

Advanced Machine Learning Lecture 3

Linear Regression II

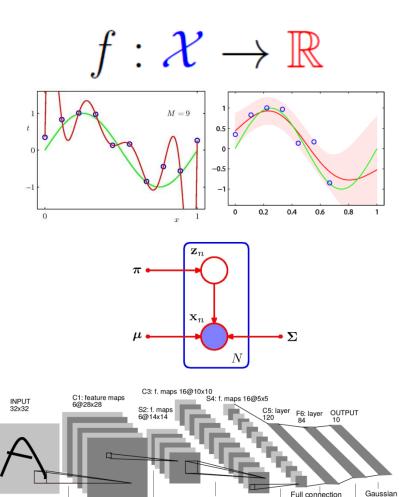
30.10.2016

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes
- Learning with Latent Variables
 - > EM and Generalizations
 - Approximate Inference
- Deep Learning
 - Neural Networks
 - CNNs, RNNs, RBMs, etc.



Convolutions

Subsampling

Convolutions

Subsampling

Full connection

Topics of This Lecture

• Recap: Probabilistic View on Regression

Properties of Linear Regression

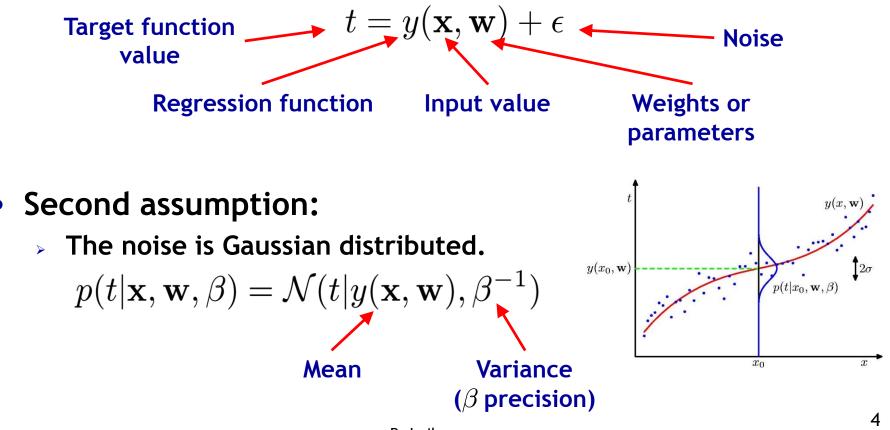
- Loss functions for regression
- Basis functions
- Multiple Outputs
- Sequential Estimation

Regularization revisited

- Regularized Least-squares
- The Lasso
- Discussion

Recap: Probabilistic Regression

- First assumption:
 - > Our target function values t are generated by adding noise to the ideal function estimate:



Recap: Probabilistic Regression

- Given
 - Training data points:
 - Associated function values:

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$$
$$\mathbf{t} = [t_1, \dots, t_n]^T$$

• Conditional likelihood (assuming i.i.d. data) $p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | y(\mathbf{x}_n, \mathbf{w}), \beta^{-1}) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^T \phi(\mathbf{x}_n), \beta^{-1})$ $\Rightarrow \text{Maximize w.r.t. } \mathbf{w}, \beta \qquad \text{Generalized linear}$

regression function

Slide adapted from Bernt Schiele

Recap: Maximum Likelihood Regression

$$\nabla_{\mathbf{w}} \log p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \beta) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$$

Setting the gradient to zero:

 $0 = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$ $\Leftrightarrow \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) = \left[\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T\right] \mathbf{w}$ $\Leftrightarrow \Phi \mathbf{t} = \Phi \Phi^T \mathbf{w} \qquad \Phi = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]$ $\Leftrightarrow \mathbf{w}_{ML} = (\Phi \Phi^T)^{-1} \Phi \mathbf{t} \qquad \text{Same as in least-squares regression!}$

⇒ Least-squares regression is equivalent to Maximum Likelihood under the assumption of Gaussian noise.

Advanced Machine Learning Winter'16

B. Leibe

Recap: Role of the Precision Parameter

• Also use ML to determine the precision parameter β :

$$\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi)$$

- Gradient w.r.t. β : $\nabla_{\beta} \log p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \beta) = -\frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{N}{2} \frac{1}{\beta}$ $\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2$
 - ⇒ The inverse of the noise precision is given by the residual variance of the target values around the regression function.

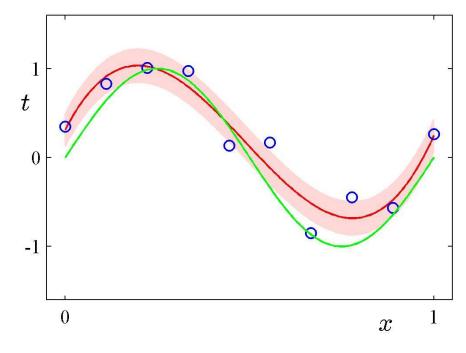
Recap: Predictive Distribution

• Having determined the parameters ${\bf w}$ and ${\boldsymbol \beta}$, we can now make predictions for new values of ${\bf x}$.

$$p(t|\mathbf{X}, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1})$$

This means

Rather than giving a point estimate, we can now also give an estimate of the estimation uncertainty.



RWTHAACHEN UNIVERSITY Recap: Maximum-A-Posteriori Estimation

- Introduce a prior distribution over the coefficients w.
 - > For simplicity, assume a zero-mean Gaussian distribution

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$$

- > New hyperparameter α controls the distribution of model parameters.
- Express the posterior distribution over w.
 - > Using Bayes' theorem:

 $p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) \propto p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$

- \succ We can now determine ${\bf w}$ by maximizing the posterior.
- This technique is called maximum-a-posteriori (MAP).

Recap: MAP Solution

• Minimize the negative logarithm

$$-\log p(\mathbf{w}|\mathbf{X}, \mathbf{t}, eta, lpha) \propto -\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, eta) - \log p(\mathbf{w}|lpha)$$

$$-\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 + \text{const}$$
$$-\log p(\mathbf{w}|\alpha) = \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + \text{const}$$

• The MAP solution is therefore

$$\arg\min_{\mathbf{w}} \frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

 $\Rightarrow \text{Maximizing the posterior distribution is equivalent to} \\ minimizing the regularized sum-of-squares error (with <math>\lambda = \frac{\alpha}{2}$).

MAP Solution (2)

$$\nabla_{\mathbf{w}} \log p(\mathbf{w} | \mathbf{X}, \mathbf{t}, \beta, \alpha) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) + \alpha \mathbf{w}$$

Setting the gradient to zero:
$$0 = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) + \alpha \mathbf{w}$$
$$\Leftrightarrow \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) = \left[\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \right] \mathbf{w} + \frac{\alpha}{\beta} \mathbf{w}$$
$$\Leftrightarrow \Phi \mathbf{t} = \left(\Phi \Phi^T + \frac{\alpha}{\beta} \mathbf{I} \right) \mathbf{w} \qquad \Phi = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]$$
$$\Leftrightarrow \mathbf{w}_{MAP} = \left(\Phi \Phi^T + \frac{\alpha}{\beta} \mathbf{I} \right)^{-1} \Phi \mathbf{t}$$
Effect of regularization:
Keeps the inverse well-conditioned

RWTHAACHEN UNIVERSITY

Bayesian Curve Fitting

- Given
 - \succ Training data points: $\mathbf{X}~=~[\mathbf{x}_1,\ldots,\mathbf{x}_n]\in\mathbb{R}^{d imes n}$
 - Associated function values:
- $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{a imes}$ $\mathbf{t} = [t_1, \dots, t_n]^T$
- > Our goal is to predict the value of t for a new point \mathbf{x} .
- Evaluate the predictive distribution

$$p(t|x, \mathbf{X}, \mathbf{t}) = \int \underline{p(t|x, \mathbf{w})} p(\mathbf{w}|\mathbf{X}, \mathbf{t}) d\mathbf{w}$$

What we just computed for MAP

> Noise distribition - again assume a Gaussian here

$$p(t|x, \mathbf{w}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

- Assume that parameters lpha and eta are fixed and known for now.

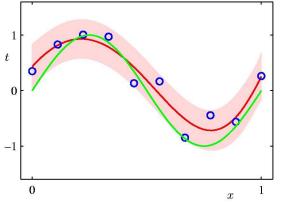
Bayesian Curve Fitting

• Under those assumptions, the posterior distribution is a Gaussian and can be evaluated analytically:

$$p(t|x, \mathbf{X}, \mathbf{t}) = \mathcal{N}(t|m(x), s^2(x))$$

where the mean and variance are given by

$$m(x) = \beta \phi(x)^T \mathbf{S} \sum_{n=1}^N \phi(\mathbf{x}_n) t_n$$
$$s(x)^2 = \beta^{-1} + \phi(x)^T \mathbf{S} \phi(x)$$



> and S is the regularized covariance matrix

$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T$$

Analyzing the result

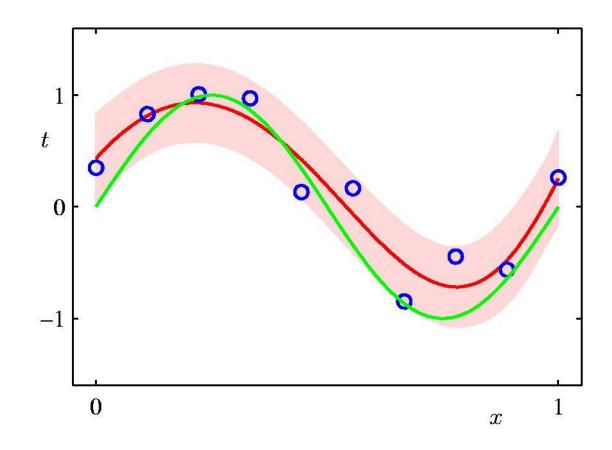
Analyzing the variance of the predictive distribution

 $s(x)^2 = \beta^{-1} + \phi(x)^T \mathbf{S}\phi(x)$

Uncertainty in the predicted value due to noise on the target variables (expressed already in ML)

Uncertainty in the parameters w (consequence of Bayesian treatment)

Bayesian Predictive Distribution



Important difference to previous example

Uncertainty may vary with test point x!

Discussion

- We now have a better understanding of regression
 - Least-squares regression: Assumption of Gaussian noise
 - \Rightarrow We can now also plug in different noise models and explore how they affect the error function.
 - \succ L2 regularization as a Gaussian prior on parameters w.
 - \Rightarrow We can now also use different regularizers and explore what they mean.
 - \Rightarrow This lecture...
 - > General formulation with basis functions $\phi(\mathbf{x})$.
 - \Rightarrow We can now also use different basis functions.

Discussion

- General regression formulation
 - In principle, we can perform regression in arbitrary spaces and with many different types of basis functions
 - However, there is a caveat... Can you see what it is?
 - Example: Polynomial curve fitting, M = 3

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

- \Rightarrow Number of coefficients grows with $D^{M}!$
- \Rightarrow The approach becomes quickly unpractical for high dimensions.
- > This is known as the curse of dimensionality.
- > We will encounter some ways to deal with this later...

Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression

- Loss functions for regression
- Basis functions
- Multiple Outputs
- Sequential Estimation

Regularization revisited

- > Regularized Least-squares
- > The Lasso
- Discussion

- Given $p(y, \mathbf{x}, \mathbf{w}, \beta)$, how do we actually estimate a function value y_t for a new point \mathbf{x}_t ?
- We need a loss function, just as in the classification case

$$L: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}^+$$
$$(t_n, y(\mathbf{x}_n)) \longrightarrow L(t_n, y(\mathbf{x}_n))$$

• Optimal prediction: Minimize the expected loss

$$\mathbb{E}[L] = \iint L(t, y(\mathbf{x})) p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

$$\mathbb{E}[L] = \iint L(t, y(\mathbf{x})) p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

- Simplest case
 - Squared loss:

$$L(t, y(\mathbf{x})) = \{y(\mathbf{x}) - t\}^2$$

Expected loss

$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \,\mathrm{d}\mathbf{x} \,\mathrm{d}t$$

$$\frac{\partial \mathbb{E}[L]}{\partial y(\mathbf{x})} = 2 \int \{y(\mathbf{x}) - t\} p(\mathbf{x}, t) dt \stackrel{!}{=} 0$$

$$\Leftrightarrow \int t p(\mathbf{x}, t) dt = y(\mathbf{x}) \int p(\mathbf{x}, t) dt$$

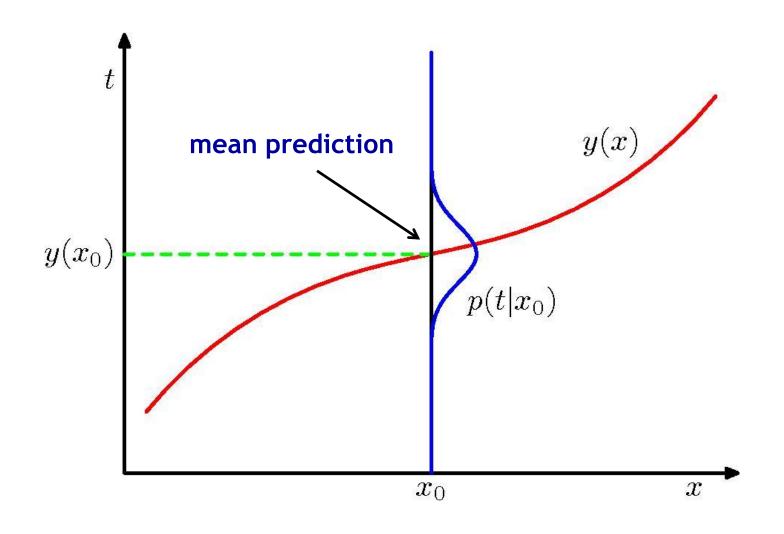
$$\int tp(\mathbf{x}, t) dt = y(\mathbf{x}) \int p(\mathbf{x}, t) dt$$
$$\Leftrightarrow y(\mathbf{x}) = \int t \frac{p(\mathbf{x}, t)}{p(\mathbf{x})} dt = \int tp(t|\mathbf{x}) dt$$
$$\Leftrightarrow y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$$

- Important result
 - > Under Squared loss, the optimal regression function is the mean $\mathbb{E}[t | \mathbf{x}]$ of the posterior $p(t | \mathbf{x})$.
 - > Also called mean prediction.
 - For our generalized linear regression function and square loss, we obtain as result

$$y(\mathbf{x}) = \int t \mathcal{N}(t | \mathbf{w}^T \phi(\mathbf{x}), \beta^{-1}) dt = \mathbf{w}^T \phi(\mathbf{x})$$

Slide adapted from Stefan Roth

Visualization of Mean Prediction



Slide adapted from Stefan Roth

23 Image source: C.M. Bishop, 2006

• Different derivation: Expand the square term as follows

$$\begin{aligned} &[y(\mathbf{x}) - t]^2 = \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] + \mathbb{E}[t|\mathbf{x}] - t\}^2 \\ &= \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 + \{\mathbb{E}[t|\mathbf{x}] - t\}^2 \\ &+ 2\{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\} \end{aligned}$$

- Substituting into the loss function
 - > The cross-term vanishes, and we end up with $\mathbb{E}[L] = \int \left\{ y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] \right\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \int \operatorname{var}\left[t|\mathbf{x}\right] p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$

Optimal least-squares predictor given by the conditional mean

Intrinsic variability of target data ⇒ Irreducible minimum value of the loss function

Other Loss Functions

- The squared loss is not the only possible choice
 - > Poor choice when conditional distribution $p(t | \mathbf{x})$ is multimodal.
- Simple generalization: Minkowski loss

$$L(t, y(\mathbf{x})) = |y(\mathbf{x}) - t|^q$$

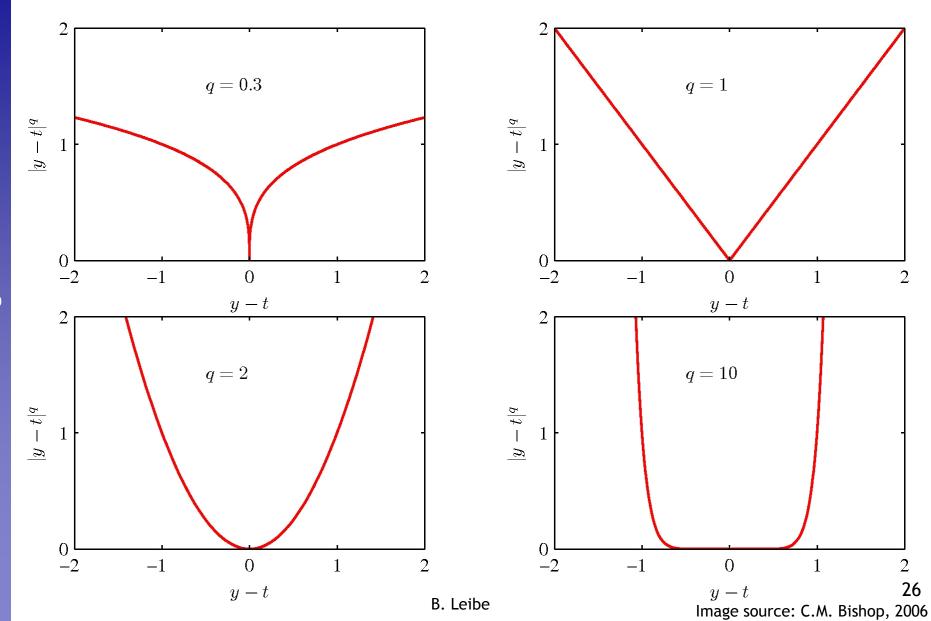
> Expectation

$$\mathbb{E}[L_q] = \iint |y(\mathbf{x}) - t|^q p(\mathbf{x}, t) \mathrm{d}\mathbf{x} \mathrm{d}t$$

- Minimum of $\mathbb{E}[L_q]$ is given by
 - > Conditional mean for q=2,
 - > Conditional median for q=1,
 - > Conditional mode for q = 0.

RWTHAACHEN UNIVERSITY

Minkowski Loss Functions



Topics of This Lecture

• Recap: Probabilistic View on Regression

Properties of Linear Regression

- Loss functions for regression
- Basis functions
- Multiple Outputs
- Sequential Estimation

Regularization revisited

- > Regularized Least-squares
- > The Lasso
- > Discussion

• Bias-Variance Decomposition

Linear Basis Function Models

• Generally, we consider models of the following form

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- > where $\phi_j(\mathbf{x})$ are known as *basis functions*.
- > Typically, $\phi_0(\mathbf{x})=1$, so that w_0 acts as a bias.
- > In the simplest case, we use linear basis functions: $\phi_d(\mathbf{x}) = x_d$.

• Let's take a look at some other possible basis functions...

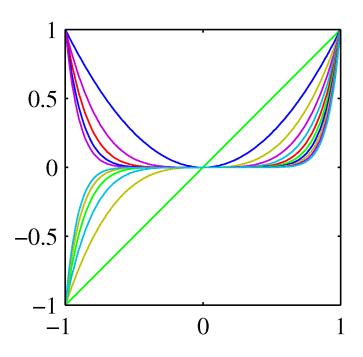
Linear Basis Function Models (2)

• Polynomial basis functions

$$\phi_j(x) = x^j$$

Properties

- Global
- \Rightarrow A small change in x affects all basis functions.

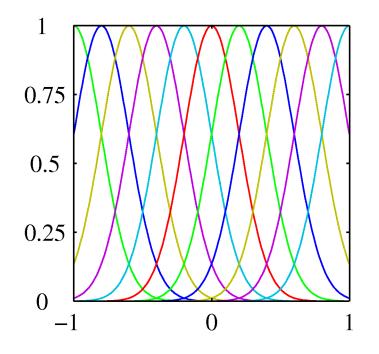


Linear Basis Function Models (3)

• Gaussian basis functions

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

- Properties
 - Local
 - \Rightarrow A small change in x affects only nearby basis functions.
 - > μ_j and s control location and scale (width).



Linear Basis Function Models (4)

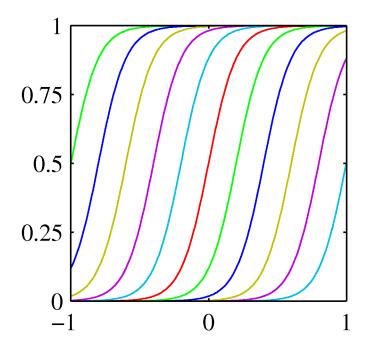
• Sigmoid basis functions

$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

- Properties
 - > Local
 - \Rightarrow A small change in x affects only nearby basis functions.
 - > μ_j and s control location and scale (slope).



Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression

- Loss functions for regression
- Basis functions
- Multiple Outputs
- Sequential Estimation

Regularization revisited

- > Regularized Least-squares
- > The Lasso
- > Discussion

• Bias-Variance Decomposition

Multiple Outputs

- Multiple Output Formulation
 - > So far only considered the case of a single target variable t.
 - > We may wish to predict K > 1 target variables in a vector \mathbf{t} .
 - > We can write this in matrix form

$$\mathbf{y}(\mathbf{x}, \mathbf{W}) = \mathbf{W}^T \phi(\mathbf{x})$$

where

$$\mathbf{y} = \begin{bmatrix} y_1, \dots, y_K \end{bmatrix}^T$$

$$\phi(\mathbf{x}) = \begin{bmatrix} 1, \phi_1(\mathbf{x}), \cdots, \phi_{M-1}(\mathbf{x}), \end{bmatrix}^T$$

$$\mathbf{W} = \begin{bmatrix} w_{0,1} & \cdots & w_{0,K} \\ \vdots & \ddots & \vdots \\ w_{M-1,1} & \cdots & w_{M-1,K} \end{bmatrix}^T$$

Multiple Outputs (2)

• Analogously to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I})$$

• Given observed inputs, $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$, and targets, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^T$, we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_n | \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1} \mathbf{I})$$
$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_n - \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\right\|^2$$

Multiple Outputs (3)

• Maximizing with respect to W, we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{T}.$$

• If we consider a single target variable, t_k , we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}_k = \mathbf{\Phi}^{\dagger} \mathbf{t}_k$$

where $t_k = [t_{1k}, \dots, t_{Nk}]^T$, which is identical with the single output case.

Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression

- Loss functions for regression
- Basis functions
- Multiple Outputs
- Sequential Estimation

Regularization revisited

- > Regularized Least-squares
- > The Lasso
- > Discussion

• Bias-Variance Decomposition

Sequential Learning

- Up to now, we have mainly considered batch methods
 - > All data was used at the same time
 - Instead, we can also consider data items one at a time (a.k.a. online learning)
- Stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

= $\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$

- This is known as the least-mean-squares (LMS) algorithm.
- Issue: how to choose the learning rate η ?
 - > We'll get to that in a later lecture...

Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression

- Loss functions for regression
- Basis functions
- Multiple Outputs
- Sequential Estimation

Regularization revisited

- Regularized Least-squares
- The Lasso
- Discussion

• Bias-Variance Decomposition

Regularization Revisited

Consider the error function

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$ Data term + Regularization term

• With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

which is minimized by

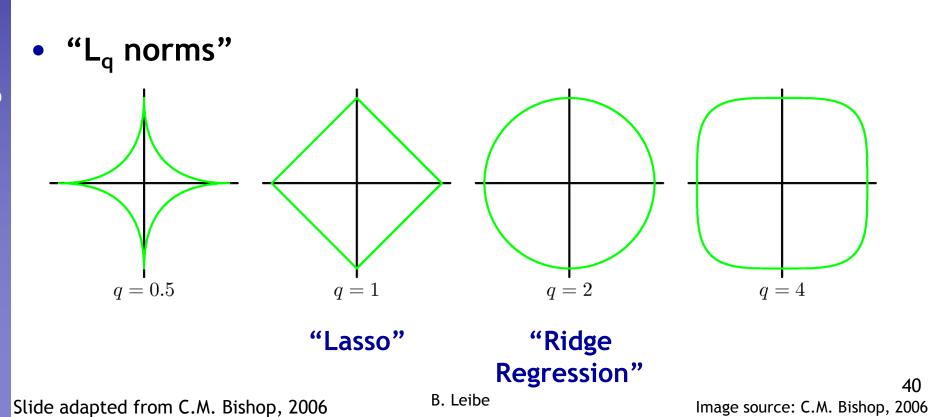
$$\mathbf{w} = \left(\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the regularization coefficient.

Regularized Least-Squares

Let's look at more general regularizers

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$



Recall: Lagrange Multipliers

Regularized Least-Squares

• We want to minimize

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

• This is equivalent to minimizing

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2$$

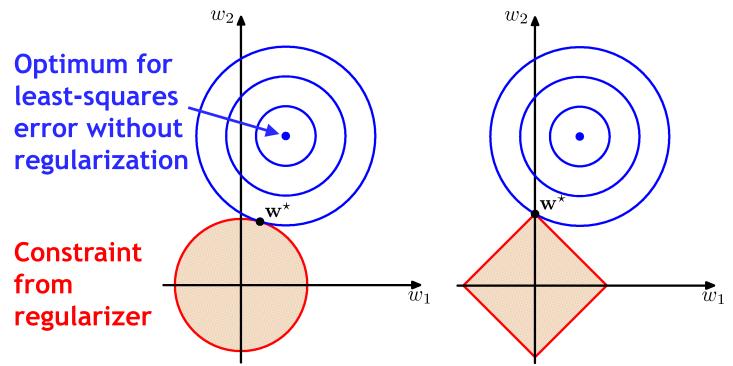
subject to the constraint

$$\sum_{j=1}^M |w_j|^q \le \eta$$

 \succ (for some suitably chosen η)

Regularized Least-Squares

- Effect: Sparsity for $q \leq 1$.
 - > Minimization tends to set many coefficients to zero



- Why is this good?
- Why don't we always do it, then? Any problems?

43 Image source: C.M. Bishop, 2006

 w_{2}

w

The Lasso

• Consider the following regressor

$$\mathbf{w}_{\text{Lasso}} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \lambda \sum_{j=1}^{M} |w_j|$$

> This formulation is known as the Lasso.

Properties

- L₁ regularization ⇒ The solution will be sparse (only few coefficients will be non-zero)
- The L₁ penalty makes the problem non-linear.
- \Rightarrow There is no closed-form solution.
- \Rightarrow Need to solve a quadratic programming problem.
- However, efficient algorithms are available with the same computational cost as for ridge regression.

44 Image source: C.M. Bishop, 2006

 w_1

Lasso as Bayes Estimation

• Interpretation as Bayes Estimation

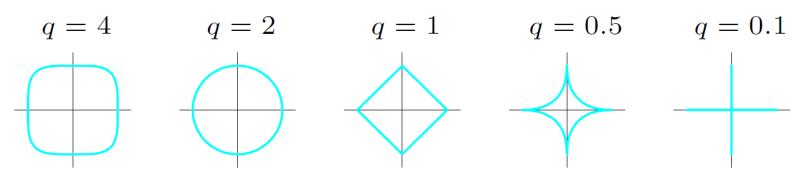
$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \lambda \sum_{j=1}^{M} |w_j|^q$$

- > We can think of $|w_j|^q$ as the log-prior density for w_j .
- Prior for Lasso (q = 1): Laplacian distribution

$$p(\mathbf{w}) = rac{1}{2 au} \exp\left\{-|\mathbf{w}|/ au
ight\}$$
 with $au = rac{1}{\lambda}$

Analysis

Equicontours of the prior distribution



- Analysis
 - > For $q \le 1$, the prior is not uniform in direction, but concentrates more mass on the coordinate directions.
 - The case q = 1 (lasso) is the smallest q such that the constraint region is convex.
 - \Rightarrow Non-convexity makes the optimization problem more difficult.
 - > Limit for q = 0: regularization term becomes $\sum_{j=1..M} 1 = M$.
 - \Rightarrow This is known as Best Subset Selection.

46

Discussion

Bayesian analysis

- Lasso, Ridge regression and Best Subset Selection are Bayes estimates with different priors.
- However, derived as maximizers of the posterior.
- > Should ideally use the posterior mean as the Bayes estimate!
- ⇒ Ridge regression solution is also the posterior mean, but Lasso and Best Subset Selection are not.
- We might also try using other values of q besides 0,1,2...
 - However, experience shows that this is not worth the effort.

 - > However, $|w_j|^q$ with q > 1 is differentiable at 0.
 - \Rightarrow Loses the ability of lasso for setting coefficients exactly to zero.

Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression

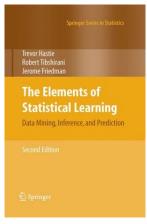
- Loss functions for regression
- Basis functions
- Multiple Outputs
- Sequential Estimation

Regularization revisited

- Regularized Least-squares
- > The Lasso
- > Discussion

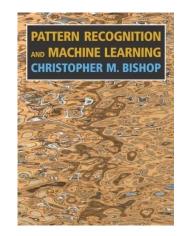
References and Further Reading

 More information on linear regression, including a discussion on regularization can be found in Chapters 1.5.5 and 3.1-3.2 of the Bishop book.



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman Elements of Statistical Learning 2nd edition, Springer, 2009



 Additional information on the Lasso, including efficient algorithms to solve it, can be found in Chapter 3.4 of the Hastie book.