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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Gaussian Processes

• Learning with Latent Variables

 Probability Distributions

 Approximate Inference

• Deep Learning

 Neural Networks

 CNNs, RNNs, ResNets, etc.

B. Leibe
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Recap: GPs with Noise-free Observations

• Assume our observations are noise-free:

 Joint distribution of the training outputs f and test outputs f*
according to the prior:

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations:

 with:

3
B. LeibeSlide adapted from Bernt Schiele
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Recap: GPs with Noisy Observations

• Joint distribution of the observed values and the test 

locations under the prior:

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations:

 with:

 This is the key result that defines Gaussian process regression!

– Predictive distribution is Gaussian whose mean and variance depend 

on test points X* and on the kernel k(x,x’), evaluated on X.
4

B. LeibeSlide adapted from Bernt Schiele
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Recap: Bayesian Model Selection for GPs

• Goal

 Determine/learn different parameters of Gaussian Processes

• Hierarchy of parameters

 Lowest level

– w – e.g. parameters of a linear model.

 Mid-level (hyperparameters)

– µ – e.g. controlling prior distribution of w.

 Top level

– Typically discrete set of model structures Hi.

• Approach

 Inference takes place one level at a time.

5
B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Lowest Level

• Posterior of the parameters w is given by Bayes’ rule

• with

 p(t|X,w,Hi) likelihood and

 p(w|µ,Hi) prior parameters w,

 Denominator (normalizing constant) is independent of the 

parameters and is called marginal likelihood.

6
B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Mid Level

• Posterior of parameters µ is again given by Bayes’ rule

• where

 The marginal likelihood of the previous level p(t|X,µ,Hi)
plays the role of the likelihood of this level.

 p(µ|Hi) is the hyperprior (prior of the hyperparameters)

 Denominator (normalizing constant) is given by:

7
B. LeibeSlide credit: Bernt Schiele



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
5

Recap: Model Selection at Top Level

• At the top level, we calculate the posterior of the model

• where

 Again, the denominator of the previous level p(t|X,Hi)
plays the role of the likelihood.

 p(Hi) is the prior of the model structure.

 Denominator (normalizing constant) is given by:

8
B. LeibeSlide credit: Bernt Schiele
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Recap: Bayesian Model Selection

• Discussion

 Marginal likelihood is main difference to non-Bayesian methods

 It automatically incorporates a trade-off

between the model fit and the model

complexity:

– A simple model can only account

for a limited range of possible

sets of target values – if a simple

model fits well, it obtains a high

marginal likelihood.

– A complex model can account for

a large range of possible sets of

target values – therefore, it can

never attain a very high marginal 

likelihood.
9
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Topics of This Lecture

• Approximate Inference

 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling

10
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Approximate Inference

• Exact Bayesian inference is often intractable.

 Often infeasible to evaluate the posterior distribution or to 

compute expectations w.r.t. the distribution.

– E.g. because the dimensionality of the latent space is too high.

– Or because the posterior distribution has a too complex form.

 Problems with continuous variables

– Required integrations may not have closed-form solutions.

 Problems with discrete variables

– Marginalization involves summing over all possible configurations of 

the hidden variables.

– There may be exponentially many such states.

 We need to resort to approximation schemes.

11
B. Leibe
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Two Classes of Approximation Schemes

• Deterministic approximations (Variational methods)

 Based on analytical approximations to the posterior distribution

– E.g. by assuming that it factorizes in a certain form

– Or that it has a certain parametric form (e.g. a Gaussian).

 Can never generate exact results, but are often scalable to large 

applications.

• Stochastic approximations (Sampling methods)

 Given infinite computationally resources, they can generate 

exact results.

 Approximation arises from the use of a finite amount of 

processor time.

 Enable the use of Bayesian techniques across many domains.

 But: computationally demanding, often limited to small-scale 

problems.

12
B. Leibe
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Topics of This Lecture

• Approximate Inference

 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling

13
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Sampling Idea

• Objective: 

 Evaluate expectation of a function f(z)

w.r.t. a probability distribution p(z).

• Sampling idea

 Draw L independent samples z(l) with l = 1,…,L from p(z).

 This allows the expectation to be approximated by a finite sum

 As long as the samples z(l) are drawn independently from p(z), 
then

 Unbiased estimate, independent of the dimension of z!
14
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f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006
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Sampling – Challenges

• Problem 1: Samples might not be independent

 Effective sample size might be much smaller than apparent 

sample size.

• Problem 2: 

 If f(z) is small in regions where p(z) is large and vice versa, the 

expectation may be dominated by regions of small probability.

 Large sample sizes necessary to achieve sufficient accuracy.

15
B. Leibe Image source: C.M. Bishop, 2006
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Parametric Density Model

• Example: 

 A simple multivariate (d-dimensional) Gaussian model

 This is a “generative” model

in the sense that we can generate

samples x according to the 

distribution.

16
B. LeibeSlide adapted from Bernt Schiele

p(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

Sampling from a Gaussian

• Given: 1-dim. Gaussian pdf (probability density function) 
p(x|¹,¾2) and the corresponding cumulative distribution:

• To draw samples from a Gaussian, we can invert the 

cumulative distribution function:

17
B. Leibe

F¹;¾2(x) =

Z x

¡1
p(xj¹; ¾2)dx

u » Uniform(0; 1)) F¡1
¹;¾2

(u) » p(xj¹;¾2)

F¹;¾2(x)p(xj¹; ¾2)

Slide credit: Bernt Schiele
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Sampling from a pdf (Transformation method)

• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution:

• To draw samples from this pdf, we can invert the 

cumulative distribution function:

18
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F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Example 1: Sampling from Exponential Distrib.

• Exponential Distribution

where 0 · y < 1.

• Transformation sampling

 Indefinite Integral

 Inverse function

for a uniformly distributed input variable z.

19
B. Leibe Image source: Wikipedia
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Example 2: Sampling from Cauchy Distrib.

• Cauchy Distribution

• Transformation sampling

 Inverse of integral can be expressed as a tan function.

for a uniformly distributed input variable z.

20
B. Leibe Image source: Wikipedia
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Note: Efficient Sampling from a Gaussian

• Problem with transformation method

 Integral over Gaussian cannot be expressed

in analytical form.

 Standard transformation approach is very

inefficient.

• More efficient: Box-Muller Algorithm

 Generate pairs of uniformly distributed random numbers 

z1,z2 2 (-1,1).

 Discard each pair unless it satisfies                             . 

 This leads to a uniform distribution of points inside the unit 

circle with p(z1,z2) = 1/¼.

21
B. Leibe Image source: C.M. Bishop, 2006
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Box-Muller Algorithm (cont’d)

• Box-Muller Algorithm (cont’d)

 For each pair z1,z2 evaluate

 Then the joint distribution of y1 and y2 is given by 

 y1 and y2 are independent and each has a Gaussian distribution  

with mean ¹ and variance ¾2.

 If y ~ N(0,1), then ¾y + ¹ ~ N(¹,¾2).
22

B. Leibe



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

Box-Muller Algorithm (cont’d)

• Multivariate extension

 If z is a vector valued random variable whose components are 

independent and Gaussian distributed with N(0,1),

 Then y = ¹ + Lz will have mean ¹ and covariance §.

 Where § = LLT is the Cholesky decomposition of §.

23
B. Leibe
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Ancestral Sampling

• Generalization of this idea to directed graphical models.

 Joint probability factorizes into conditional probabilities:

• Ancestral sampling

 Assume the variables are ordered such that there are no links 

from any node to a lower-numbered node.

 Start with lowest-numbered node and draw a sample from its 

distribution.

 Cycle through each of the nodes in order and draw samples from 

the conditional distribution (where the parent variable is set to 

its sampled value).

24
B. Leibe

x̂1 » p(x1)

x̂n » p(xnjpan)

Image source: C.M. Bishop, 2006
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Logic Sampling

• Extension of Ancestral sampling

 Directed graph where some nodes are instantiated 

with observed values.

• Use ancestral sampling, except

 When sample is obtained for an observed variable, if they agree 

then sample value is retained and proceed to next variable.

 If they don’t agree, whole sample is discarded.

• Result

 Approach samples correctly from the posterior distribution.

 However, probability of accepting a sample decreases rapidly as 

the number of observed variables increases.

 Approach is rarely used in practice.

25
B. Leibe
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Discussion

• Transformation method

 Limited applicability, as we need to invert the indefinite integral 

of the required distribution p(z).

 This will only be feasible for a limited number of simple 

distributions.

• More general

 Rejection Sampling

 Importance Sampling

26
B. LeibeSlide adapted from Bernt Schiele
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Rejection Sampling

• Assumptions

 Sampling directly from p(z) is difficult.

 But we can easily evaluate p(z) (up to some normalization factor 

Zp):

• Idea

 We need some simpler distribution q(z) (called proposal 

distribution) from which we can draw samples.

 Choose a constant k such that: 

27
B. Leibe

p(z) =
1

Zp
~p(z)

8z : kq(z) ¸ ~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Rejection Sampling

• Sampling procedure

 Generate a number z0 from q(z).

 Generate a number u0 from the

uniform distribution over [0,kq(z0)].

 If                    reject sample, otherwise accept.

– Sample is rejected if it lies in the grey shaded area.

– The remaining pairs (u0,z0) have uniform distribution under the 

curve         .

• Discussion

 Original values of z are generated from the distribution q(z).

 Samples are accepted with probability

 k should be as small as possible!
28
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u0 > ~p(z0)

~p(z)

~p(z)=kq(z)

Image source: C.M. Bishop, 2006
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p(accept) ·
1

20000

Rejection Sampling – Discussion

• Limitation: high-dimensional spaces

 For rejection sampling to be of practical value, we require that 

kq(z) be close to the required distribution, so that the rate of 

rejection is minimal.

• Artificial example

 Assume that p(z) is Gaussian with covariance matrix 

 Assume that q(z) is Gaussian with covariance matrix 

 Obviously: 

 In D dimensions: k = (¾q/¾p)
D.

– Assume ¾q is just 1% larger than ¾p.

– D = 1000  k = 1.011000 ¸ 20,000

– And

 Often impractical to find good proposal distributions for high 

dimensions! 29
B. Leibe

¾2pI

¾2qI

¾2q ¸ ¾2p

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Example: Sampling from a Gamma Distrib.

• Gamma distribution

• Rejection sampling approach

 For a>1, Gamma distribution has a 

bell-shaped form.

 Suitable proposal distribution is

Cauchy (for which we can use

the transformation method).

 Generalize Cauchy slightly to ensure 

it is nowhere smaller than Gamma: y = b tan y + c for uniform y.

 This gives random numbers distributed according to 

30
B. Leibe Image source: C.M. Bishop, 2006

with optimal

rejection rate for
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Importance Sampling

• Approach

 Approximate expectations directly

(but does not enable to draw samples from p(z) directly).

 Goal:

• Simplistic strategy: Grid sampling

 Discretize z-space into a uniform grid.

 Evaluate the integrand as a sum of the form

 But: number of terms grows exponentially with number of 

dimensions!
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Importance Sampling

• Idea

 Use a proposal distribution q(z) from which it is easy to draw 

samples.

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z).

 with importance weights
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rl =
p(z(l))

q(z(l))
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Importance Sampling

• Typical setting:

 p(z) can only be evaluated up to an unknown normalization 

constant

 q(z) can also be treated in a similar fashion.

 Then

 with:
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p(z) = ~p(z)=Zp

q(z) = ~q(z)=Zq

~rl =
~p(z(l))

~q(z(l))
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Importance Sampling

• Ratio of normalization constants can be evaluated

• and therefore

• with

34
B. LeibeSlide credit: Bernt Schiele

Zp
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=

1

Zq

Z
~p(z)dz =

Z
~p(z(l))
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q(z)dz ' 1
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=
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Importance Sampling – Discussion

• Observations

 Success of importance sampling depends crucially on how well 

the sampling distribution q(z) matches the desired distribution 

p(z).

 Often, p(z)f(z) is strongly varying and has a significant propor-

tion of its mass concentrated over small regions of z-space.

 Weights rl may be dominated by a few weights having large 

values.

 Practical issue: if none of the samples falls in the regions where 

p(z)f(z) is large…

– The results may be arbitrary in error.

– And there will be no diagnostic indication (no large variance in rl)!

 Key requirement for sampling distribution q(z):

– Should not be small or zero in regions where p(z) is significant!
35
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Topics of This Lecture

• Approximate Inference

 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling

36
B. Leibe



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

References and Further Reading

• Sampling methods for approximate inference are 

described in detail in Chapter 11 of Bishop’s book.

• Another good introduction to Monte Carlo methods can 

be found in Chapter 29 of MacKay’s book (also available 

online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

B. Leibe
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