Advanced Machine Learning Lecture 20

Wrapping Up

04.02 .2016

Bastian Leibe RWTH Aachen
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Announcements

- Last lecture next Thursday: Repetition
, Summary of all topics in the lecture
, "Big picture" and current research directions
, Opportunity to ask questions
, Please use this opportunity and prepare questions!
- Exam format
, Exams will be oral
, Duration: 30 minutes
, I will give you 4 questions and expect you to answer 3 of them.
- Each such question will cover material from ~1-2 lecture slots

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
- Regularization (Ridge, Lasso)
, Gaussian Processes
- Learning with Latent Variables
, Prob. Distributions \& Approx. Inference
, Mixture Models
, EM and Generalizations

- Deep Learning
, Linear Discriminants
, Neural Networks

, Backpropagation \& Optimization
, CNNs, RNNs, RBMs, etc.

Topics of This Lecture

- Recap: Restricted Boltzmann Machines
, Energy based Models
, RBMs
, Deep Belief Networks
- Initialization Revisited
, Analysis
, Glorot Initialization
, Extension to ReLU
- Outlook
, Reinforcement Learning

)

Recap: Energy Based Models (EBM)

- Energy Based Probabilistic Models
, Define the joint probability over a set of variables x through an energy function

$$
p(\mathbf{x})=\frac{1}{Z} e^{-E(\mathbf{x})}
$$

where the normalization factor Z is called the partition function

$$
Z=\sum_{\mathbf{x}} e^{-E(\mathbf{x})}
$$

. An EBM can be learned by performing (stochastic) gradient descent on the negative log-likelihood of the training data

$$
\mathcal{L}(\theta, \mathcal{D})=\frac{1}{N} \sum_{x_{n} \in \mathcal{D}} \log p\left(x_{n}\right)
$$

using the stochastic gradient $-\frac{\partial \log p\left(x_{n}\right)}{\partial \theta}$

Recap: EBMs with Hidden Units

- Expressing the gradient
, Free energy for a model with hidden variables h

$$
\mathcal{F}(\mathbf{x})=-\log \sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}
$$

, Free energy formulation of the joint probability

$$
p(\mathbf{x})=\frac{e^{-\mathcal{F}(\mathbf{x})}}{Z} \quad \text { with } \quad Z=\sum_{\mathbf{x}} e^{-\mathcal{F}(\mathbf{x})}
$$

, The negative log-likelihood gradient then takes the following form, which is difficult to determine analytically

$$
-\frac{\partial \log p(\mathbf{x})}{\partial \theta}=\underbrace{\frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta}}_{\begin{array}{c}
\text { Positive } \\
\text { phase }
\end{array}}-\underbrace{\sum_{\tilde{\mathbf{x}}} p(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}}_{\begin{array}{c}
\text { Negative } \\
\text { phase }
\end{array}} .
$$

.

Recap: Steps Towards a Solution...

- Monte Carlo approximation
- Estimate the expectation using a fixed number of model samples for the negative phase gradient ("negative particles")

$$
-\frac{\partial \log p(\mathbf{x})}{\partial \theta} \approx \underbrace{\sim}_{\begin{array}{c}
\text { free energy } \\
\text { at current point } \\
\begin{array}{c}
\text { avg. free energy } \\
\text { for all other points }
\end{array}
\end{array} \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta}}
$$

, With this, we almost have a practical stochastic algorithm for learning an EBM.
, We just need to define how to extract the negative particles \mathcal{N}.

- Many sampling approaches can be used here.
- MCMC methods are especially well-suited.

And this is where all parts of the lecture finally come together...

Recap: Restricted Boltzmann Machines

- Properties
, Energy Function of an RBM

$$
E(\mathbf{v}, \mathbf{h})=-\sum_{i} b_{i} v_{i}-\sum_{j} c_{j} h_{j}-\sum_{i, j} w_{i j} v_{i} h_{j}
$$

, This translates to a free energy formula

$$
\begin{aligned}
& \quad \mathcal{F}(\mathbf{v})=-\mathbf{b}^{\top} \mathbf{v}-\sum_{i} \log \sum_{h_{i}} e^{h_{i}\left(c_{i}+W_{i} \mathbf{v}\right)} . \\
& \text { Factorization property }
\end{aligned}
$$

$$
\begin{aligned}
& p(\mathbf{h} \mid \mathbf{v})=\prod_{i} p\left(h_{i} \mid \mathbf{v}\right) \\
& p(\mathbf{v} \mid \mathbf{h})=\prod_{j} p\left(v_{j} \mid \mathbf{h}\right) .
\end{aligned}
$$

- RBMs can be seen as a product of experts specializing on different areas and detecting negative constraints.

Recap: RBMs with Binary Units

- Binary units
, Free energy

$$
\mathcal{F}(\mathbf{v})=-\mathbf{b}^{\top} \mathbf{v}-\sum_{i} \log \left(1+e^{\left(c_{i}+W_{i} \mathbf{v}\right)}\right)
$$

, This results in the iterative update equations for the gradient log-likelihoods

$$
\begin{aligned}
& -\frac{\partial \log p(\mathbf{v})}{\partial W_{i j}}=\mathbb{E}_{\mathbf{v}}\left[p\left(h_{i} \mid \mathbf{v}\right) \cdot v_{j}\right]-v_{j}^{(t)} \cdot \sigma\left(W_{i} \cdot \mathbf{v}^{(t)}+c_{i}\right) \\
& -\frac{\partial \log p(\mathbf{v})}{\partial c_{i}}=\mathbb{E}_{\mathbf{v}}\left[p\left(h_{i} \mid \mathbf{v}\right)\right]-\operatorname{sigm}\left(W_{i} \cdot \mathbf{v}^{(t)}\right) \\
& -\frac{\partial \log p(\mathbf{v})}{\partial b_{j}}=\mathbb{E}_{\mathbf{v}}\left[p\left(v_{j} \mid \mathbf{h}\right)\right]-\mathbf{v}_{j}^{(t)}
\end{aligned}
$$

Recap: RBM Learning (Slow)

- Iterative approach

, Start with a training vector on the visible units. Then alternate between updating all the hidden units in parallel and updating all the visible units in parallel.
- This implements a Markov chain that we use to approximate the gradient

$$
\frac{\partial \log p(\mathbf{v})}{\partial w_{i j}}=<v_{i}, h_{j}>^{0}-<v_{i}, h_{j}>^{\infty}
$$

, Better method in practice: Contrastive Divergence

Recap: Contrastive Divergence (Fast)

- A surprising shortcut
, Start with a training vector on the visible units.
, Update all the hidden units in parallel.
, Update the all visible units in parallel to get a "reconstruction".
, Update the hidden units again (no further iterations).
, This does not follow the gradient of the log likelihood. But it works well [Hinton].

Historical Perspective

- Training deep networks is difficult
, Major difficulty: getting the gradient to propagate to the lower layers, so that the weights there can be learned
- Initialization of the weights plays a major role
- Weights too small \Rightarrow Signal shrinks from layer to layer
- Weights too large \Rightarrow Signal grows until it is too massive
\Rightarrow Vanishing and exploding gradient problems known from RNNs
- How can we arrive at a good initialization?

Deep Belief Networks (DBN)

- DBN as stacked RBMs
, RBM: $p(\mathbf{v}, \mathbf{h})=\frac{e^{-E(\mathbf{x}, \mathbf{h})}}{Z}$

$$
E(\mathbf{v}, \mathbf{h})=-\mathbf{b}^{\top} \mathbf{v}-\mathbf{c}^{\top} \mathbf{h}-\mathbf{v}^{\top} W \mathbf{h}
$$

> Pre-train each layer from bottom
up by considering each pair of layers
Pre-train each layer from bottom
up by considering each pair of layers as an RBM.
, Jointly fine-tune all layers using back-propagation algorithm
\Rightarrow Layer-by-layer unsupervised training

$$
\begin{aligned}
p(\mathbf{h} \mid \mathbf{v}) & =\prod_{i} p\left(h_{i} \mid \mathbf{v}\right) \\
p\left(h_{i}=1 \mid \mathbf{v}\right) & =\sigma\left(c_{i}+\mathbf{v}^{\top} W_{i}\right)
\end{aligned}
$$ an RBM.

Topics of This Lecture

- Recap: Restricted Boltzmann Machines
, Energy based Models
, RBMs
, Deep Belief Networks
- Initialization Revisited
, Analysis
, Glorot Initialization
, Extension to ReLU
- Outlook
, Reinforcement Learning

Glorot Initialization

- Breakthrough results
, In 2010, Xavier Glorot published an analysis of what went wrong in the initialization and derived a method for automatic initialization.
, This new initialization massively improved results and made direct learning of deep networks possible overnight.
. Let's look at his analysis in more detail...

[^0]
Effect of Sigmoid Nonlinearities

Sigmoid

- Effects of sigmoid/tanh function
, Linear behavior around 0
, Saturation for large inputs
- If all parameters are too small

, Variance of activations will drop in each layer
, Sigmoids are approximately linear close to 0
, Good for passing gradients through, but...
, Gradual loss of the nonlinearity
\Rightarrow No benefit of having multiple layers
- If activations become larger and larger
, They will saturate and gradient will become zero

Analysis

- Variance of neuron activations
, Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y.
, What is the variance of Y ?

$$
Y=W_{1} X_{1}+W_{2} X_{2}+\cdots+W_{n} X_{n}
$$

, If inputs and outputs have both mean 0 , the variance is

$$
\begin{aligned}
\operatorname{Var}\left(W_{i} X_{i}\right) & =E\left[X_{i}\right]^{2} \operatorname{Var}\left(W_{i}\right)+E\left[W_{i}\right]^{2} \operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(W_{i}\right) \operatorname{Var}\left(i_{i}\right) \\
& =\operatorname{Var}\left(W_{i}\right) \operatorname{Var}\left(X_{i}\right)
\end{aligned}
$$

, If the X_{i} and W_{i} are all i.i.d, then

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(W_{1} X_{1}+W_{2} X_{2}+\cdots+W_{n} X_{n}\right)=n \operatorname{Var}\left(W_{i}\right) \operatorname{Var}\left(X_{i}\right)
$$

\Rightarrow The variance of the output is the variance of the input, but scaled by $n \operatorname{Var}\left(W_{i}\right)$.

Analysis (cont'd)

- Variance of neuron activations
> if we want the variance of the input and output of a unit to be the same, then $n \operatorname{Var}\left(W_{i}\right)$ should be 1 . This means

$$
\operatorname{Var}\left(W_{i}\right)=\frac{1}{n}=\frac{1}{n_{\text {in }}}
$$

, If we do the same for the backpropagated gradient, we get

$$
\operatorname{Var}\left(W_{i}\right)=\frac{1}{n_{\text {out }}}
$$

- As a compromise, Glorot \& Bengio propose to use

$$
\operatorname{Var}(W)=\frac{2}{n_{\text {in }}+n_{\text {out }}}
$$

\Rightarrow Randomly sample the weights with this variance. That's it.

Extension to ReLU

- Another improvement for learning deep models
, Use Rectified Linear Units (ReLU)

$$
g(a)=\max \{0, a\}
$$

, Effect: gradient is propagated with a constant factor

$$
\frac{\partial g(a)}{\partial a}= \begin{cases}1, & a>0 \\ 0, & \text { else }\end{cases}
$$

- We can also improve them with proper initialization
, However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
- He et al. made the derivations, proposed to use instead

$$
\operatorname{Var}(W)=\frac{2}{n_{\text {in }}}
$$

Topics of This Lecture

- Recap: Restricted Boltzmann Machines
, Energy based Models
, RBMs
, Deep Belief Networks
- Initialization Revisited
- Analysis
, Glorot Initialization
, Extension to ReLU
- Outlook
, Reinforcement Learning

Outlook: Reinforcement Learning

- Learning to play computer games

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518, pp. 529-533, 2015

Results: Space Invaders

Results: Breakout

Comparison with Human Performance

Krull
Assault
B. Leibe

Learned Representation

- t-SNE embedding of DQN last hidden layer (Space Inv.)

Idea Behind the Model

- Interpretation
, Assume finite number of actions
, Each number here is a real-valued quantity that represents the "Q function" in Reinforcement Learning
- Collect experience dataset:
, Set of tuples $\left\{\left(s, a, s^{\prime}, r\right), \ldots\right\}$
> (State, Action taken, New state, Reward received
- L2 Regression Loss
target value predicted value $L_{i}\left(\theta_{i}\right)=\mathbb{E}_{\left(s, a, r, s^{\prime}\right) \sim \mathrm{U}(D)}\left[\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i}^{-}\right)-Q\left(s, a ; \theta_{i}\right)\right)^{2}\right]$
Current reward + estimate of future reward, discounted by γ
Slide credit: Andrej Karpaty
B. Leibe

References and Further Reading

- Initialization
, X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, AISTATS 2010.
> K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv 1502.01852, 2015.
- ReLu
> X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, AISTATS 2011.

[^0]: X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS 2010.

