes “too correct”

data points!

Sensitive to outliers!

zn = tny(xn)
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A Note on Error Functions

• Cross-Entropy Error

 Minimizer of this error is given by posterior class probabilities.

 Concave error function, unique minimum exists.

 Robust to outliers, error increases only roughly linearly 

 But no closed-form solution, requires iterative estimation. 49
Image source: Bishop, 2006

Ideal misclassification error

Cross-entropy error

Squared error

Robust to outliers!

zn = tny(xn)
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Topics of This Lecture

• Linear Discriminants Revisited
 Linear Discriminants

 Least-Squares Classification

 Generalized Linear Discriminants

 Gradient Descent

• Logistic Regression
 Probabilistic discriminative models

 Logistic sigmoid (logit function)

 Cross-entropy error

 Gradient descent

 Note on error functions

• Softmax Regression
 Multi-class generalization

 Properties
50
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Softmax Regression

• Multi-class generalization of logistic regression

 In logistic regression, we assumed binary labels

 Softmax generalizes this to K values in 1-of-K notation.

 This uses the softmax function

 Note: the resulting distribution is normalized.
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B. Leibe

tn 2 f0;1g

y(x;w) =

2
6664

P (y = 1jx;w)

P (y = 2jx;w)
...

P (y = Kjx;w)

3
7775 =

1
PK

j=1 exp(w>
j x)

2
6664

exp(w>
1 x)

exp(w>
2 x)

...

exp(w>
Kx)

3
7775
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Softmax Regression Cost Function

• Logistic regression

 Alternative way of writing the cost function

• Softmax regression

 Generalization to K classes using indicator functions.
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E(w) = ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

= ¡
NX

n=1

1X

k=0

fI (tn = k) ln P (yn = kjxn;w)g

E(w) = ¡
NX

n=1
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k=1

(
I (tn = k) ln

exp(w>
k x)PK
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• Again, no closed-form solution is available

 Resort again to Gradient Descent

 Gradient

• Note

 rwk E(w) is itself a vector of partial derivatives for the 

different components of wk.

 We can now plug this into a standard optimization package.

Optimization

53
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rwk
E(w) = ¡

NX

n=1

[I (tn = k) lnP (yn = kjxn;w)]
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Summary

• We have now an understanding of

 Generalized Linear Discriminants as basic tools

 Different loss functions and their effects

 Softmax generalization to multi-class classification

• In the next lecture, we will see

 How they are related to Neural Networks.

 How we can use our new background to get a better 

understanding of what NNs actually do.
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References and Further Reading

• More information on Linear Discriminant Functions can 

be found in Chapter 4 of Bishop’s book (in particular 

Chapter 4.1).
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