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Computer Vision – Lecture 7 

Segmentation as Energy Minimization 
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Announcements 

• Please don’t forget to register for the exam! 

 On the Campus system 

2 
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Course Outline 

• Image Processing Basics 
 

• Segmentation 

 Segmentation and Grouping 

 Segmentation as Energy Minimization 

• Recognition 

 Global Representations 

 Subspace representations 
 

• Local Features & Matching 
 

• Object Categorization 
 

• 3D Reconstruction 
 

• Motion and Tracking 

3 
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Recap: Image Segmentation 

• Goal: identify groups of pixels that go together 

4 
B. Leibe Slide credit: Steve Seitz, Kristen Grauman 
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Recap: K-Means Clustering 

• Basic idea: randomly initialize the k cluster centers, and 

iterate between the two steps we just saw. 
 

1. Randomly initialize the cluster centers, c1, ..., cK 

2. Given cluster centers, determine points in each cluster 

– For each point p, find the closest ci.  Put p into cluster i 

3. Given points in each cluster, solve for ci 

– Set ci to be the mean of points in cluster i 

4. If ci have changed, repeat Step 2 
 

 

 

• Properties 
 Will always converge to some solution 

 Can be a “local minimum” 

– Does not always find the global minimum of objective function: 

5 
B. Leibe Slide credit: Steve Seitz 
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Recap: Expectation Maximization (EM) 

 

 

 

 

 
 

• Goal 

 Find blob parameters µ that maximize the likelihood function: 

 

• Approach: 
1. E-step:  given current guess of blobs, compute ownership of each point 

2. M-step:  given ownership probabilities, update blobs to maximize  

              likelihood function 

3. Repeat until convergence 
6 

B. Leibe Slide credit: Steve Seitz 
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Recap: EM Algorithm 

• Expectation-Maximization (EM) Algorithm 

 E-Step: softly assign samples to mixture components 
 

 

 

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments 

7 
B. Leibe 

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂newj Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft number of samples labeled j 

Slide adapted from Bernt Schiele 
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MoG Color Models for Image Segmentation 

 

 

 

 

 

 

• User assisted image segmentation 

 User marks two regions for foreground and background. 

 Learn a MoG model for the color values in each region. 

 Use those models to classify all other pixels. 

 Simple segmentation procedure 

(building block for more complex applications) 

8 
B. Leibe 
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Recap: Mean-Shift Algorithm 

 

 

 

 

 

 

 

 

• Iterative Mode Search 
1. Initialize random seed, and window W 

2. Calculate center of gravity (the “mean”) of W: 

3. Shift the search window to the mean 

4. Repeat Step 2 until convergence 

 
9 

B. Leibe Slide credit: Steve Seitz 
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Recap: Mean-Shift Clustering 

• Cluster: all data points in the attraction basin of a mode 

• Attraction basin: the region for which all trajectories 

lead to the same mode 

10 
B. Leibe Slide by Y. Ukrainitz & B. Sarel 
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Recap: Mean-Shift Segmentation 

• Find features (color, gradients, texture, etc) 

• Initialize windows at individual pixel locations 

• Perform mean shift for each window until convergence 

• Merge windows that end up near the same “peak” or 

mode 

11 
B. Leibe Slide credit: Svetlana Lazebnik 
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Back to the Image Segmentation Problem… 

• Goal: identify groups of pixels that go together 
 

 

 

 

 

 
 

• Up to now, we have focused on ways to group pixels into 

image segments based on their appearance… 

 Segmentation as clustering. 

• We also want to enforce region constraints. 

 Spatial consistency 

 Smooth borders 
12 

B. Leibe 
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Topics of This Lecture 

• Segmentation as Energy Minimization 

 Markov Random Fields 

 Energy formulation 
 

• Graph cuts for image segmentation 

 Basic idea 

 s-t Mincut algorithm 

 Extension to non-binary case 
 

• Applications 

 Interactive segmentation 

13 
B. Leibe 
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Markov Random Fields 

• Allow rich probabilistic models for images 

• But built in a local, modular way 

 Learn local effects, get global effects out 

14 
B. Leibe Slide credit: William Freeman 

Observed evidence 

Hidden “true states” 

Neighborhood relations 
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MRF Nodes as Pixels 

15 
B. Leibe 

Reconstruction 

from MRF modeling 

pixel neighborhood  

statistics 

Degraded image Original image 

( , )i ix y

( , )i jx x
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Network Joint Probability 

16 
B. Leibe 

Scene 

Image 

Slide credit: William Freeman 

Image-scene 

compatibility  

function 

Scene-scene 

compatibility  

function 

Neighboring 

scene nodes 
Local 

observations 
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Energy Formulation 

• Joint probability 

 

 

• Maximizing the joint probability is the same as 

minimizing the negative log 

 

 

 
 

• This is similar to free-energy problems in statistical 

mechanics (spin glass theory). We therefore draw the 

analogy and call E an energy function. 

•  Á and Ã are called potentials. 
17 

B. Leibe 
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Energy Formulation 

• Energy function 

 

 

 
 
 

• Single-node potentials Á (“unary potentials”) 

 Encode local information about the given pixel/patch 

 How likely is a pixel/patch to belong to a certain class 

(e.g. foreground/background)? 
 

• Pairwise potentials Ã 

 Encode neighborhood information 

 How different is a pixel/patch’s label from that of its neighbor? 

(e.g. based on intensity/color/texture difference, edges) 
18 

B. Leibe 

Pairwise 

potentials 

Single-node 

potentials 

Á(xi; yi)

Ã(xi; xj)
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Energy Minimization 

• Goal: 

 Infer the optimal labeling of the MRF. 
 

• Many inference algorithms are available, e.g. 
 Gibbs sampling, simulated annealing 

 Iterated conditional modes (ICM) 

 Variational methods 

 Belief propagation 

 Graph cuts 

 

• Recently, Graph Cuts have become a popular tool 
 Only suitable for a certain class of energy functions 

 But the solution can be obtained very fast for typical vision 
problems (~1MPixel/sec). 

19 
B. Leibe 

Á(xi; yi)

Ã(xi; xj)
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Topics of This Lecture 

• Segmentation as Energy Minimization 

 Markov Random Fields 

 Energy formulation 
 

• Graph cuts for image segmentation 

 Basic idea 

 s-t Mincut algorithm 

 Extension to non-binary case 
 

• Applications 

 Interactive segmentation 

20 
B. Leibe 
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Graph Cuts for Optimal Boundary Detection 

• Idea: convert MRF into source-sink graph 

21 
B. Leibe 

n-links 

s 

t a cut hard  

constraint 

hard  

constraint 

Minimum cost cut can be 

computed in polynomial time 

(max-flow/min-cut algorithms) 
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[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 
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Simple Example of Energy 

22 
B. Leibe 

},{ tsx

Pairwise terms Unary terms 

(binary object segmentation) 

Slide credit: Yuri Boykov 
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Adding Regional Properties 

23 
B. Leibe 

pqw

n-links 

s 

t a cut 

NOTE: hard constrains are not required, in general. 

Regional bias example 

Suppose                are given  

“expected” intensities  

of object and background 

ts II   and  22 2/||||exp)(  s

ii IIs 

 22 2/||||exp)(  t

ii IIt 

[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 

)(si

)(ti
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Adding Regional Properties 

24 
B. Leibe 

pqw

n-links 

s 

t a cut 

 22 2/||||exp)(  s

ii IIs 

 22 2/||||exp)(  t

ii IIt 

EM-style optimization 

“expected” intensities of 

object and background 

 

can be re-estimated 

ts II   and

[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 

)(ti
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Adding Regional Properties 

• More generally, regional bias can be based on any 

intensity models of object and background 

 

25 
B. Leibe 

a cut 

given object and background intensity 

histograms  

s 

t 

I

[Boykov & Jolly, ICCV’01] Slide credit: Yuri Boykov 
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How to Set the Potentials? Some Examples 

• Color potentials 

 e.g., modeled with a Mixture of Gaussians 

 

 

 

• Edge potentials 

 E.g., a “contrast sensitive Potts model” 

 

 

where 

 

 
 

• Parameters µÁ, µÃ need to be learned, too! 

26 
B. Leibe [Shotton & Winn, ECCV’06] 
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Example: MRF for Image Segmentation 

• MRF structure 

27 
Pair-wise Terms MAP Solution Unary likelihood Data (D) 

Slide adapted from Phil Torr 

unary potentials 

pairwise potentials 
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Topics of This Lecture 

• Segmentation as Energy Minimization 

 Markov Random Fields 

 Energy formulation 
 

• Graph cuts for image segmentation 

 Basic idea 

 s-t Mincut algorithm 

 Extension to non-binary case 
 

• Applications 

 Interactive segmentation 

28 
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How Does it Work? The s-t-Mincut Problem 

 

29 
B. Leibe 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Graph (V, E, C) 
 

Vertices V = {v1, v2 ... vn} 
 

Edges E = {(v1, v2) ....} 
 

Costs C = {c(1, 2) ....} 

Slide credit: Pushmeet Kohli 
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The s-t-Mincut Problem 

30 
B. Leibe 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Slide credit: Pushmeet Kohli 

What is an st-cut? 

What is the cost of a st-cut? 

An st-cut (S,T) divides the nodes 

between source and sink. 

Sum of cost of all edges 

going from S to T 

5 + 2 + 9 = 16 
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The s-t-Mincut Problem 

31 
B. Leibe 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Slide credit: Pushmeet Kohli 

What is an st-cut? 

What is the cost of a st-cut? 

An st-cut (S,T) divides the nodes 

between source and sink. 

Sum of cost of all edges 

going from S to T 

st-cut with the 

minimum cost 

What is the st-mincut? 

2 + 1 + 4 = 7 
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How to Compute the s-t-Mincut? 

32 
B. Leibe 

Source 

Sink 

v1 v2 
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1 

Solve the dual maximum flow problem 

In every network, the maximum flow 

equals the cost of the st-mincut 

Min-cut/Max-flow Theorem 

Compute the maximum flow 

between Source and Sink 

Constraints 

 Edges: Flow < Capacity 

 Nodes: Flow in = Flow out 

Slide credit: Pushmeet Kohli 
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History of Maxflow Algorithms 

33 
B. Leibe 

Augmenting Path and Push-Relabel 

n: #nodes 
 

m: #edges 
 

U: maximum 

edge weight 

Algorithms 

assume non-

negative edge 

weights 

Slide credit: Andrew Goldberg 
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Maxflow Algorithms 

34 
B. Leibe 

Source 

Sink 

v1 v2 
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1 

Slide credit: Pushmeet Kohli 

Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 0 
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Maxflow Algorithms 

35 
B. Leibe 

Source 

Sink 

v1 v2 

9 

4 
2 

1 

Slide credit: Pushmeet Kohli 

Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 0 

2 

5 
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Maxflow Algorithms 

36 
B. Leibe 

Source 

Sink 

v1 v2 

9 

4 
2 

1 

Slide credit: Pushmeet Kohli 

Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 0 + 2 

5-2 

2-2 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 2 

0 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 2 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 2 

9 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 2 + 4 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 6 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 6 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 6 + 1 
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1-1 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 7 

0 

0 
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Maxflow Algorithms 
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Augmenting Path Based 

Algorithms 

1. Find path from source to sink 

with positive capacity 
 

2. Push maximum possible flow 

through this path 
 

3. Repeat until no path can be 

found 

Algorithms assume non-negative capacity 

Flow = 7 

0 
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Applications: Maxflow in Computer Vision 

• Specialized algorithms for vision  

problems 

 Grid graphs  

 Low connectivity (m ~ O(n)) 

 

• Dual search tree augmenting path algorithm 

 [Boykov and Kolmogorov PAMI 2004] 

 Finds approximate shortest augmenting 

paths efficiently. 

 High worst-case time complexity. 

 Empirically outperforms other  

algorithms on vision problems. 

 Efficient code available on the web 

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html 
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http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html
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When Can s-t Graph Cuts Be Applied? 

 

 

 

 

• s-t graph cuts can only globally minimize binary energies 

that are submodular.  

 

 
 

• Submodularity is the discrete equivalent to convexity. 

 Implies that every local energy minimum is a global minimum. 

 Solution will be globally optimal. 

47 
B. Leibe 





Npq

qp

p

pp LLELELE ),()()(

},{ tsLp t-links n-links 

E(L)  can be minimized 

by s-t  graph cuts 
),(),(),(),( stEtsEttEssE 

Submodularity    (“convexity”) 

[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004] 
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Topics of This Lecture 

• Segmentation as Energy Minimization 

 Markov Random Fields 

 Energy formulation 
 

• Graph cuts for image segmentation 

 Basic idea 

 s-t Mincut algorithm 

 Extension to non-binary case 
 

• Applications 

 Interactive segmentation 
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Dealing with Non-Binary Cases 

• Limitation to binary energies is often a nuisance. 

 E.g. binary segmentation only… 

• We would like to solve also multi-label problems. 

 The bad news: Problem is NP-hard with 3 or more labels! 
 

• There exist some approximation algorithms which 

extend graph cuts to the multi-label case: 

 -Expansion 

 -Swap 

• They are no longer guaranteed to return the globally 

optimal result. 

 But -Expansion has a guaranteed approximation quality  

(2-approx) and converges in a few iterations. 
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-Expansion Move 

• Basic idea: 

 Break multi-way cut computation into a sequence of  

binary s-t cuts. 
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other labels  

Slide credit: Yuri Boykov 
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-Expansion Algorithm 

1. Start with any initial solution 

2. For each label  “”  in any (e.g. random) order: 
 

1. Compute optimal -expansion move (s-t graph cuts). 

2. Decline the move if there is no energy decrease. 
 

3. Stop when no expansion move would decrease energy. 
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Example: Stereo Vision 
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Original pair of “stereo” images 

Depth map 

ground truth 

Slide credit: Yuri Boykov 

Depth map 
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-Expansion Moves 

• In each -expansion a given label “” grabs space from 

other labels 

 

58 
B. Leibe 

initial solution 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

-expansion 

For each move, we choose the expansion that gives the largest 

decrease in the energy:       binary optimization problem 

Slide credit: Yuri Boykov 
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Topics of This Lecture 

• Segmentation as Energy Minimization 

 Markov Random Fields 

 Energy formulation 
 

• Graph cuts for image segmentation 

 Basic idea 

 s-t Mincut algorithm 

 Extension to non-binary case 
 

• Applications 

 Interactive segmentation 
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GraphCut Applications: “GrabCut” 

• Interactive Image Segmentation [Boykov & Jolly, ICCV’01] 

 Rough region cues sufficient  

 Segmentation boundary can be extracted from edges 
 

• Procedure 
 User marks foreground and background regions with a brush. 

 This is used to create an initial segmentation 
which can then be corrected by additional brush strokes. 

 

 

User segmentation cues 

Additional  

segmentation 

cues 

Slide credit: Matthieu Bray 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 W

S
 1

5
/1

6
 

GrabCut: Data Model 

 

 

 

 

 

 

 

 

 
 

• Obtained from interactive user input 

 User marks foreground and background regions with a brush 

 Alternatively, user can specify a bounding box 
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Global optimum of 

the energy  

Background 

color 

Foreground 

color 

Slide credit: Carsten Rother 
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GrabCut: Coherence Model 

• An object is a coherent set of pixels: 
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How to choose  ?   

Slide credit: Carsten Rother 

Error (%) over training set: 

25 
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Iterated Graph Cuts 
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Energy after  

each iteration 

Result 

Foreground & 

Background 

Background G 

R 

Foreground 

Background G 

R 

1 2 3 4 

Color model 

(Mixture of Gaussians) 

Slide credit: Carsten Rother 
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GrabCut: Example Results 

 

 

 

 

 

 

 

 

 

 
 

• This is included in the newest version of MS Office! 
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Applications: Interactive 3D Segmentation 

65 
B. Leibe Slide credit: Yuri Boykov [Y. Boykov, V. Kolmogorov, ICCV’03] 
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Summary: Graph Cuts Segmentation 

• Pros 

 Powerful technique, based on probabilistic model (MRF). 

 Applicable for a wide range of problems. 

 Very efficient algorithms available for vision problems. 

 Becoming a de-facto standard for many segmentation tasks. 
 

• Cons/Issues 

 Graph cuts can only solve a limited class of models 

– Submodular energy functions 

– Can capture only part of the expressiveness of MRFs 

 Only approximate algorithms available for multi-label case 
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References and Further Reading 

• A gentle introduction to Graph Cuts can be found in the 

following paper: 
 Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and 

Applications. In Handbook of Mathematical Models in Computer Vision, 

edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.  

 

• Read how the interactive segmentation is realized in MS 

Office 2010 

 C. Rother, V. Kolmogorov, Y. Boykov, A. Blake, Interactive 

Foreground Extraction using Graph Cut, Microsoft Research Tech 

Report MSR-TR-2011-46, March 2011 

 

• Try the GraphCut implementation at 

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html 
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http://www.csd.uwo.ca/~yuri/Papers/chapter_04.pdf
http://www.csd.uwo.ca/~yuri/Papers/chapter_04.pdf
http://research.microsoft.com/pubs/147408/RotherEtAlMRFBook-GrabCut.pdf
http://research.microsoft.com/pubs/147408/RotherEtAlMRFBook-GrabCut.pdf
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html

