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Announcements 

• Last lecture next Thursday: Repetition 

 Summary of all topics in the lecture 

 “Big picture” and current research directions 

 Opportunity to ask questions 

 

 Please use this opportunity and prepare questions! 

 

• Exam format 

 Exams will be oral 

 Duration: 30 minutes 

 I will give you 4 questions and expect you to answer 3 of them. 

– Each such question will cover material from ~1-2 lecture slots 

2 
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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Prob. Distributions & Approx. Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Linear Discriminants 

 Neural Networks 

 Backpropagation & Optimization 

 CNNs, RNNs, RBMs, etc. 
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Topics of This Lecture 

• Recap: Restricted Boltzmann Machines 
 Energy based Models 

 RBMs 

 Deep Belief Networks 
 

• Initialization Revisited 
 Analysis  

 Glorot Initialization 

 Extension to ReLU 
 

• Outlook 
 Reinforcement Learning 
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Recap: Energy Based Models (EBM) 

• Energy Based Probabilistic Models 

 Define the joint probability over a set of variables x through an 

energy function 

 

 

    where the normalization factor Z is called the partition function 

 

 
 
 

 An EBM can be learned by performing (stochastic) gradient 

descent on the negative log-likelihood of the training data 

 

 

 
 

using the stochastic gradient  
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Recap: EBMs with Hidden Units 

• Expressing the gradient 

 Free energy for a model with hidden variables h  

 
 

 Free energy formulation of the joint probability 

 

 
 

 The negative log-likelihood gradient then takes the following 

form, which is difficult to determine analytically 
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with 

Positive 

phase 

Negative 

phase 
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Recap: Steps Towards a Solution... 

• Monte Carlo approximation 

 Estimate the expectation using a fixed number of model samples 

for the negative phase gradient (“negative particles”) 

 

 

 

 

 

 With this, we almost have a practical stochastic algorithm for 

learning an EBM. 

 We just need to define how to extract the negative particles N. 

– Many sampling approaches can be used here. 

– MCMC methods are especially well-suited. 
 

And this is where all parts of the lecture finally come together... 
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free energy 

at current point 

avg. free energy 

for all other points 
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• Properties 

 Energy Function of an RBM 

 

 
 

 This translates to a free energy formula 

 

 

 Factorization property 

 

 

 

 
 

 RBMs can be seen as a product of experts specializing on 

different areas and detecting negative constraints. 

 

 

 

 

Recap: Restricted Boltzmann Machines 
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Recap: RBMs with Binary Units 

• Binary units 

 Free energy 

 

 
 

 This results in the iterative update equations for the gradient 

log-likelihoods 
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¡@log p(v)

@Wij

= Ev [p(hijv) ¢ vj ]¡ v
(t)

j ¢ ¾(Wi ¢ v(t) + ci)

¡@log p(v)

@ci
= Ev[p(hijv)]¡ sigm(Wi ¢ v(t))

¡@log p(v)

@bj
= Ev[p(vj jh)]¡ v(t)j
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Recap: RBM Learning (Slow) 

• Iterative approach 

 

 

 

 

 
 

 Start with a training vector on the visible units. Then alternate 

between updating all the hidden units in parallel and updating 

all the visible units in parallel. 

 This implements a Markov chain that we use to approximate the 

gradient 

 

 

 Better method in practice: Contrastive Divergence 
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Recap: Contrastive Divergence (Fast) 

 

 

 

 

 
 

• A surprising shortcut 

 Start with a training vector on the visible units. 

 Update all the hidden units in parallel. 

 Update the all visible units in parallel to get a “reconstruction”. 

 Update the hidden units again (no further iterations). 
 

 This does not follow the gradient of the log likelihood.  

But it works well [Hinton]. 

 11 
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Historical Perspective 

• Training deep networks is difficult 

 Major difficulty: getting the gradient to propagate to the lower 

layers, so that the weights there can be learned 

 Initialization of the weights plays a major role 

– Weights too small  Signal shrinks from layer to layer 

– Weights too large  Signal grows until it is too massive 

 Vanishing and exploding gradient problems known from RNNs  

 

• How can we arrive at a good initialization? 

12 
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Deep Belief Networks (DBN) 

• DBN as stacked RBMs 
 

 RBM:  

 

 

 

 
 

 Pre-train each layer from bottom  

up by considering each pair of layers  

as an RBM. 

 Jointly fine-tune all layers using  

back-propagation algorithm 

 Layer-by-layer unsupervised training 

 
13 

B. Leibe 

⋯ ⋯ 

⋯ ⋯ 

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

⋯ ⋯ 

⋯ ⋯ 

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

⋯ ⋯ 

⋯ ⋯ 

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

⋯ ⋯ 

⋯ ⋯ 

𝑙1 𝑙2 𝑙𝑗 𝑙𝐽 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

Slide credit: Li Deng 
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Topics of This Lecture 

• Recap: Restricted Boltzmann Machines 
 Energy based Models 

 RBMs 

 Deep Belief Networks 
 

• Initialization Revisited 
 Analysis  

 Glorot Initialization 

 Extension to ReLU 
 

• Outlook 
 Reinforcement Learning 
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Glorot Initialization 

• Breakthrough results 

 In 2010, Xavier Glorot published an analysis of what went wrong 

in the initialization and derived a method for automatic 

initialization. 

 This new initialization massively improved results and made 

direct learning of deep networks possible overnight. 

 

 Let’s look at his analysis in more detail... 

15 
B. Leibe 

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep  

Feedforward Neural Networks, AISTATS 2010. 
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Effect of Sigmoid Nonlinearities 

• Effects of sigmoid/tanh function 

 Linear behavior around 0 

 Saturation for large inputs 

 

 

• If all parameters are too small 

 Variance of activations will drop in each layer 

 Sigmoids are approximately linear close to 0 

 Good for passing gradients through, but... 

 Gradual loss of the nonlinearity  

 No benefit of having multiple layers 
 

• If activations become larger and larger 

 They will saturate and gradient will become zero 
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Image source: http://deepdish.io/2015/02/24/network-initialization/ 
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Analysis 

• Variance of neuron activations 

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y.  

 What is the variance of Y ? 

 
 

 If inputs and outputs have both mean 0, the variance is 

 

 

 

 If the Xi and Wi are all i.i.d, then 

 
 

 The variance of the output is the variance of the input, but  

scaled by n Var(Wi). 
17 
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Analysis (cont’d) 

• Variance of neuron activations 

 if we want the variance of the input and output of a unit to be 

the same, then n Var(Wi) should be 1. This means 

 

 

 If we do the same for the backpropagated gradient, we get 

 

 

 

 As a compromise, Glorot & Bengio propose to use 

 

 
 

 Randomly sample the weights with this variance. That’s it. 
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Extension to ReLU 

• Another improvement for learning deep models 

 Use Rectified Linear Units (ReLU) 

 
 

 Effect: gradient is propagated with 

a constant factor 

 

 
 

• We can also improve them with proper initialization 

 However, the Glorot derivation was based on tanh units, 

linearity assumption around zero does not hold for ReLU. 

 He et al. made the derivations, proposed to use instead 
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Topics of This Lecture 

• Recap: Restricted Boltzmann Machines 
 Energy based Models 

 RBMs 

 Deep Belief Networks 
 

• Initialization Revisited 
 Analysis  

 Glorot Initialization 

 Extension to ReLU 
 

• Outlook 
 Reinforcement Learning 
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Outlook: Reinforcement Learning 

• Learning to play computer games 

21 
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V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,  

pp. 529-533, 2015 

Input:  

pixels 

+game  

scores 

Output:  

control 

commands 
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Results: Space Invaders 
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Results: Breakout 
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Comparison with Human Performance 
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Close-up 

view 

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
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Learned Representation 

 

 

 

 

 

 

 

 

 

 

 

• t-SNE embedding of DQN last hidden layer (Space Inv.) 
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• L2 Regression Loss 

Idea Behind the Model 

• Interpretation 

 Assume finite number of actions 

 Each number here is a real-valued 

quantity that represents the  

“Q function” in Reinforcement Learning 
 

• Collect experience dataset: 

 Set of tuples {(s,a,s’,r), … } 

 (State, Action taken, New state, Reward 

received 

26 
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target value predicted value 

Current reward + estimate of future reward, discounted by  

Slide credit: Andrej Karpaty 
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