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Recap: MRFs for Image Segmentation
¢ MRF formulation Q@ D
@ @ = Minimize the energy
Unary Elx.v)= 4 Tiy Y
potentials @"a (x,¥) %‘G(L w)
(i) &) () + Z wlas. 2;)
Pairwise potentials e
w(mivxj)

Pair-wise Terms
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Data (D) Unary likelihood

lide adapted from Phil Torr

MAP Solution
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Recap: How to Set the Potentials?

¢ Unary potentials
» E.g. color model, modeled with a Mixture of Gaussians

B(wi, 955 04) = log > _ 0 (s, k)p(kla:) N (yi; T, )
k

= Learn color distributions for each label
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Course Outline

¢ Image Processing Basics
¢ Segmentation
» Segmentation and Grouping
» Segmentation as Energy Minimization
¢ Recognition & Categorization
» Global Representations
» Sliding-Window Object Detection
» Image Classification
¢ Local Features & Matching
¢ 3D Reconstruction

¢ Motion and Tracking

Recap: Energy Formulation

¢ Energy function oz, v)
Blxy) = Y élwiy) +) vlwe)  Ffrh
FR ) i ,
Unary Pairwise
potentials potentials

¢ Unary potentials ¢
» Encode local information about the given pixel/patch

» How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

¢ Pairwise potentials v
» Encode neighborhood information

» How different is a pixel/patch’s label from that of its neighbor?
(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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RWTH ACHET
Recap: How to Set the Potentials?

¢ Pairwise potentials

» Potts Model
(i, w3 0y) = Oypd(; # 5)
- Simplest discontinuity preserving model.

- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

» Extension: “Contrast sensitive Potts model”

Ui, @y, 91 (¥)i0p) = —bugi;(y)d(a; # z5)
where

, 2 1 2vy 1
gigly) = e ?mmsil 8= o (ave (ly: — 1))

= Discourages label changes except in places where there is also a
large change in the observations.
8
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Recap: Graph-Cuts Energy Minimization

¢ Solve an equivalent graph cut problem

1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links)
by ¢(x; = s) and ¢(z; = t), respectively.

3. Weight connections between nodes (n-links)
by ¥(z;, z;).

4. Find the minimum cost cut that separates
source from sink.

= Solution is equivalent to minimum of the energy.

x
£
&

t
[

¢ s-t Mincut can be solved efficiently
» Dual to the well-known max flow problem

» Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)
» Globally optimal result for 2-class problems

RWTHAACHE

Aui-

Topics of This Lecture

¢ Object Recognition
» Appearance-based recognition
» Global representations
» Color histograms

¢ Recognition using histograms
» Histogram comparison measures
» Histogram backprojection
> Multidimensional histograms
» Extension: colored derivatives

B. Leibe
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Challenges

¢ Viewpoint changes -
» Translation
» Image-plane rotation

-l ®
» Scale changes 3D object .

» Out-of-plane rotation Q,

¢ |llumination
¢ Noise YNk
e Clutter

e Occlusion % 2D imag
] image

B. Leibe
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Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials
E(L) = > E,(L,) + D E(L,.L,)
* ttinks PN etinks L, e{s,t}

¢ s-t graph cuts can only globally minimize binary energies

that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

‘ E(L) can be minimized ‘ & [E(s.5)+EQGY <E(sD)+E(t,3)]
by s-t graph cuts

Submodularity (“convexity”)

« Submodularity is the discrete equivalent to convexity.
» Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

Computer Vision WS 15/16
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Object Recognition
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RWTH/ACHET
Appearance-Based Recognition
¢ Basic assumption .
» Objects can be represented e

by a set of images

(“appearances”). 3D object .

. For recognition, it is Q

sufficient to just compare \ v /
the 2D appearances. Q ./

» No 3D model is needed.
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= Fundamental paradigm shift in the 90’s

B. Leibe
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Global Representation

¢ Idea
» Represent each object (view) by a global descriptor.

B B

» For recognizing objects, just match the descriptors.
» Some modes of variation are built into the descriptor, the others
have to be incorporated in the training data.
- E.g., a descriptor can be made invariant to image-plane rotations.
- Other variations:

Viewpoint changes Illumination
— Translation Noise
— Scale changes Clutter

— Out-of-plane rotation  Occlusion

B. Leibe

Color Histograms

¢ Color statistics
» Here: RGB as an example
» Given: tristimulus R,G,B for each pixel
» Compute 3D histogram
- H(R,G,B) = #(pixels with color (R,G,B))

B. Leibe [Swain & Ballard, 1991
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Color Normalization

¢ Observation:
» Sincer+g+b=1, only 2 parameters are necessary
» E.g.onecanuserandg
> and obtainsb=1-r-g

G

R+G+B=1

R

B. Leibe

Color: Use for Recognition

¢ Color:
» Color stays constant under geometric transformations
» Local feature
- Color is defined for each pixel
- Robust to partial occlusion

¢ Idea
» Directly use object colors for recognition
» Better: use statistics of object colors

Computer Vision WS 15/16

B. Leibe
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Color Normalization

¢ One component of the 3D color space is intensity

» If a color vector is multiplied by a scalar, the intensity changes,
but not the color itself.

» This means colors can be normalized by the intensity.
- Intensity isgivenby | =R+ G + B:
» ,Chromatic representation*
R G

r=— 9=5——~ 5
R+G+B R+G+B

B B
T R+G+B
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Color Histograms

¢ Robust representation

)
=t
Tl
X
%)
=
=
=
@
>
]
=
=
=
S
o

. 20
B. Leibe [Swain & Ballard, 1991
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Color Histograms

e Use for recognition
» Works surprisingly well

» In the first paper (1991), 66 objects could be recognized almost
without errors

B. Leibe

21
ISwain & Ballard, 1991

Recognition Using Histograms

¢ Histogram comparison

Test image

Known objects

" 23
B. Leibe
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RWTH ACHET
What Is a Good Comparison Measure?

¢ How to define matching cost?

ide credit; Pete Barpum
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Topics of This Lecture

¢ Recognition using histograms
» Histogram comparison measures
» Histogram backprojection
» Multidimensional histograms
» Extension: colored derivatives
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Recognition Using Histograms

¢ With multiple training views

Test image \

B. Leibe
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RWTH ACHET
Comparison Measures: Euclidean Distance

¢ Definition
» Euclidean Distance (=L, norm)

dQ. V)= (g —v:)°

¢ Motivation
» Focuses on the differences between the histograms.
» Interpretation: distance in feature space.
~ Range: [0,0]
» All cells are weighted equally.
» Not very robust to outliers!

B. Leibe
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Comparison Measures: Mahalanobis Distance

¢ Definition
~ Mahalanobis distance(Quadratic Form)

_ Ty —1
dR,V) = Q- " @-V)
_ ZZ @ —v)lg; —v))
O
i “
¢ Motivation
» Interpretation:
- Weighted distance in feature space.
- Compensate for correlated data.
> Range: [0,]
» More robust to certain outliers.

Computer Vision WS 15/16

B. Leibe
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Comp. Measures: Bhattacharyya Distance

¢ Definition
» Bhattacharyya coefficient

BCQV) = \ay,

» Common distance measure:
dee (Q.V) =\1-BCQ.V)

¢ Motivation
» Statistical background
— BC measures the statistical separability between two distributions.
> Range: [0,]
> (Reason for dgc: triangle inequality)

Computer Vision WS 15/16

B. Leibe
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Comp. Measures: Histogram Intersection

¢ Definition
» Intersection

ne, V)= Z min(g;. v;)

¢ Motivation
» Measures the common part of both histograms
~ Range: [0,1]
» For unnormalized histograms, use the following formula
) N 1 /> . min(g;.v;) >, min(g,v;)
Q. V) == (= Ly i
2 2% 2 v
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Comparison Measures: Chi-Square

¢ Definition
» Chi-square

20 1 N (g )
QT )—Z—(HH

¢ Motivation

» Statistical background:
- Test if two distributions are different
- Possible to compute a significance score

» Range: [0,]

» Cells are not weighted equally!

» More robust to outliers than Euclidean distance.
- If the histograms contain enough observations...

B. Leibe
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Comparison Measures: Kullback-Leibler

« Definition
» KL-divergence

KL@QV)=3q log

¢ Motivation
» Information-theoretic background:
- Measures the expected difference (#bits) required to code samples
from distribution Q when using a code based on Q vs. based on V.
- Also called: information gain, relative entropy
» Not symmetric!
» Symmetric version: Jeffreys divergence

JD(Q,V)=KL(Q,V)+KL(V,Q)

B. Leibe
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Comp. Measures: Earth Movers Distance
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¢ Motivation: Moving Earth

ide adapted from Pete Barnum B. Leibe
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Comp. Measures: Earth Movers Distance
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Comp. Measures: Earth Movers Distance

.
- Il
1

(distance moved) * (amount moved)

¢ Motivation: Moving Earth ¢ Motivation: Moving Earth
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ide adapted from Pete Barnum B. Leibe

lide adapted from Pete Barnum B. Leibe
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Comp. Measures: Earth Movers Distance

TWTHACHE
Comp. Measures: Earth Movers Distance

¢ Motivation: Moving Earth
» Linear Programming Problem

||| ] |||

H_/

¢ Motivation: Moving Earth
» Linear Programming Problem

||| ] |||

‘\—10 3 i n

= m clusters 5 m clusters

; (distance moved) * (amount moved) ;; Z Z (f;_j * (amount moved)

E E i=1j=1

:% V All movements % V All movements
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Slide adapted from Pete Barnum B. Leibe ide adapted from Pete Barnum B. Leibe
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Comp. Measures: Earth Movers Distance EMD Computation

¢ Motivation: Moving Earth
» Linear Programming Problem

||| ] |||
Q ||||||||| 1

S~ m n
m clusters Z Z d,’_j_)'}_-,‘ — WORK

i=l j=1
V II All movements
(-

n clusters

¢ Constraints

Q |||||||||

’
m clusters Q II I I

“Iull f”
= LIl
ntlvl;;:ers v I.

ide credit; Pete Barnum B. Leibe

1. Move “earth” only from Q to V
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= What is the minimum amount of work to convert Q into V?
ide adapted from Pete Barnum B. Leibe
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EMD Computation

¢ Constraints

2. Cannot send more “earth” than there is

e
olilh
Mk £

EMD Computation

¢ Constraints

4. As much “earth” as possible must be
moved.

» Either Q must be completely spent
or V must be completely filled.
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Slide credit; Pete Barnum B. Leibe
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Summary: Comparison Measures

e Vector space interpretation
» Euclidean distance
» Mahalanobis distance

¢ Statistical motivation
» Chi-square
» Bhattacharyya

¢ Information-theoretic motivation
» Kullback-Leibler divergence, Jeffreys divergence

¢ Histogram motivation
» Histogram intersection

¢ Ground distance
~ Earth Movers Distance (EMD)
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EMD Computation
¢ Constraints

3. V cannot receive more than it can hold

Q ||||||||
N

m clusters

@ ||||||,|| n

ol o
]| )
- Vv’ II

n clusters

40
lide credit: Pete Barnum B. Leibe
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Comp. Measures: Earth Movers Distance

m n

3% difi; =WORK

i=1j=1

¢ Motivation: Moving Earth
» Linear Programming Problem
» Distance measure

4,1,
DEMD (Q,V ) =

21
L

¢ Advantages
» Nearness measure without quantization
» Partial matching
» A true metric
¢ Disadvantage: expensive computation
» Efficient algorithms available for 1D
- Approximations for higher dimensions...

B. Leibe
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Comparison for Image Retrieval

L2 distance

Jeffrey divergence

x2 statistics

Earth Movers Distance]

44

ide credit; Pete Barnum B. Leibe
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Histogram Comparison Summary: Recognition Using Histograms

¢ Which measure is best?

» Depends on the application...

» Euclidean distance is often not robust enough.

~ Both Intersection and y? give good performance for histograms.
- Intersection is a bit more robust.
- x?is a bit more discriminative.

» KL/Jeffrey works sometimes very well, but is expensive.

» EMD is most powerful, but also quite expensive

e Simple algorithm
1. Build a set of histograms H={h;} for each known object
> More exactly, for each view of each object
2. Build a histogram h, for the test image.
3. Compare h, to each h;eH
> Using a suitable comparison measure
4. Select the object with the best matching score
> Or reject the test image if no object is similar enough.
» There exist many other measures not mentioned here

- e.g. statistical tests: Kolmogorov-Smirnov
Cramer/Von-Mises

“Nearest-Neighbor” strategy

Computer Vision WS 15/16
Computer Vision WS 15/16
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Topics of This Lecture Localization by Histogram Backprojection
¢ ,Where in the image are the colors we‘re looking for?“
» Idea: Normalized histogram represents probability distribution

pl|obj)

¢ Recognition using histograms
» Histogram comparison measures - ¥ 3,
» Histogram backprojection
> Multidimensional histograms
» Extension: colored derivatives

¢ Histogram backprojection
» For each pixel z, compute the likelihood that this pixel color
was caused by the object: p(z|obj).
» This value is projected back into the image (i.e. the image
values are replaced by the corresponding histogram values).

Computer Vision WS 15/16
Computer Vision WS 15/16

. 48
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Color-Based Skin Detection Discussion: Color Histograms

Used 18,696 images
to build a general
color model.

¢ Histogram represen-
tation

* Pros

Invariant to object translation & rotation

Slowly changing for out-of-plane rotation

No perfect segmentation necessary

Histograms change gradually when part of the object is occluded
Possible to recognize deformable objects

v

v

v

v

skin - E.g., a pullover
© o ©o
g S 5l « Cons
K g » Pixel colors change with the illumination
= 5 (,,color constancy problem*)
£ L2 =, 2 - Intensity
3 4 ] - Spectral composition (illumination color)
E- non-skin o é’. » Not all objects can be identified by their color distribution.
8 M. Jones and J. Rehg, Statistical Color Models with Application to Skin 8

Detection, 1JCV 2002. 9

B. Leibe



http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf
http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf

Topics of This Lecture Generalization of the Idea

¢ Histograms of derivatives

» Dx
¢ Recognition using histograms / Dx Yy

» Histogram comparison measures LK 7/ /

» Histogram backprojection aK: 7 » Dxx
g » Multidimensional histograms i g ﬁ
i » Extension: colored derivatives Vv 5 » Dxy B
s o = s
5 5 -
z 2 » Dyy
5 5]
H H

B. Leibe 3 B. Leibe 54

General Filter Response Histograms Multidimensional Representations
¢ Any local descriptor (e.g. filter, filter combination) can

e Combination of several descriptors
be used to build a histogram.

» Each descriptor is
applied to the whole image. D
X
¢ Examples:
» Gradient magnitude ;H(Lg =

» Corresponding pixel values
are combined into one D,
feature vector.

. o ) D u » Feature vectors are collected Lag,,
g » Gradient direction Dir = arctan — 2 in multidimensional histogram.
5 2 =
¢ 2
E . Laplacian Lap = Dy, + Dy, S i
£ 2
S = 7
& 5]
= 5
a =5
g 3
S 8
) 55 56
B. Leibe
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Multidimensional Histograms Multidimensional Representations

¢ Examples ¢ Useful simple combinations

» DDy Rotation-variant
— Descriptor changes when
image is rotated.
— Useful for recognizing
oriented structures
(e.g. vertical lines)

» Mag-Lap Rotation-invariant
— Descriptor does not change
when image is rotated.
— Can be used to recognize
rotated objects.
— Less discriminant than
rotation-variant descriptor.
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[Schiele & Crowley, 2000]|
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Special Case: Multiscale Representations

¢ Combination of several scales
» Descriptors are computed at
different scales.

Each scale captures different
information about the object.

v

Size of the support region
grows with increasing o.

v

Feature vectors capture both
local details and larger-scale
structures.

v

B. Leibe
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Example Application of a Filter Bank

8 response images: magnitude
of filtered outputs, per filter
Slide credit: Kristen Grauman B. Leibe
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Extension: Colored Derivatives

¢ Generalization: derivatives along
» Y axis — intensity differences
» Cy axis — red-green differences
» C, axis — blue-yellow differences

* Feature vector is rotated such that D, =0
» Rotation-invariant descriptor

64

B. Leibe [Hall & Crowley, 20001

Generalization: Filter Banks

0rier§\ations

¢ What filters to put in the bank?

» Typically we want a combination of scales and orientations,
different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Computer Vision WS 15/16

lide credit; Kristen Grauman B. Leibe

Extension: Colored Derivatives

¢ YC,C, color space

Jr gy

}, 394 39r R
Cy ) = - T G
Cy n gy 99 B

e

¢ Color-opponent space
» Inspired by models of the human visual system
» Y =intensity
» Cy=red-green
» C; = blue-yellow

Computer Vision WS 15/16
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B. Leibe [Hall & Crowlev, 20001

RWTH/ACHEN
Summary: Multidimensional Representations

* Pros
» Work very well for recognition.
» Usually, simple combinations are sufficient
(e.g. D,-Dy, Mag-Lap)
» But multiple scales are very important!
» Generalization: filter banks

e Cons
» High-dimensional histograms
» Global representation

= lots of storage space
= not robust to occlusion
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http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Application: Brand Identification in Video Application: Brand Identification in Video
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8. Leibe [Hall, Pellison, Riff, Crowley, 2004]) 8. Leibe Hall, Pellison, Riff, Crowley, 2004
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Application: Brand Identification in Video References and Further Reading
¢ Background information on histogram-based object
2% recognition can be found in the following paper
3% » B. Schiele, J. Crowley,
Recognition without Correspondence using Multidimensional
11% Receptive Field Histograms.
o International Journal of Computer Vision, Vol. 36(1), 2000.
0
2 e e 33% g
= WSowmORE 026 =l « Matlab filterbank code available at
2 fumee i 2 . http://www.robots.ox.ac.uk/-vag/research/texclass/filters.html
S S
g g
g false detection g
g g
8 8
B. Leibe Hall, Pellison, Riff, Crowlex, 20348 "
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