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Announcements 

• Last lecture next Thursday: Repetition 

 Summary of all topics in the lecture 

 “Big picture” and current research directions 

 Opportunity to ask questions 

 

 Please use this opportunity and prepare questions! 

 

• Exam format 

 Exams will be oral 

 Duration: 30 minutes 

 I will give you 4 questions and expect you to answer 3 of them. 

– Each such question will cover material from ~1-2 lecture slots 

2 
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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Prob. Distributions & Approx. Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Linear Discriminants 

 Neural Networks 

 Backpropagation & Optimization 

 CNNs, RNNs, RBMs, etc. 
B. Leibe 
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Topics of This Lecture 

• Recap: Restricted Boltzmann Machines 
 Energy based Models 

 RBMs 

 Deep Belief Networks 
 

• Initialization Revisited 
 Analysis  

 Glorot Initialization 

 Extension to ReLU 
 

• Outlook 
 Reinforcement Learning 
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Recap: Energy Based Models (EBM) 

• Energy Based Probabilistic Models 

 Define the joint probability over a set of variables x through an 

energy function 

 

 

    where the normalization factor Z is called the partition function 

 

 
 
 

 An EBM can be learned by performing (stochastic) gradient 

descent on the negative log-likelihood of the training data 

 

 

 
 

using the stochastic gradient  
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Recap: EBMs with Hidden Units 

• Expressing the gradient 

 Free energy for a model with hidden variables h  

 
 

 Free energy formulation of the joint probability 

 

 
 

 The negative log-likelihood gradient then takes the following 

form, which is difficult to determine analytically 
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with 

Positive 

phase 

Negative 

phase 
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Recap: Steps Towards a Solution... 

• Monte Carlo approximation 

 Estimate the expectation using a fixed number of model samples 

for the negative phase gradient (“negative particles”) 

 

 

 

 

 

 With this, we almost have a practical stochastic algorithm for 

learning an EBM. 

 We just need to define how to extract the negative particles N. 

– Many sampling approaches can be used here. 

– MCMC methods are especially well-suited. 
 

And this is where all parts of the lecture finally come together... 
7 
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free energy 

at current point 

avg. free energy 

for all other points 
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• Properties 

 Energy Function of an RBM 

 

 
 

 This translates to a free energy formula 

 

 

 Factorization property 

 

 

 

 
 

 RBMs can be seen as a product of experts specializing on 

different areas and detecting negative constraints. 

 

 

 

 

Recap: Restricted Boltzmann Machines 
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Recap: RBMs with Binary Units 

• Binary units 

 Free energy 

 

 
 

 This results in the iterative update equations for the gradient 

log-likelihoods 
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¡@log p(v)

@Wij

= Ev [p(hijv) ¢ vj ]¡ v
(t)

j ¢ ¾(Wi ¢ v(t) + ci)

¡@log p(v)

@ci
= Ev[p(hijv)]¡ sigm(Wi ¢ v(t))

¡@log p(v)

@bj
= Ev[p(vj jh)]¡ v(t)j
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Recap: RBM Learning (Slow) 

• Iterative approach 

 

 

 

 

 
 

 Start with a training vector on the visible units. Then alternate 

between updating all the hidden units in parallel and updating 

all the visible units in parallel. 

 This implements a Markov chain that we use to approximate the 

gradient 

 

 

 Better method in practice: Contrastive Divergence 
10 
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Recap: Contrastive Divergence (Fast) 

 

 

 

 

 
 

• A surprising shortcut 

 Start with a training vector on the visible units. 

 Update all the hidden units in parallel. 

 Update the all visible units in parallel to get a “reconstruction”. 

 Update the hidden units again (no further iterations). 
 

 This does not follow the gradient of the log likelihood.  

But it works well [Hinton]. 
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Historical Perspective 

• Training deep networks is difficult 

 Major difficulty: getting the gradient to propagate to the lower 

layers, so that the weights there can be learned 

 Initialization of the weights plays a major role 

– Weights too small  Signal shrinks from layer to layer 

– Weights too large  Signal grows until it is too massive 

 Vanishing and exploding gradient problems known from RNNs  

 

• How can we arrive at a good initialization? 

12 
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Deep Belief Networks (DBN) 

• DBN as stacked RBMs 
 

 RBM:  

 

 

 

 
 

 Pre-train each layer from bottom  

up by considering each pair of layers  

as an RBM. 

 Jointly fine-tune all layers using  

back-propagation algorithm 

 Layer-by-layer unsupervised training 

 
13 

B. Leibe 

⋯ ⋯ 

⋯ ⋯ 

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

⋯ ⋯ 

⋯ ⋯ 

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

⋯ ⋯ 

⋯ ⋯ 

ℎ1 ℎ2 ℎ𝑗 ℎ𝐽 1 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

⋯ ⋯ 

⋯ ⋯ 

𝑙1 𝑙2 𝑙𝑗 𝑙𝐽 

𝑣1 𝑣2 𝑣𝑖 𝑣𝐼 1 

Slide credit: Li Deng 
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Topics of This Lecture 

• Recap: Restricted Boltzmann Machines 
 Energy based Models 

 RBMs 

 Deep Belief Networks 
 

• Initialization Revisited 
 Analysis  

 Glorot Initialization 

 Extension to ReLU 
 

• Outlook 
 Reinforcement Learning 
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Glorot Initialization 

• Breakthrough results 

 In 2010, Xavier Glorot published an analysis of what went wrong 

in the initialization and derived a method for automatic 

initialization. 

 This new initialization massively improved results and made 

direct learning of deep networks possible overnight. 

 

 Let’s look at his analysis in more detail... 
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X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep  

Feedforward Neural Networks, AISTATS 2010. 
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Effect of Sigmoid Nonlinearities 

• Effects of sigmoid/tanh function 

 Linear behavior around 0 

 Saturation for large inputs 

 

 

• If all parameters are too small 

 Variance of activations will drop in each layer 

 Sigmoids are approximately linear close to 0 

 Good for passing gradients through, but... 

 Gradual loss of the nonlinearity  

 No benefit of having multiple layers 
 

• If activations become larger and larger 

 They will saturate and gradient will become zero 
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Image source: http://deepdish.io/2015/02/24/network-initialization/ 
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Analysis 

• Variance of neuron activations 

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y.  

 What is the variance of Y ? 

 
 

 If inputs and outputs have both mean 0, the variance is 

 

 

 

 If the Xi and Wi are all i.i.d, then 

 
 

 The variance of the output is the variance of the input, but  

scaled by n Var(Wi). 
17 
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Analysis (cont’d) 

• Variance of neuron activations 

 if we want the variance of the input and output of a unit to be 

the same, then n Var(Wi) should be 1. This means 

 

 

 If we do the same for the backpropagated gradient, we get 

 

 

 

 As a compromise, Glorot & Bengio propose to use 

 

 
 

 Randomly sample the weights with this variance. That’s it. 
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jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
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Extension to ReLU 

• Another improvement for learning deep models 

 Use Rectified Linear Units (ReLU) 

 
 

 Effect: gradient is propagated with 

a constant factor 

 

 
 

• We can also improve them with proper initialization 

 However, the Glorot derivation was based on tanh units, 

linearity assumption around zero does not hold for ReLU. 

 He et al. made the derivations, proposed to use instead 
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Topics of This Lecture 

• Recap: Restricted Boltzmann Machines 
 Energy based Models 

 RBMs 

 Deep Belief Networks 
 

• Initialization Revisited 
 Analysis  

 Glorot Initialization 

 Extension to ReLU 
 

• Outlook 
 Reinforcement Learning 
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Outlook: Reinforcement Learning 

• Learning to play computer games 

21 
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V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,  

pp. 529-533, 2015 

Input:  

pixels 

+game  

scores 

Output:  

control 

commands 
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Results: Space Invaders 
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Results: Breakout 
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Comparison with Human Performance 
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Close-up 

view 

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
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Learned Representation 

 

 

 

 

 

 

 

 

 

 

 

• t-SNE embedding of DQN last hidden layer (Space Inv.) 
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• L2 Regression Loss 

Idea Behind the Model 

• Interpretation 

 Assume finite number of actions 

 Each number here is a real-valued 

quantity that represents the  

“Q function” in Reinforcement Learning 
 

• Collect experience dataset: 

 Set of tuples {(s,a,s’,r), … } 

 (State, Action taken, New state, Reward 

received 

26 
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target value predicted value 

Current reward + estimate of future reward, discounted by  

Slide credit: Andrej Karpaty 
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