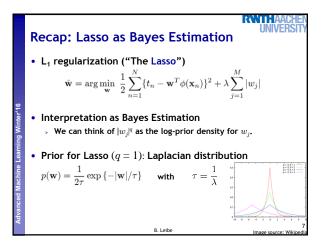


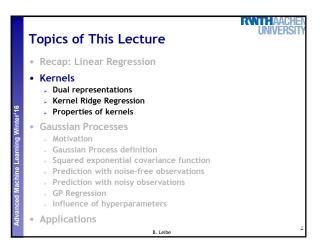


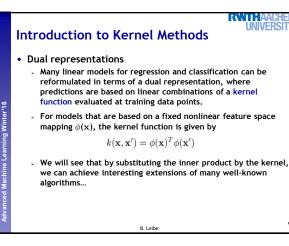
RWITHAAC

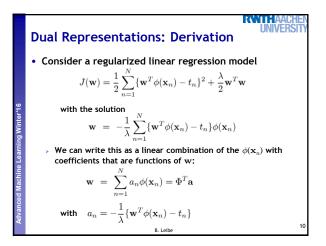
 $f: \mathcal{X} \to \mathbb{R}$

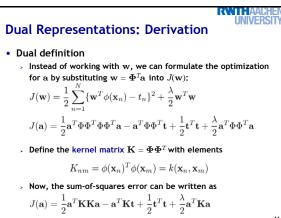


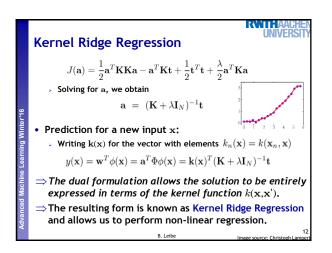
RVN HA

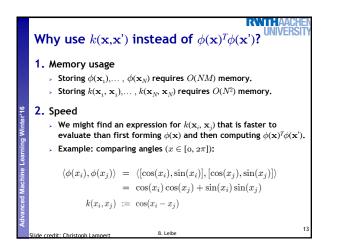


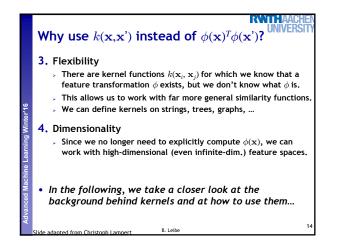




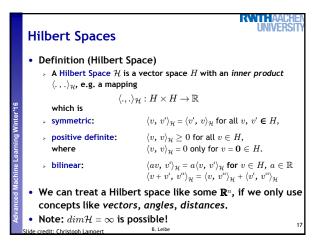


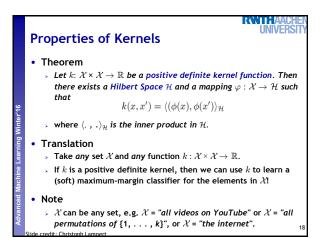


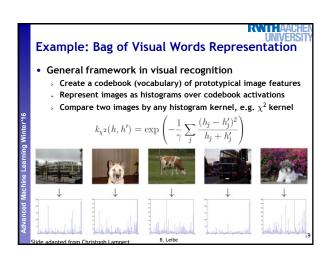


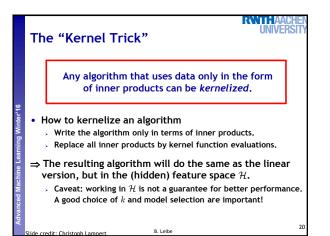


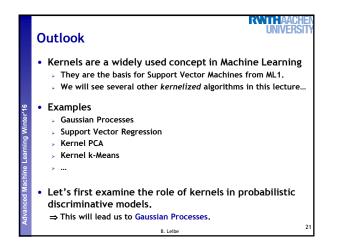
Properties of Kernels • Definition (Positive Definite Kernel Function) • Let \mathcal{X} be a non-empty set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called positive definite kernel function, iff • k is symmetric, i.e. k(x, x') = k(x', x) for all $x, x' \in \mathcal{X}$, and • for any set of points $x_1, \dots, x_n \in \mathcal{X}$, the matrix $K_{ij} = (k(x_i, x_j))_{i,j}$ is positive (semi-)definite, i.e. for all vectors $\mathbf{x} \in \mathbb{R}^n$: $\sum_{i,j=1}^N \mathbf{x}_i K_{ij} \mathbf{x}_j \ge 0$ the credit: Christoph Lampert B. Letter











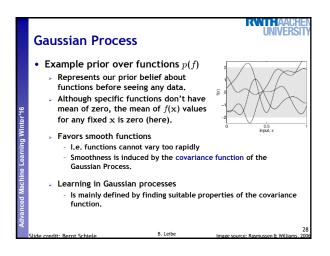


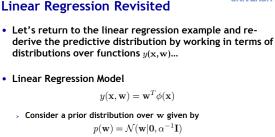
Gaussian Process

UNIVERSIT

- Gaussian distribution
 - Probability distribution over scalars / vectors.
- Gaussian process (generalization of Gaussian distrib.)
 Describes properties of functions.
 - > Function: Think of a function as a long vector where each entry specifies the function value $f(\mathbf{x}_i)$ at a particular point \mathbf{x}_i .
 - Issue: How to deal with infinite number of points?
 - If you ask only for properties of the function at a finite number of points...
 - Then inference in Gaussian Process gives you the same answer if you ignore the infinitely many other points.
- Definition

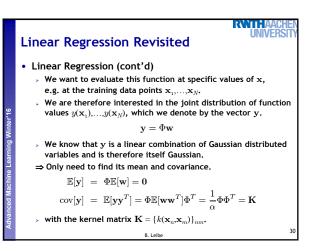
A Gaussian process (GP) is a collection of random variables any finite number of which has a joint Gaussian distribution.





- \succ For any given value of ${\bf w},$ the definition induces a particular function of ${\bf x}.$
- > The probability distribution over w therefore induces a probability distribution over functions $y(\mathbf{x})$.

B. Leibe



Gaussian Process

UNIVERSIT

RVITHA

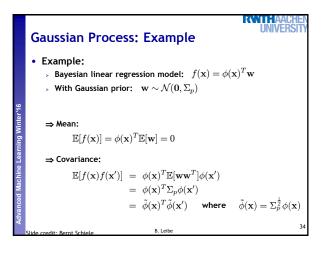
UNIVERS

- This model is a particular example of a Gaussian Process.
 - $\succ\,$ Linear regression with a zero-mean, isotropic Gaussian prior on $\,$ w.
- General definition
 - > A Gaussian Process is defined as a probability distribution over functions $y(\mathbf{x})$ such that the set of values of $y(\mathbf{x})$ evaluated at an arbitrary set of points $\mathbf{x}_1, \dots, \mathbf{x}_N$ have a Gaussian distribution.
 - > A key point about GPs is that the joint distribution over N variables y_1, \ldots, y_N is completely specified by the second-order statistics, namely mean and covariance.

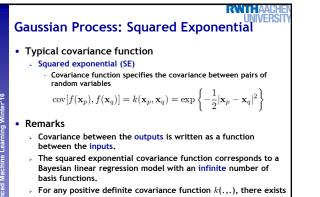
B. Leibe

Gaussian Process • A Gaussian process is completely defined by • Mean function $m(\mathbf{x})$ and $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ • Covariance function $k(\mathbf{x}, \mathbf{x}')$ $k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x})(f(\mathbf{x}') - m(\mathbf{x}'))]$ • We write the Gaussian process (GP) $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$

	Gaussian Process
	 Property Defined as a collection of random variables, which implies consistency.
Machine Learning Winter'16	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Advanced Machine I	 I.e. examination of a larger set of variables does not change the distribution of a smaller set.
	Slide credit: Bent Schiele B. Leibe 33



5



a (possibly infinite) expansion in terms of basis functions. B. Leibe

