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Announcements
Advanced Machine Learning

Lecture 20

¢ Last lecture next Thursday: Repetition
~ Summary of all topics in the lecture
» “Big picture” and current research directions
» Opportunity to ask questions

Wrapping Up
» Please use this opportunity and prepare questions!
04.02.2016
¢ Exam format

» Exams will be oral

» Duration: 30 minutes

» | will give you 4 questions and expect you to answer 3 of them.
- Each such question will cover material from ~1-2 lecture slots

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/
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This Lecture: Advanced Machine Learning Topics of This Lecture
« Regression Approaches f X =R » Recap: Restricted Boltzmann Machines
» Linear Regression B — ~ Energy based Models
» Regularization (Ridge, Lasso) s A\ A ol ™ - RBMs

. Gaussian Processes » Deep Belief Networks

e Initialization Revisited
» Analysis
» Glorot Initialization
» Extension to ReLU

e Outlook

» Reinforcement Learning

¢ Learning with Latent Variables
» Prob. Distributions & Approx. Inference
> Mixture Models
> EM and Generalizations

¢ Deep Learning

G - S
» Linear Discriminants /QB:EE_. i -
» Neural Networks ey | P -

~ Backpropagation & Optimization
» CNNs, RNNs, RBMs, etc.
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Recap: Energy Based Models (EBM) Recap: EBMs with Hidden Units

¢ Energy Based Probabilistic Models

» Define the joint probability over a set of variables x through an
energy function

¢ Expressing the gradient
» Free energy for a model with hidden variables h

F(x)=—logdy e~ FElxh)

» Free energy formulation of the joint probability

Fx)
with Z= Z e,

1 —E(x)
X) = —=¢€
px) ==
where the normalization factor Z is called the partition function

7— Z o Elx)
x

» An EBM can be learned by performing (stochastic) gradient
descent on the negative log-likelihood of the training data

L

p(x) =

x
» The negative log-likelihood gradient then takes the following
form, which is difficult to determine analytically

Ologp(x) _ 0F(x) Z ) 5‘}"(5:).
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L(6,D)= = Z log p(a,,) a6 a9 a0
Vs ep —
using the stochastic gradient — Mﬁ;’u Positive Negative
o phase phase
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Recap: Steps Towards a Solution... Recap: Restricted Boltzmann Machines
» Monte Carlo approximation « Properties QTQRQP h

» Estimate the expectation using a fixed number of model samples
for the negative phase gradient (“negative particles”)
dlogp(x) OF(x) 1 Z AF (%)

» Energy Function of an RBM @

E(v.,h)=— X biv; — X eihy — Z: wyjvihy
i Fi i

a8 98N] = o9 .
XEN » This translates to a free energy formula
——
free energy avg. free energy

Flv)=-b'v— Z Iogx ehiletWav)

» Factorization property i fs

p(hlv) = Hp(h,-lv)

at current point for all other points
» With this, we almost have a practical stochastic algorithm for
learning an EBM.
» We just need to define how to extract the negative particles .

- Many sampling approaches can be used here.
- MCMC methods are especially well-suited.

p(vih) = [[p(vh).
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» RBMs can be seen as a product of experts specializing on

And this is where all parts of the lecture finally come together...
P f fi 4 8 different areas and detecting negative constraints.

7
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Recap: RBMs with Binary Units Recap: RBM Learning (Slow)
e Binary units ¢ |terative approach
- Free energy | - ./,0_\.‘ ./Q.‘ o9oe® ‘.p.|
_ Moo it Wiv) ) 7N 7 o wS
Flv)=-b'v L log (1 + ¢ ) . <|,fi,?/z’ \\\ N /! ee e (]!"1:?// f(fanlasy

0 ' )
"g » This results in the iterative update equations for the gradient Q |6. | |“ ® | rd ® | E
é log-likelihoods é t=0 t=1 t=2 t = infinity
= Ologp(v) _ (t) (t) g » Start with a training vector on the visible units. Then alternate
£ - W, By [p(hilv) - v5] = o7 - o(Wi - vi¥ 4 i) z between updating all the hidden units in parallel and updating
et dlog p(v) 3 all the visible units in parallel.
é _goerv) Ey[p(hi|v)] — sigm(W; - v®) E » This implements a Markov chain that we use to approximate the
S ol i S gradient
= ogp(v = a1
3 B ng( ) - E. [p(v; /)] — v 3 ogrlv) _ vishy >0 — < hy >
2 o
3; f_:» » Better method in practice: Contrastive Divergence
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Recap: Contrastive Divergence (Fast) Historical Perspective

¢ Training deep networks is difficult
» Major difficulty: getting the gradient to propagate to the lower
layers, so that the weights there can be learned
» Initialization of the weights plays a major role
- Weights too small = Signal shrinks from layer to layer
- Weights too large = Signal grows until it is too massive
= Vanishing and exploding gradient problems known from RNNs

eoene ene

<vh > N <|',-fr’>‘/’

L

Aw. = &( <1'ffrf>° - <v,.frf>1)

ge @ i
t=0 t=1
data reconstruction
e A surprising shortcut
» Start with a training vector on the visible units.
> Update all the hidden units in parallel.
> Update the all visible units in parallel to get a “reconstruction”.
» Update the hidden units again (no further iterations).

¢ How can we arrive at a good initialization?

This does not follow the gradient of the log likelihood.
But it works well [Hinton].
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Deep Belief Networks (DBN)

* DBN as stacked RBMs

¢ Flxh)
Z
E(v.h)=-b"v—c h—v Wh
plalv) = []rtrilv)

plh; =1v) = ol +VTH]-)

» RBM: p(v,h) =

» Pre-train each layer from bottom
up by considering each pair of layers
as an RBM.

» Jointly fine-tune all layers using
back-propagation algorithm
= Layer-by-layer unsupervised training

ide credit: Li Deng 8. Leibe

Glorot Initialization

¢ Breakthrough results

» In 2010, Xavier Glorot published an analysis of what went wrong
in the initialization and derived a method for automatic
initialization.

» This new initialization massively improved results and made
direct learning of deep networks possible overnight.

» Let’s look at his analysis in more detail...

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep
Feedforward Neural Networks, AISTATS 2010.
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Analysis

¢ Variance of neuron activations

» Suppose we have an input X with n components and a linear
neuron with random weights IV that spits out a number Y.

~ What is the variance of Y?
Y=WiX, +WoXy+ - -+ W, X,
~ If inputs and outputs have both mean 0, the variance is
Var(W, X;) = E[X,]2Var(W;) + E[W;|*Var(X;) + Var(W;)Var(i;)
= Var(W;)Var(X;)
» If the X; and W are all i.i.d, then
Var(Y) = Var(Wy X; + Wy Xy + - + W, X,,) = nVar(W;)Var(X;)

= The variance of the output is the variance of the input, but
scaled by n Var(W,).

B. Leibe

Topics of This Lecture

e Initialization Revisited
» Analysis
» Glorot Initialization
» Extension to ReLU
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Effect of Sigmoid Nonlinearities

» Linear behavior around 0
» Saturation for large inputs

« If all parameters are too small
» Variance of activations will drop in each layer
» Sigmoids are approximately linear close to 0
» Good for passing gradients through, but...
» Gradual loss of the nonlinearity
= No benefit of having multiple layers

¢ If activations become larger and larger
» They will saturate and gradient will become zero

Advanced Machine Learning Winter’15
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Analysis (cont’d)

¢ Variance of neuron activations

» if we want the variance of the input and output of a unit to be

the same, then n Var(W,) should be 1. This means
1 1

Var(W;) = — = —

ar(W) = — P~

» If we do the same for the backpropagated gradient, we get

Var(W) =

Tout.

» As a compromise, Glorot & Bengio propose to use
2
Tin + Tout

Var(W) =

= Randomly sample the weights with this variance. That’s it.

")
=
2
£
=3
=
£
]
o
a
@
=
S
I
=
©
3
o
=
<
3
<

B. Leibe



jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

RWTHACIEN
Extension to ReLU

¢ Another improvement for learning deep models
» Use Rectified Linear Units (ReLU)
gla) = max{0,a}

» Effect: gradient is propagated with
a constant factor
dgla) 1. a>0 T Y
da 0, else

¢ We can also improve them with proper initialization

» However, the Glorot derivation was based on tanh units,
linearity assumption around zero does not hold for ReLU.

> He et al. made the derivations, proposed to use instead

2
Var(W) = —
1?’“\
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Outlook: Reinforcement Learning

¢ Learning to play computer games

Convolution Convolution Fully connected

r

Output:
control
commands

Input:

pixels ] EHi =

+game

scores 2f] EBi/m

Poez-o

>f | Bi\e
»f ] EHi \=

|

CLEEFEERE
o

(U

dvanced Machine Learning Winter’15

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015
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Results: Breakout
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Topics of This Lecture

¢ Outlook
» Reinforcement Learning
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Results: Space Invaders
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Comparison with Human Performance
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Learned Representation

Idea Behind the Model
* Interpretation

» Assume finite number of actions

» Each number here is a real-valued
Gl quantity that represents the

“Q function” in Reinforcement Learning

¢ Collect experience dataset:

» Set of tuples {(s,a,s’,r), ... }
» (State, Action taken, New state, Reward

received

¢ t-SNE embedding of DQN last hidden layer (Space Inv.)
25
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¢ L2 Regression Loss .
target value predicted valug

Li(0;) =Fsar.e)~U(D) |:(|' tmax O(s".a'; 0; }| |Qu.u: EI,D }
P

Current reward + estimate of future reward, discounted by y 2
ide credit: Andrej Karpaty B. Leibe
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References and Further Reading

¢ Initialization
» X. Glorot, Y. Bengio, Understanding the difficulty of training
deep feedforward neural networks, AISTATS 2010.

> K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet
Classification, arXiv 1502.01852, 2015.

e RelLu

» X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural
networks, AISTATS 2011.
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