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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Learning with Latent Variables

 EM and Generalizations

 Approximate Inference

• Deep Learning

 Neural Networks

 CNNs, RNNs, RBMs, etc.

B. Leibe
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
3
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Recap: Loss Functions for Regression

• The squared loss is not the only possible choice

 Poor choice when conditional distribution p(t|x) is multimodal.

• Simple generalization: Minkowski loss

 Expectation

• Minimum of E[Lq] is given by  

 Conditional mean    for q = 2,

 Conditional median for q = 1,

 Conditional mode for q = 0.
4
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E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt
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Recap: Linear Basis Function Models

• Generally, we consider models of the following form

 where Áj(x) are known as basis functions.

 In the simplest case, we use linear basis functions: Ád(x) = xd.

• Other popular basis functions

5
B. Leibe
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Recap: Regularized Least-Squares

• Consider more general regularization functions

 “Lq norms”:

• Effect: Sparsity for q  1.

 Minimization tends to set many coefficients to zero
6

B. Leibe Image source: C.M. Bishop, 2006
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Recap: Lasso as Bayes Estimation

• L1 regularization (“The Lasso”)

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): Laplacian distribution

7
B. Leibe

with

Image source: Wikipedia

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
6

Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
8
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Introduction to Kernel Methods

• Dual representations

 Many linear models for regression and classification can be 

reformulated in terms of a dual representation, where 

predictions are based on linear combinations of a kernel 

function evaluated at training data points.

 For models that are based on a fixed nonlinear feature space 

mapping Á(x), the kernel function is given by

 We will see that by substituting the inner product by the kernel, 

we can achieve interesting extensions of many well-known 

algorithms…

9
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Dual Representations: Derivation

• Consider a regularized linear regression model

with the solution

 We can write this as a linear combination of the Á(xn) with 

coefficients that are functions of w:

with

10
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Dual Representations: Derivation

• Dual definition

 Instead of working with w, we can formulate the optimization 

for a by substituting w = ©Ta into J(w):

 Define the kernel matrix K = ©©T with elements

 Now, the sum-of-squares error can be written as

11
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Kernel Ridge Regression

 Solving for a, we obtain

• Prediction for a new input x:

 Writing k(x) for the vector with elements

The dual formulation allows the solution to be entirely 

expressed in terms of the kernel function k(x,x’).

The resulting form is known as Kernel Ridge Regression

and allows us to perform non-linear regression.
12

B. Leibe Image source: Christoph Lampert
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Why use k(x,x’) instead of Á(x)TÁ(x’)?

1. Memory usage

 Storing Á(x1),… , Á(xN) requires O(NM) memory.

 Storing k(x1, x1),… , k(xN, xN) requires O(N2) memory.

2. Speed

 We might find an expression for k(xi, xj) that is faster to 

evaluate than first forming Á(x) and then computing Á(x)TÁ(x’).

 Example: comparing angles (x 2 [0, 2¼]):

13
B. LeibeSlide credit: Christoph Lampert
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Why use k(x,x’) instead of Á(x)TÁ(x’)?

3. Flexibility

 There are kernel functions k(xi, xj) for which we know that a 

feature transformation Á exists, but we don’t know what Á is.

 This allows us to work with far more general similarity functions.

 We can define kernels on strings, trees, graphs, …

4. Dimensionality

 Since we no longer need to explicitly compute Á(x), we can 

work with high-dimensional (even infinite-dim.) feature spaces.

• In the following, we take a closer look at the 

background behind kernels and at how to use them…

14
B. LeibeSlide adapted from Christoph Lampert
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Properties of Kernels

• Definition (Positive Definite Kernel Function)

 Let X be a non-empty set. A function k : X × X ! R is called 

positive definite kernel function, iff

 k is symmetric, i.e. k(x, x’) = k(x’, x) for all x, x’ 2 X, and

 for any set of points x1,… , xn 2 X, the matrix

is positive (semi-)definite, i.e. for all vectors x 2 Rn:

16
B. LeibeSlide credit: Christoph Lampert
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Hilbert Spaces

• Definition (Hilbert Space)

 A Hilbert Space H is a vector space H with an inner product 

h. , .iH, e.g. a mapping

which is

 symmetric: hv, v‘iH = hv‘, viH for all v, v‘ 2 H,

 positive definite: hv, viH ¸ 0 for all v 2 H,

where hv, viH = 0 only for v = 0 2 H.

 bilinear: hav, v‘iH = ahv, v‘iH for v 2 H, a 2 R

hv + v‘, v‘‘iH = hv, v‘‘iH + hv‘, v‘‘iH

• We can treat a Hilbert space like some Rn, if we only use 

concepts like vectors, angles, distances. 

• Note: dimH = 1 is possible!
17
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h:; :iH : H £H !R

Slide credit: Christoph Lampert
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Properties of Kernels

• Theorem

 Let k: X × X ! R be a positive definite kernel function. Then 

there exists a Hilbert Space H and a mapping ' : X ! H such 

that

 where h. , .iH is the inner product in H.

• Translation

 Take any set X and any function k : X × X ! R.

 If k is a positive definite kernel, then we can use k to learn a 

(soft) maximum-margin classifier for the elements in X!

• Note

 X can be any set, e.g. X = "all videos on YouTube" or X = "all 

permutations of {1, . . . , k}", or X = "the internet".
18

Slide credit: Christoph Lampert
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Example: Bag of Visual Words Representation

• General framework in visual recognition

 Create a codebook (vocabulary) of prototypical image features

 Represent images as histograms over codebook activations

 Compare two images by any histogram kernel, e.g. Â2 kernel

19
B. LeibeSlide adapted from Christoph Lampert



4

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
6

The “Kernel Trick”

Any algorithm that uses data only in the form 

of inner products can be kernelized.

• How to kernelize an algorithm

 Write the algorithm only in terms of inner products.

 Replace all inner products by kernel function evaluations.

 The resulting algorithm will do the same as the linear 
version, but in the (hidden) feature space H.

 Caveat: working in H is not a guarantee for better performance. 

A good choice of k and model selection are important!

20
B. LeibeSlide credit: Christoph Lampert
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Outlook

• Kernels are a widely used concept in Machine Learning

 They are the basis for Support Vector Machines from ML1.

 We will see several other kernelized algorithms in this lecture…

• Examples

 Gaussian Processes

 Support Vector Regression

 Kernel PCA

 Kernel k-Means

 …

• Let’s first examine the role of kernels in probabilistic 

discriminative models.

 This will lead us to Gaussian Processes.
21
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
25
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Gaussian Processes

• So far…

 Considered linear regression models of the form

 where w is a vector of parameters

Á(x) is a vector of fixed non-linear basis functions.

 We showed that a prior distribution over w induced a prior 

distribution over functions y(x,w).

 Given a training set, we evaluated the posterior distribution 

over w  corresponding posterior over regression functions.

 This implies a predictive distribution p(t|x) for new inputs x.

• Gaussian process viewpoint

 Dispense with the parametric model and instead define a prior 

probability distribution over functions directly.

26
B. Leibe
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Gaussian Process

• Gaussian distribution

 Probability distribution over scalars / vectors.

• Gaussian process (generalization of Gaussian distrib.)

 Describes properties of functions.

 Function: Think of a function as a long vector where each entry 

specifies the function value f(xi) at a particular point xi.

 Issue: How to deal with infinite number of points?

– If you ask only for properties of the function at a finite number of 

points… 

– Then inference in Gaussian Process gives you the same answer if 

you ignore the infinitely many other points.

• Definition

 A Gaussian process (GP) is a collection of random variables any 

finite number of which has a joint Gaussian distribution.
27

B. LeibeSlide credit: Bernt Schiele

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
6

Gaussian Process

• Example prior over functions p(f)

 Represents our prior belief about 

functions before seeing any data.

 Although specific functions don’t have 

mean of zero, the mean of f(x) values 

for any fixed x is zero (here).

 Favors smooth functions

– I.e. functions cannot vary too rapidly

– Smoothness is induced by the covariance function of the 

Gaussian Process.

 Learning in Gaussian processes

– Is mainly defined by finding suitable properties of the covariance 

function.

28
B. LeibeSlide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006
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Linear Regression Revisited

• Let’s return to the linear regression example and re-

derive the predictive distribution by working in terms of 
distributions over functions y(x,w)…

• Linear Regression Model

 Consider a prior distribution over w given by

 For any given value of w, the definition induces a particular 

function of x.

 The probability distribution over w therefore induces a 

probability distribution over functions y(x).

29
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Linear Regression Revisited

• Linear Regression (cont’d)

 We want to evaluate this function at specific values of x, 

e.g. at the training data points x1,…,xN.

 We are therefore interested in the joint distribution of function 

values y(x1),…,y(xN), which we denote by the vector y.

 We know that y is a linear combination of Gaussian distributed 

variables and is therefore itself Gaussian.

 Only need to find its mean and covariance.

 with the kernel matrix K = {k(xn,xm)}nm. 

30
B. Leibe

E[y] = ©E[w] = 0

cov[y] = E[yyT ] = ©E[wwT ]©T =
1

®
©©T =K
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Gaussian Process

• This model is a particular example of a Gaussian 

Process.

 Linear regression with a zero-mean, isotropic Gaussian prior on 

w.

• General definition

 A Gaussian Process is defined as a probability distribution over 

functions y(x) such that the set of values of y(x) evaluated at an 

arbitrary set of points x1,…,xN have a Gaussian distribution. 

 A key point about GPs is that the joint distribution over N

variables y1,…,yN is completely specified by the second-order 

statistics, namely mean and covariance.

31
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Gaussian Process

• A Gaussian process is completely defined by

 Mean function m(x) and

 Covariance function k(x,x’)

 We write the Gaussian process (GP)

32
B. Leibe

m(x) = E[f(x)]

k(x;x0) = E[(f(x)¡m(x)(f(x0)¡m(x0))]

f(x) » GP(m(x); k(x;x0))

Slide adapted from Bernt Schiele
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Gaussian Process

• Property

 Defined as a collection of random variables, which implies 

consistency.

 Consistency means

– If the GP specifies e.g.     (y1,y2) » N(¹,§)

– Then it must also specify        y1 » N(¹1,§11)

 I.e. examination of a larger set of variables does not change the 

distribution of a smaller set.

33
B. Leibe

§=

·
§11 §12

§21 §22

¸

Slide credit: Bernt Schiele
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Gaussian Process: Example

• Example:

 Bayesian linear regression model:

 With Gaussian prior:

 Mean:

 Covariance:

34
B. Leibe

f(x) = Á(x)Tw

w »N(0;§p)

E[f(x)] = Á(x)TE[w] = 0

E[f(x)f(x0)] = Á(x)TE[wwT ]Á(x0)

= Á(x)T§pÁ(x
0)

Slide credit: Bernt Schiele

= ~Á(x)T ~Á(x0) where
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Gaussian Process: Squared Exponential

• Typical covariance function

 Squared exponential (SE)

– Covariance function specifies the covariance between pairs of 

random variables

• Remarks

 Covariance between the outputs is written as a function 

between the inputs.

 The squared exponential covariance function corresponds to a 

Bayesian linear regression model with an infinite number of 

basis functions.

 For any positive definite covariance function k(.,.), there exists 

a (possibly infinite) expansion in terms of basis functions.

35
B. LeibeSlide credit: Bernt Schiele
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Gaussian Process: Prior over Functions

• Distribution over functions:

 Specification of covariance function implies distribution over 

functions.

 I.e. we can draw samples from the distribution of functions 

evaluated at a (finite) number of points.

 Procedure

– We choose a number of input points

– We write the corresponding covariance

matrix (e.g. using SE) element-wise:

– Then we generate a random Gaussian

vector with this covariance matrix:

36
B. Leibe

X?

K(X?;X?)

f? »N(0;K(X?;X?))

Example of 3 functions 

sampled
Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
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Prediction with Noise-free Observations

• Assume our observations are noise-free:

• Joint distribution of the training outputs f and test 

outputs f* according to the prior:

 K(X, X*) contains covariances for all pairs of training and test 

points.

• To get the posterior (after including the observations)

 We need to restrict the above prior to contain only those 

functions which agree with the observed values.

 Think of generating functions from the prior and rejecting those 

that disagree with the observations (obviously prohibitive).
38

B. LeibeSlide credit: Bernt Schiele
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Prediction with Noise-free Observations

• Calculation of posterior: simple in GP framework

 Corresponds to conditioning the joint Gaussian prior distribution 

on the observations:

 with:

 This uses the general property of Gaussians that

39
B. LeibeSlide credit: Bernt Schiele

¹f? = E[f?jX;X?; t]

¹=

·
¹a

¹b

¸
; §=

·
§aa §ab

§ba §bb

¸
)

¹ajb = ¹a +§ab§
¡1
bb (xb ¡¹b)

§ajb = §aa ¡§ab§
¡1
bb §ba
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Prediction with Noise-free Observations

• Example:

40
B. LeibeSlide credit: Bernt Schiele

Prior Posterior using 5

noise-free observations

Image source: Rasmussen & Williams, 2006
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Prediction with Noisy Observations

• Typically, we assume noise in the observations

• The prior on the noisy observations becomes

 Written in compact form:

• Joint distribution of the observed values and the test 

locations under the prior is then:

42
B. LeibeSlide credit: Bernt Schiele

² »N(0; ¾2n)
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Prediction with Noisy Observations

• Calculation of posterior:

 Corresponds to conditioning the joint Gaussian prior distribution

on the observations:

 with:

 This is the key result that defines Gaussian process regression!

– The predictive distribution is a Gaussian whose mean and variance 

depend on the test points X* and on the kernel k(x,x’), evaluated 

on the training data X.

43
B. LeibeSlide credit: Bernt Schiele

¹f? = E[f?jX;X?; t]
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Gaussian Process Regression

• Example

44
B. LeibeSlide credit: Bernt Schiele
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Gaussian Process Regression

45
B. LeibeSlide credit: Bernt Schiele
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Discussion

• Key result:                                               with

• Observations

 The mean can be written in linear form

– This form is commonly encountered in the kernel literature (SVM)

 The variance is the difference between two terms

46
B. Leibe

Prior variance Explanation of data X

Slide adapted from Carl Rasmussen

®
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Computational Complexity

• Computational complexity

 Central operation in using GPs involves inverting a matrix of size 

N£N (the kernel matrix K(X,X)):

 Effort in O(N3) for N data points!

 Compare this with the basis function model (Lecture 3)

 Effort in O(M3) for M basis functions.

47
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Computational Complexity

• Complexity of GP model

 Training effort: O(N3) through matrix inversion

 Test effort: O(N2) through vector-matrix multiplication

• Complexity of basis function model

 Training effort: O(M3)

 Test effort: O(M2)

• Discussion

 If the number of basis functions M is smaller than the number of 

data points N, then the basis function model is more efficient.

 However, advantage of GP viewpoint is that we can consider 

covariance functions that can only be expressed by an infinite 

number of basis functions.

 Still, exact GP methods become infeasible for large training sets.
48
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Influence of Hyperparameters

• Most covariance functions have some free parameters.

 Example:

 Parameters:

– Signal variance:

– Range of neighbor influence (called “length scale”): l

– Observation noise: 

50
B. Leibe

¾2
f

Slide credit: Bernt Schiele
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Influence of Hyperparameters

• Examples for different settings of the length scale

51
B. LeibeSlide credit: Bernt Schiele

= (3:0;1:16;0:89)

(¾ parameters set by optimizing

the marginal likelihood)

Image source: Rasmussen & Williams, 2006

= (1;1;0:1)= (0:3;1:08;0:00005)
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Application: Non-Linear Dimensionality Reduction

53
B. LeibeSlide credit: Andreas Geiger
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Gaussian Process Latent Variable Model

• At each time step t, we express our observations y as a 

combination of basis functions Ã of latent variables x.

• This is modeled as a Gaussian process…

54
B. Leibe

yt =
X

j

bjÃj(xt) + ±t

Slide credit: Andreas Geiger
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Example: Style-based Inverse Kinematics

55
B. LeibeSlide credit: Andreas Geiger

Learned GPLVMs using a walk, a jump shot and a baseball pitch
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Application: Modeling Body Dynamics

• Task: estimate full body pose in m video frames.

 High-dimensional Y*

 Model body dynamics using hierarchical Gaussian process latent 

variable model (hGPLVM) [Lawrence & Moore, ICML 2007].

56
B. Leibe [Andriluka, Roth, Schiele, CVPR’08]

Time (frame #)

Latent space

Configuration

Slide credit: Bernt Schiele

T= [ti 2 R]

Z= [zi 2 Rq]

Y = [yi 2 RD]

p(ZjT; µ̂) =

qY

i=1

N (Z:;ij0;KT)

p(YjZ; µ) =

DY

i=1

N (Y:;ij0;Kz)

Training
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Articulated Motion in Latent Space (different work)

• Gaussian Process regression from latent space to

 Pose [      = p(Pose|z) to recover original pose from latent space]

 Silhouette [       = p(Silhouette|z) to do inference on silhouettes]

57
B. Leibe [Gammeter, Ess, Leibe, Schindler, Van Gool, ECCV’08]

Walking cycles have one 

main (periodic) DOF 

Additional DOF encodes 

„walking style“
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Results

58
B. Leibe

454 frames  (~35 sec)

23 Pedestrians

20 detected by multi-body tracker

[Gammeter, Ess, Leibe, Schindler, Van Gool, ECCV’08]
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References and Further Reading

• Kernels and Gaussian Processes are (shortly) described 

in Chapters 6.1 and 6.4 of Bishop’s book.

• A better introduction can be found in Chapters 1 and 2 

of the book by Rasmussen & Williams (also available 

online: http://www.gaussianprocess.org/gpml/)

B. Leibe
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