

Advanced Machine Learning Lecture 20

Wrapping Up

04.02.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

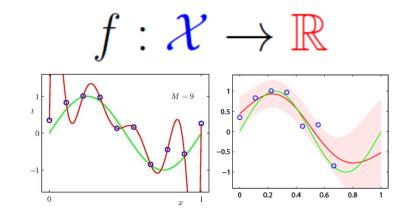
Announcements

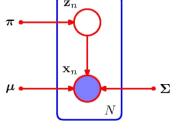
- Last lecture next Thursday: Repetition
 - Summary of all topics in the lecture
 - "Big picture" and current research directions
 - Opportunity to ask questions
 - Please use this opportunity and prepare questions!
- Exam format
 - Exams will be oral
 - Duration: 30 minutes
 - > I will give you 4 questions and expect you to answer 3 of them.
 - Each such question will cover material from ~1-2 lecture slots

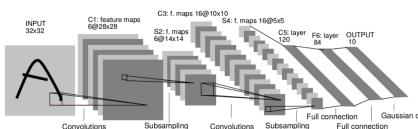
This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes
- Learning with Latent Variables
 - Prob. Distributions & Approx. Inference
 - Mixture Models
 - EM and Generalizations

- Linear Discriminants
- Neural Networks
- Backpropagation & Optimization
- CNNs, RNNs, RBMs, etc.







Topics of This Lecture

- Recap: Restricted Boltzmann Machines
 - Energy based Models
 - RBMs
 - Deep Belief Networks
- Initialization Revisited
 - Analysis
 - Glorot Initialization
 - Extension to ReLU
- Outlook
 - Reinforcement Learning

Recap: Energy Based Models (EBM)

- Energy Based Probabilistic Models
 - > Define the joint probability over a set of variables $\mathbf x$ through an energy function

$$p(\mathbf{x}) = \frac{1}{Z}e^{-E(\mathbf{x})}$$

where the normalization factor Z is called the partition function

$$Z = \sum_{\mathbf{x}} e^{-E(\mathbf{x})}$$

An EBM can be learned by performing (stochastic) gradient descent on the negative log-likelihood of the training data

$$\mathcal{L}(\theta, \mathcal{D}) = \frac{1}{N} \sum_{x_n \in \mathcal{D}} \log p(x_n)$$

using the stochastic gradient $-\frac{\partial \log p(x_n)}{\partial \theta}$

Recap: EBMs with Hidden Units

- Expressing the gradient
 - Free energy for a model with hidden variables h

$$\mathcal{F}(\mathbf{x}) = -\log \sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}$$

Free energy formulation of the joint probability

$$p(\mathbf{x}) = \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z}$$
 with $Z = \sum_{\mathbf{x}} e^{-\mathcal{F}(\mathbf{x})}$.

The negative log-likelihood gradient then takes the following form, which is difficult to determine analytically

$$-\frac{\partial \log p(\mathbf{x})}{\partial \theta} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta} - \sum_{\tilde{\mathbf{x}}} p(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}.$$

Positive phase

Negative phase

Recap: Steps Towards a Solution...

- Monte Carlo approximation
 - Estimate the expectation using a fixed number of model samples for the negative phase gradient ("negative particles")

$$-\frac{\partial \log p(\mathbf{x})}{\partial \theta} \approx \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta} - \frac{1}{|\mathcal{N}|} \sum_{\tilde{\mathbf{x}} \in \mathcal{N}} \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}.$$

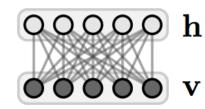
free energy avg. free energy at current point for all other points

- With this, we almost have a practical stochastic algorithm for learning an EBM.
- ightharpoonup We just need to define how to extract the negative particles $\mathcal{N}.$
 - Many sampling approaches can be used here.
 - MCMC methods are especially well-suited.

And this is where all parts of the lecture finally come together...

Recap: Restricted Boltzmann Machines

Properties



$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i} b_i v_i - \sum_{j} c_j h_j - \sum_{i,j} w_{ij} v_i h_j$$

This translates to a free energy formula

$$\mathcal{F}(\mathbf{v}) = -\mathbf{b}^{\top}\mathbf{v} - \sum_{i} \log \sum_{h_{i}} e^{h_{i}(c_{i} + W_{i}\mathbf{v})}.$$

Factorization property

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i} p(h_i|\mathbf{v})$$

 $p(\mathbf{v}|\mathbf{h}) = \prod_{i} p(v_j|\mathbf{h}).$

RBMs can be seen as a product of experts specializing on different areas and detecting negative constraints.

Recap: RBMs with Binary Units

- Binary units
 - Free energy

$$\mathcal{F}(\mathbf{v}) = -\mathbf{b}^{\top}\mathbf{v} - \sum_{i} \log \left(1 + e^{(c_i + W_i \mathbf{v})}\right).$$

This results in the iterative update equations for the gradient log-likelihoods

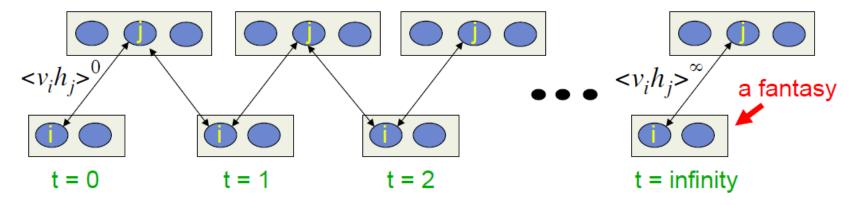
$$-\frac{\partial \log p(\mathbf{v})}{\partial W_{ij}} = \mathbb{E}_{\mathbf{v}} \left[p(h_i | \mathbf{v}) \cdot v_j \right] - v_j^{(t)} \cdot \sigma(W_i \cdot \mathbf{v}^{(t)} + c_i)$$

$$-\frac{\partial \log p(\mathbf{v})}{\partial c_i} = \mathbb{E}_{\mathbf{v}} \left[p(h_i | \mathbf{v}) \right] - sigm(W_i \cdot \mathbf{v}^{(t)})$$

$$-\frac{\partial \log p(\mathbf{v})}{\partial b_j} = \mathbb{E}_{\mathbf{v}} \left[p(v_j | \mathbf{h}) \right] - \mathbf{v}_j^{(t)}$$

Recap: RBM Learning (Slow)

Iterative approach

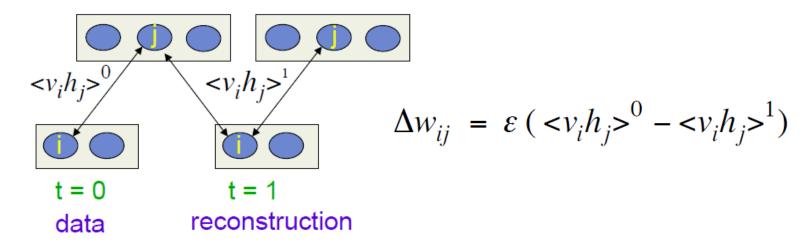


- Start with a training vector on the visible units. Then alternate between updating all the hidden units in parallel and updating all the visible units in parallel.
- This implements a Markov chain that we use to approximate the gradient

$$\frac{\partial \log p(\mathbf{v})}{\partial w_{ij}} = \langle v_i, h_j \rangle^0 - \langle v_i, h_j \rangle^\infty$$

Better method in practice: Contrastive Divergence

Recap: Contrastive Divergence (Fast)



A surprising shortcut

- Start with a training vector on the visible units.
- Update all the hidden units in parallel.
- Update the all visible units in parallel to get a "reconstruction".
- Update the hidden units again (no further iterations).
- This does not follow the gradient of the log likelihood. But it works well [Hinton].

11

Historical Perspective

- Training deep networks is difficult
 - Major difficulty: getting the gradient to propagate to the lower layers, so that the weights there can be learned
 - Initialization of the weights plays a major role
 - Weights too small ⇒ Signal shrinks from layer to layer
 - Weights too large ⇒ Signal grows until it is too massive
 - ⇒ Vanishing and exploding gradient problems known from RNNs
- How can we arrive at a good initialization?

Deep Belief Networks (DBN)

DBN as stacked RBMs

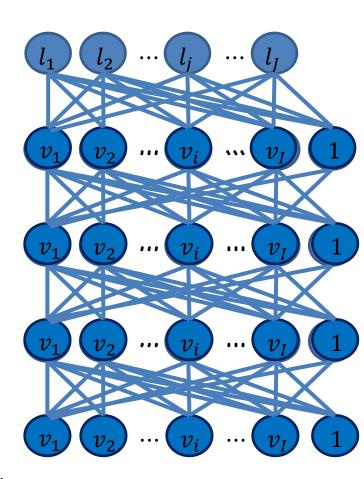
RBM:
$$p(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{x}, \mathbf{h})}}{Z}$$

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{b}^{\top}\mathbf{v} - \mathbf{c}^{\top}\mathbf{h} - \mathbf{v}^{\top}W\mathbf{h}$$

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i} p(h_{i}|\mathbf{v})$$

$$p(h_{i} = 1|\mathbf{v}) = \sigma(c_{i} + \mathbf{v}^{\top}W_{i})$$

- Pre-train each layer from bottom up by considering each pair of layers as an RBM.
- Jointly fine-tune all layers using back-propagation algorithm
- ⇒ Layer-by-layer unsupervised training



Topics of This Lecture

- Recap: Restricted Boltzmann Machines
 - Energy based Models
 - > RBMs
 - Deep Belief Networks
- Initialization Revisited
 - Analysis
 - Glorot Initialization
 - Extension to ReLU
- Outlook
 - Reinforcement Learning

Glorot Initialization

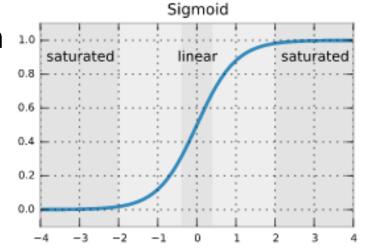
Breakthrough results

- In 2010, Xavier Glorot published an analysis of what went wrong in the initialization and derived a method for automatic initialization.
- This new initialization massively improved results and made direct learning of deep networks possible overnight.
- Let's look at his analysis in more detail...

X. Glorot, Y. Bengio, <u>Understanding the Difficulty of Training Deep</u> <u>Feedforward Neural Networks</u>, AISTATS 2010.

Effect of Sigmoid Nonlinearities

- Effects of sigmoid/tanh function
 - Linear behavior around 0
 - Saturation for large inputs



- If all parameters are too small
 - Variance of activations will drop in each layer
 - Sigmoids are approximately linear close to 0
 - Good for passing gradients through, but...
 - Gradual loss of the nonlinearity
 - ⇒ No benefit of having multiple layers
- If activations become larger and larger
 - They will saturate and gradient will become zero

Analysis

- Variance of neuron activations
 - > Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y.
 - What is the variance of Y?

$$Y = W_1 X_1 + W_2 X_2 + \dots + W_n X_n$$

If inputs and outputs have both mean 0, the variance is

$$ext{Var}(W_i X_i) = E[X_i]^2 ext{Var}(W_i) + E[W_i]^2 ext{Var}(X_i) + ext{Var}(W_i) ext{Var}(i_i)$$

$$= ext{Var}(W_i) ext{Var}(X_i)$$

ightarrow If the X_i and W_i are all i.i.d, then

$$\operatorname{Var}(Y) = \operatorname{Var}(W_1X_1 + W_2X_2 + \dots + W_nX_n) = n\operatorname{Var}(W_i)\operatorname{Var}(X_i)$$

 \Rightarrow The variance of the output is the variance of the input, but scaled by $n \ \mathrm{Var}(W_i)$.

Analysis (cont'd)

- Variance of neuron activations
 - > if we want the variance of the input and output of a unit to be the same, then $n \operatorname{Var}(W_i)$ should be 1. This means

$$\operatorname{Var}(W_i) = \frac{1}{n} = \frac{1}{n_{\mathrm{in}}}$$

If we do the same for the backpropagated gradient, we get

$$\operatorname{Var}(W_i) = rac{1}{n_{ ext{out}}}$$

As a compromise, Glorot & Bengio propose to use

$$Var(W) = \frac{2}{n_{in} + n_{out}}$$

⇒ Randomly sample the weights with this variance. That's it.

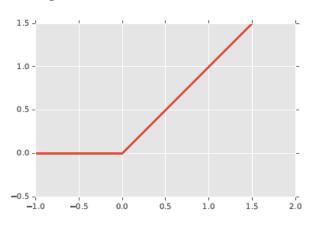
Extension to ReLU

- Another improvement for learning deep models
 - Use Rectified Linear Units (ReLU)

$$g(a) = \max\{0, a\}$$

Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$$



- We can also improve them with proper initialization
 - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
 - He et al. made the derivations, proposed to use instead

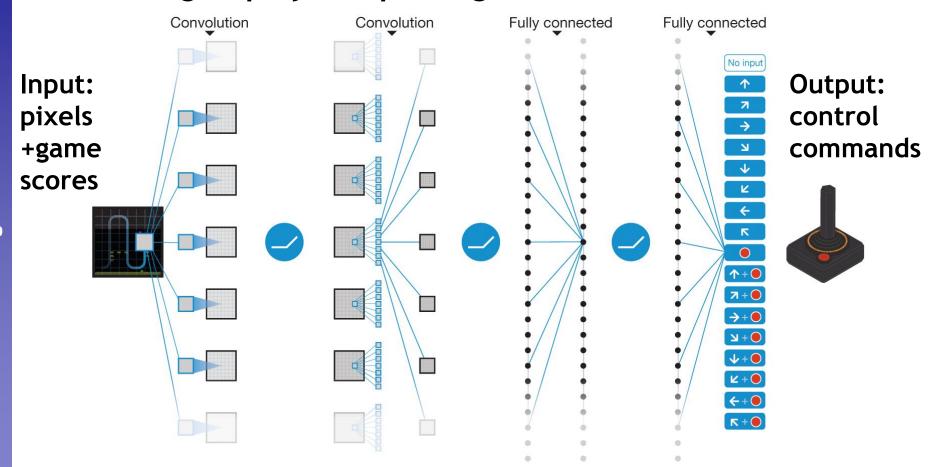
$$\mathrm{Var}(W) = rac{2}{n_{\mathrm{in}}}$$

Topics of This Lecture

- Recap: Restricted Boltzmann Machines
 - Energy based Models
 - > RBMs
 - Deep Belief Networks
- Initialization Revisited
 - > Analysis
 - Glorot Initialization
 - Extension to ReLU
- Outlook
 - Reinforcement Learning

Outlook: Reinforcement Learning

Learning to play computer games

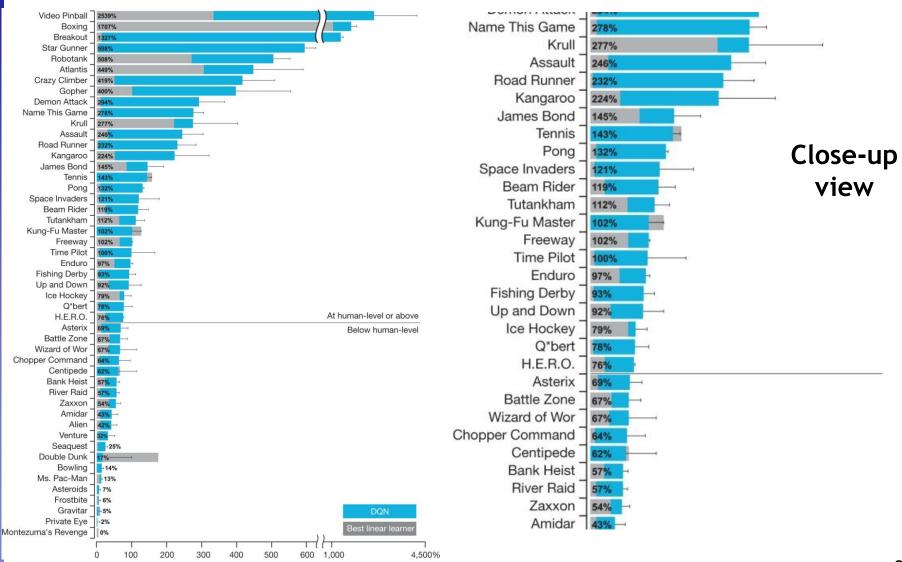


V. Mnih et al., <u>Human-level control through deep reinforcement learning</u>, Nature Vol. 518, pp. 529-533, 2015

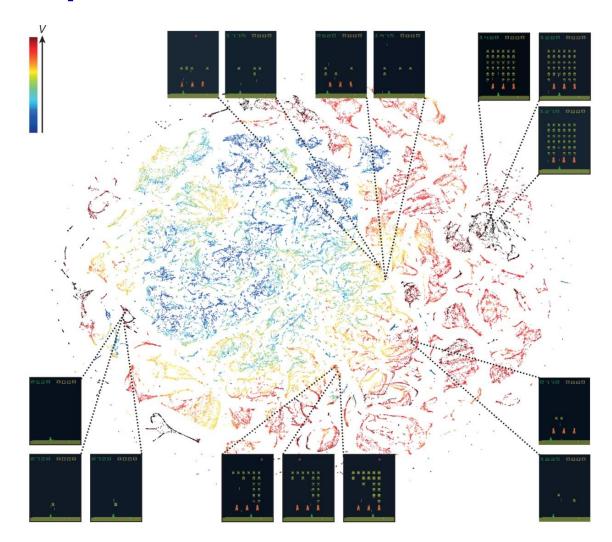
Results: Space Invaders

Results: Breakout

Comparison with Human Performance

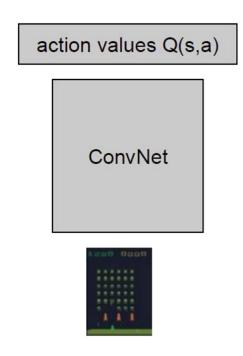


Learned Representation



t-SNE embedding of DQN last hidden layer (Space Inv.)

Idea Behind the Model



- Interpretation
 - Assume finite number of actions
 - Each number here is a real-valued quantity that represents the "Q function" in Reinforcement Learning
- Collect experience dataset:
 - Set of tuples {(s,a,s',r), ... }
 - State, Action taken, New state, Reward received
- L2 Regression Loss

$$L_{i}(\theta_{i}) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i}^{-}) - Q(s,a;\theta_{i}) \right)^{2} \right]$$

Current reward + estimate of future reward, discounted by γ

26

References and Further Reading

Initialization

- X. Glorot, Y. Bengio, <u>Understanding the difficulty of training</u> <u>deep feedforward neural networks</u>, AISTATS 2010.
- <u>K. He</u>, X. Zhang, S. Ren, J. Sun, <u>Delving Deep into Rectifiers:</u> <u>Surpassing Human-Level Performance on ImageNet</u> <u>Classification</u>, arXiv 1502.01852, 2015.

ReLu

X. Glorot, A. Bordes, Y. Bengio, <u>Deep sparse rectifier neural</u> <u>networks</u>, AISTATS 2011.