Computer Vision - Lecture 5
 Structure Extraction

10.11.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Topics of This Lecture

- Recap: Edge detection
- Image gradients
, Canny edge detector
- Fitting as template matching
, Distance transform
- Chamfer matching

Application: traffic sign detection

- Fitting as parametric search
. Line detection
- Hough transform
, Extension to circles
- Generalized Hough transform

RWIHAACHE
Recap: Derivatives and Edges...

Course Outline

- Image Processing Basics
. Image Formation
, Binary Image Processing
, Linear Filters
, Edge \& Structure Extraction
- Segmentation
- Local Features \& Matching
- Object Recognition and Categorization
- 3D Reconstruction
- Motion and Tracking
\qquad

Fitting

- Want to associate a model with observed features

For example, the model could be a line, a circle, or an arbitrary shape.
Slide credit: Kristen Grauman

Fitting as Template Matching

- We've already seen that correlation filtering can be used for template matching in an image.
曾
- Let's try this idea with "edge templates".
- Example: traffic sign detection in (grayvalue) video.

Edges vs. Boundaries

Edges are useful signals to indicate occluding boundaries, shape.

Here the raw edge output is not so bad..
Slide credit: Kristen Grauman boundaries, shape.

RWIHAACHE

Topics of This Lecture

- Recap: Edge detection

Image gradients
Canny edge detector

- Fitting as template matching
, Distance transform
- Chamfer matching
- Application: traffic sign detection
- Fitting as parametric search

Line detection
Hough transform
Extension to circles
Generalized Hough transform

RWDHMALE UNIVERSITY

Edge Templates

- Better: Chamfer Distance
- Average distance to nearest edge pixel

$$
D_{\text {Chamfer }}(x, y)=\frac{1}{|T|} \sum_{u, v: T \mid u, v]=1} d_{t}(x+u, y+v)
$$

\Rightarrow More robust to small shifts and size variations.

Distance Transform

- Image reflecting distance to nearest point in point set (e.g., edge pixels, or foreground pixels).

> 4-connected adjacency
8-connected adjacency

Initialization
, Forward and backward pass
Fwd pass finds closest above and to the left
Bwd pass finds closest below and to the right

 technique that can be used to answer all of these

- Main idea:

1. Vote for all possible lines on which each edge point could lie.
2. Look for lines that get many votes.

RWIFAACHET
Finding Lines in an Image: Hough Space

- Connection between image (x, y) and Hough (m, b) spaces

Image space
Hough (parameter) space

- A line in the image corresponds to a point in Hough space.
, To go from image space to Hough space:
Given a set of points (x, y), find all (m, b) such that $y=m x+b$

Slide credit: Steve Seitz
B. Leibe

Finding Lines in an Image: Hough Space

- Connection between image (x, y) and Hough (m, b) spaces
- A line in the image corresponds to a point in Hough space.
- To go from image space to Hough space:

Given a set of points (x, y), find all (m, b) such that $y=m x+b$
, What does a point $\left(x_{0}, y_{0}\right)$ in the image space map to?
Answer: the solutions of $b=-x_{0} m+y_{0}$
This is a line in Hough space.
Slide credit: Steve Seitz
B. Leibe

Finding Lines in an Image: Hough Space

- What are the line parameters for the line that contains both $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$?
, It is the intersection of the lines

$$
b=-x_{0} m+y_{0} \text { and }
$$

$$
b=-x_{l} m+y_{l}
$$

Slide credit: Steve Seitz
B. Leibe

Finding Lines in an Image: Hough Space

How can we use this to find the most likely parameters (m, b) for the most prominent line in the image space?
, Let each edge point in image space vote for a set of possible parameters in Hough space.

- Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.

Polar Representation for Lines

- Issues with usual (m, b) parameter space: can take on infinite values, undefined for vertical lines.

Slide adapted from Steve Seitz

RWIHAMCHE UNVERSITY
Example: HT for Straight Lines

	Extensions	RWIHAMECHET
	Extension 1: Use the image gradient 1. same	$\dot{K}_{t},{ }^{\nabla f}=\left[\frac{\partial f}{\partial x}, \frac{\partial}{\partial y}\right]$
	$\text { 2. for each edge point } \mathrm{I}[x, y] \text { in the image } \begin{aligned} & \theta=\text { gradient at }(x, y) \\ & d=x \cos \theta-y \sin \theta \\ & \mathrm{H}[d, \theta]+=1 \end{aligned}$	$\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$
	3. same 4. same (Reduces degrees of freedom)	
	Slide credit: Kristen Grauman ${ }^{\text {B.Leibe }}$	

Hough Transform for Circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For a fixed radius r, unknown gradient direction

Image space

B. Leibe

Hough Transform for Circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For a fixed radius r, unknown gradient direction

RWIHAACHE

Hough Transform for Circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For an unknown radius r, unknown gradient direction

Image space

Slide credit: Kristen Grauman
B. Leibe

Hough Transform for Circles

For every edge pixel (x, y) :
For each possible radius value r :
For each possible gradient direction θ :
// or use estimated gradient
$a=x-r \cos (\theta)$
$b=y+r \sin (\theta)$ $H[a, b, r]+=1$
end
end

Hough Transform for Circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For an unknown radius r, known gradient direction

Slide credit: Kristen Grauman
B. Leibe

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Slide credit: Kristen Grauman
B. Leibe

Hough Transform: Pros and Cons

Pros

- All points are processed independently, so can cope with occlusion
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: hard to pick a good grid size

Slide credit: Kristen Grauman
B. Leibe

RWIHAACHE

Generalized Hough Transform

- What if want to detect arbitrary shapes defined by boundary points and a reference point?

At each boundary point, compute displacement vector: $r=a-p_{i}$.

For a given model shape: store these vectors in a table indexed by gradient orientation θ.
[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
Slide credit: Kristen Grauman B. Leibe

Generalized Hough Transform

To detect the model shape in a new image:

- For each edge point
- Index into table with its gradient orientation θ
, Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Slide credit: Kristen Grauman

Example: Generalized Hough Transform

Example: Generalized Hough Transform

Application in Recognition

- Instead of indexing displacements by gradient orientation, index by "visual codeword".

Visual codeword with displacement vectors
B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(13), 2008.

