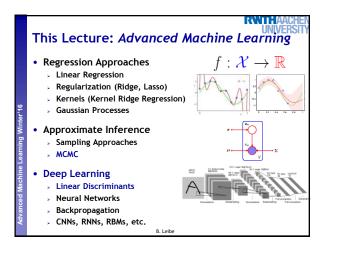
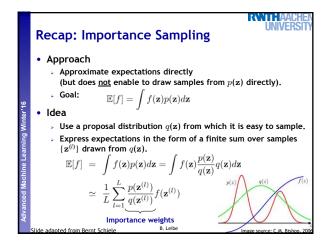
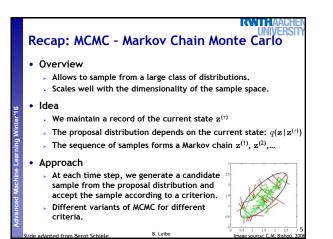
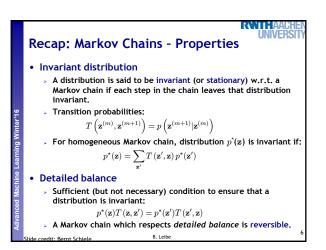


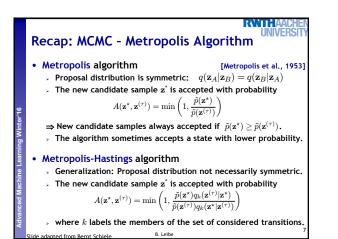
B. Leibe

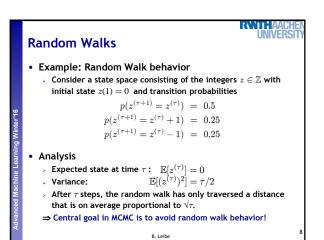




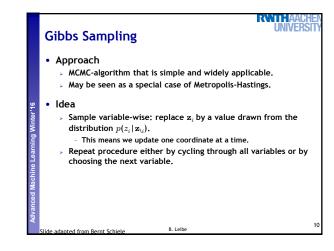


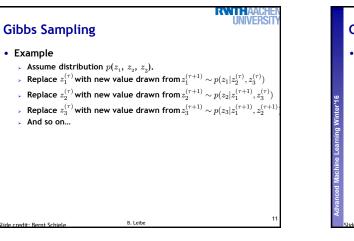


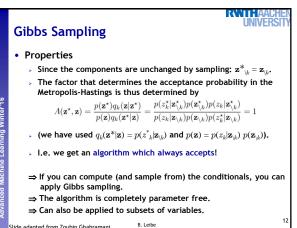


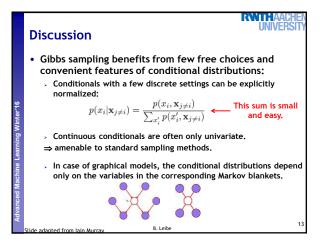


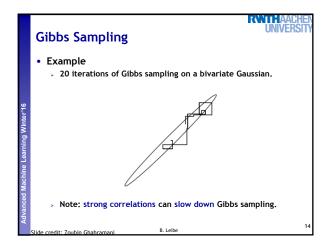
MCMC - Metropolis-Hastings Algorithm Schematic illustration For continuous state spaces, a common choice of proposal distribution is a Gaussian centered on the current state. \Rightarrow What should be the variance of the proposal distribution? Large variance: rejection rate will be high for complex problems. The scale ρ of the proposal distribution should be as large as possible without incurring high rejection rates. $\Rightarrow \rho$ should be of the same order as the smallest length scale σ_{\min} . > This causes the system to explore the distribution by means of a random walk. Undesired behavior: number of steps to arrive at state that is independent of original state is of order $(\sigma_{max}/\sigma_{min})^2$. Strong correlations can slow down the Metropolis(-Hastings) algorithm! B. Leibe

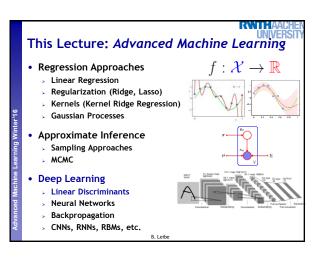


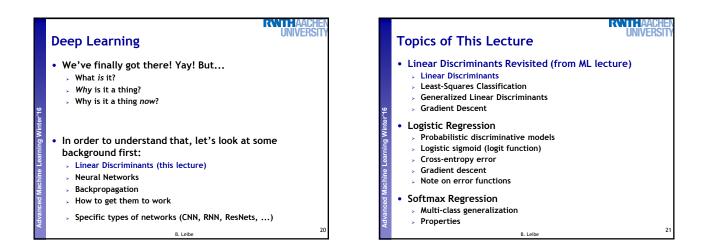


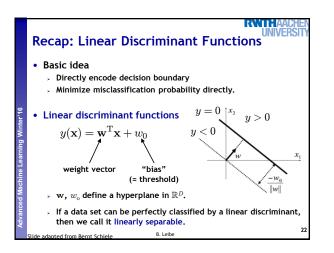


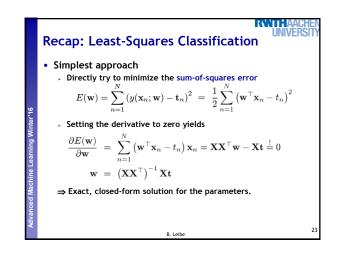


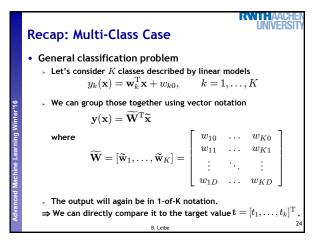


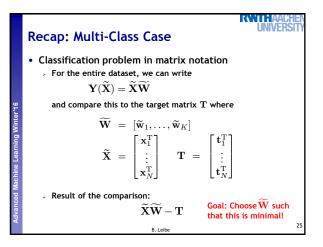


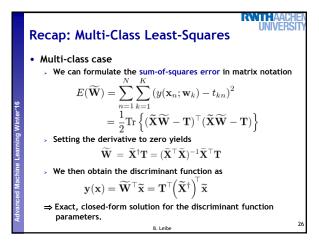


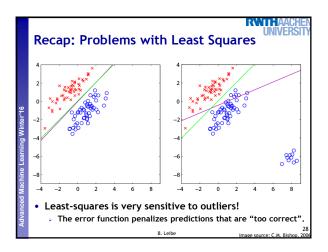


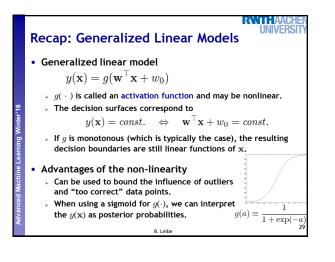


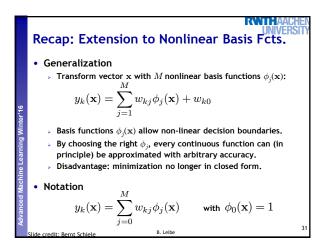


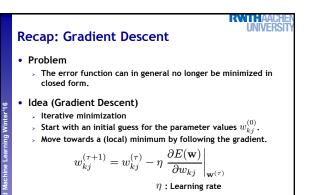


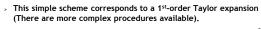




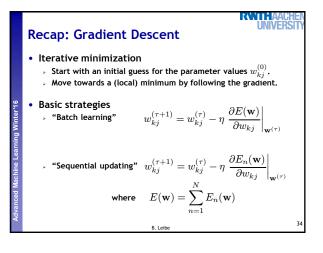


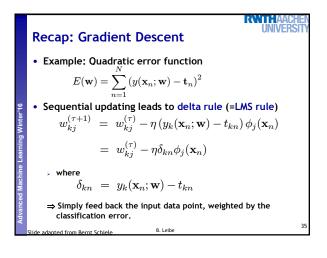


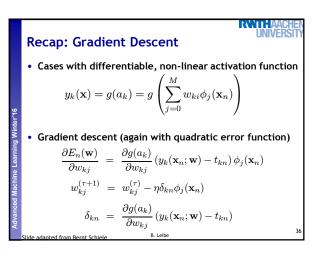


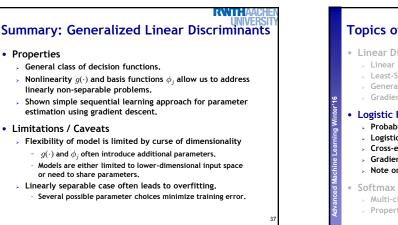


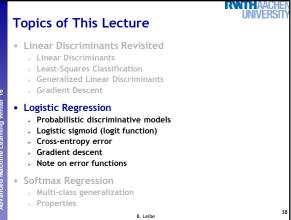
B. Leibe

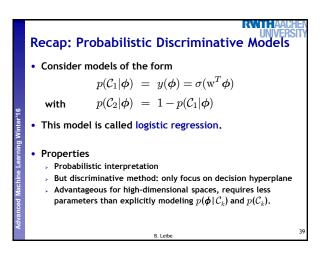


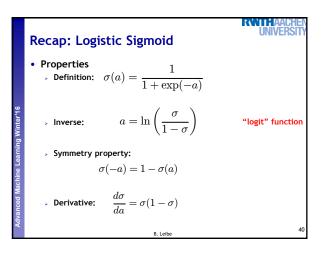












Recap: Logistic Regression

- Let's consider a data set $\{\phi_n, t_n\}$ with n = 1, ..., N, where $\phi_n = \phi(\mathbf{x}_n)$ and $t_n \in \{0, 1\}$, $\mathbf{t} = (t_1, ..., t_N)^T$.
- + With $y_n = p(\mathcal{C}_1 | \pmb{\phi}_n)$, we can write the likelihood as

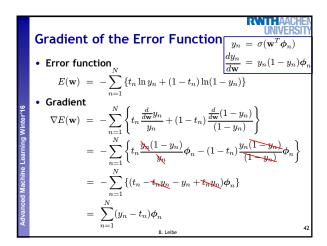
$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1 - t_n}$$

- Define the error function as the negative log-likelihood $E(\mathbf{w}) ~=~ -\ln p(\mathbf{t}|\mathbf{w})$

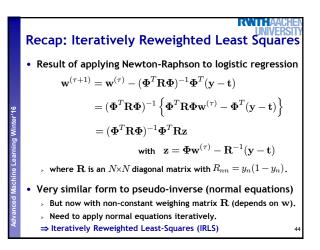
$$= -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}\$$

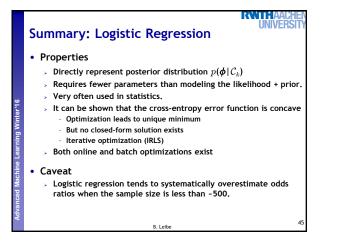
UNIVERS

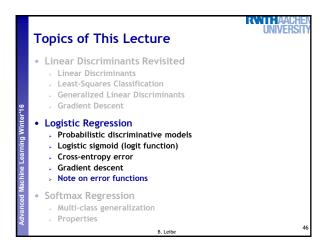
> This is the so-called cross-entropy error function.

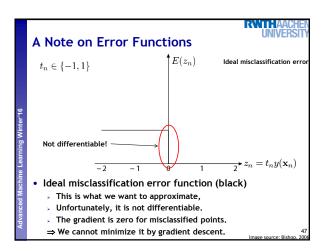


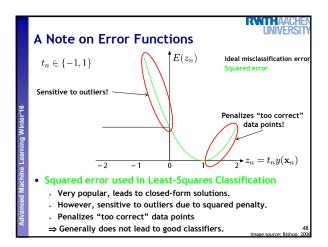
	Gradient of the Error Function	;Hen Sity
	Gradient for logistic regression	
er'16	$ abla E(\mathbf{w}) \;=\; \sum_{n=1}^N (y_n - t_n) oldsymbol{\phi}_n$	
ig Wint	• Does this look familiar to you?	
Advanced Machine Learning Winter/16	• This is the same result as for the Delta (=LMS) rule $w_{kj}^{(au+1)} = w_{kj}^{(au)} - \eta(y_k(\mathbf{x}_n;\mathbf{w}) - t_{kn})\phi_j(\mathbf{x}_n)$	
/anced Mac	We can use this to derive a sequential estimation algorithm.	
Adv	 However, this will be quite slow B. Leibe 	43

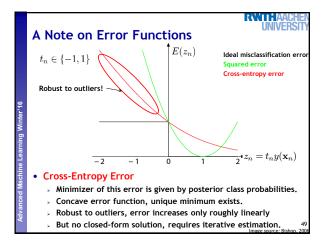


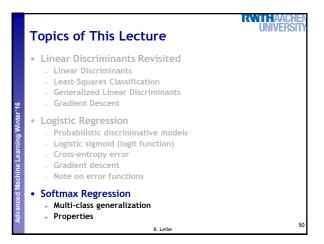




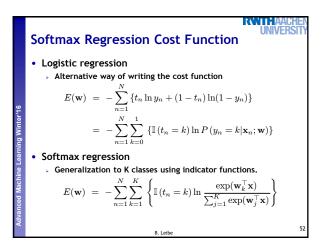


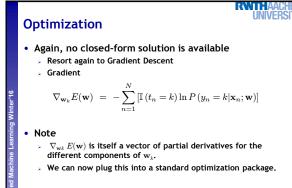


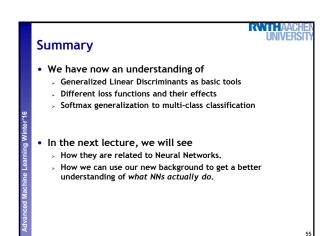












B. Leibe

References and Further	RWTHAACHEN UNIVERSITY Reading		
• More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1).			
Christopher M. Bishop Pattern Recognition and M. Springer, 2006	AATTIAN INCOORMON MACHINE LABORATION OPPOPULATION Achine Learning		
B. Leibe	56		

B. Leibe