Advanced Machine Learning Lecture 20

Restricted Boltzmann Machines

01.02.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
- Linear Regression
- Regularization (Ridge, Lasso)

Gaussian Processes

- Learning with Latent Variables
, Prob. Distributions \& Approx. Inference
- Mixture Models
, EM and Generalizations
- Deep Learning

Linear Discriminants
, Neural Networks $f: \mathcal{X} \rightarrow \mathbb{R}$

- Backpropagation \& Optimization
, CNNs, RNNs, RBMs, etc.

Recap: Elements of LSTMs

- Forget gate layer
, Look at \mathbf{h}_{t-1} and \mathbf{x}_{t} and output a number between 0 and 1 for each dimension in the cell state C_{t-1}. 0 : completely delete this, 1: completely keep this.
- Update gate layer
, Decide what information to store in the cell state.
, Sigmoid network (input gate layer) decides which values are updated.
- tanh layer creates a vector of new candidate values that could be added to the state.

Recap: Elements of LSTMs

- Output gate layer

Output is a filtered version of our gate state.
. First, apply sigmoid layer to decide what parts of the cell state to output.
Then, pass the cell state through a tanh (to push the values to be between -1 and 1) and multiply it with the output of the sigmoid gate.

$$
o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right)
$$

$$
h_{t}=o_{t} * \tanh \left(C_{t}\right)
$$

RWIIHAACHE

Recap: Gated Recurrent Units (GRU)

- Simpler model than LSTM
- Combines the forget and input gates into a single update gate z_{t}.
Similar definition for a reset gate r_{t}, but with different weights.
In both cases, merge the cell state and hidden state.

$z_{t}=\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right)$
- Empirical results
$r_{t}=\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right)$
Both LSTM and GRU can learn much longer-term dependencies than regular RNNs
$\tilde{h}_{t}=\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right)$

GRU performance similar to LSTM (no clear winner yet), but fewer parameters.

Topics of This Lecture

- Unsupervised Learning
- Motivation
- Energy based Models
, Definition
, EBMs with Hidden Units
, Learning EBMs
- Restricted Boltzmann Machines
, Definition
- RBMs with Binary Units
, RBM Learning
, Contrastive Divergence

Reducing the Need for Labeled Data

- Reducing Model Complexity
, E.g., GoogLeNet: big reduction in the number of parameters compared to AlexNet ($60 \mathrm{M} \rightarrow 5 \mathrm{M}$).
\Rightarrow More efficient use of the available training data.
- Transfer Learning
, Idea: Pre-train a model on a large data corpus (e.g., ILSVRC), then just fine-tune it on the available task data.
, This is what is currently done in Computer Vision.
\Rightarrow Benefit from generic representation properties of the pretrained model.
- Unsupervised / Semi-supervised Learning
- Idea: Try to learn a generic representation from unlabeled data and then just adapt it for the supervised classification task.
B. Leibe

Energy Based Models (EBM)

- Energy Based Probabilistic Models
- Define the joint probability over a set of variables x through an energy function

$$
p(\mathbf{x})=\frac{1}{Z} e^{-E(\mathbf{x})}
$$

where the normalization factor Z is called the partition function

$$
Z=\sum_{\mathbf{x}} e^{-E(\mathbf{x})}
$$

- An EBM can be learned by performing (stochastic) gradient descent on the negative log-likelihood of the training data

$$
\mathcal{L}(\theta, \mathcal{D})=\frac{1}{N} \sum_{x_{n} \in \mathcal{D}} \log p\left(x_{n}\right)
$$

using the stochastic gradient $-\frac{\partial \log p\left(x_{n}\right)}{\partial \theta}$

Looking Back...

- We have seen very powerful deep learning methods.
, Deep MLPs
- CNNs
, RNNs (+LSTM, GRU)
, (When used properly) they work very well and have achieved great successes in the last few years.
- But...
. All of those models have many parameters.
- They need A LOT of training data to work well.
, Labeled training data is very expensive.
\Rightarrow How can we reduce the need for labeled data?

Topics of This Lecture

RWIHAMCHE

- Unsupervised Learning

Motivation

- Energy based Models
, Definition
, EBMs with Hidden Units
, Learning EBMs
- Restricted Boltzmann Machines

Definition
RBMs with Binary Units
RBM Learning
Contrastive Divergence
B. Leibe

EBMs with Hidden Units

- In the following

We want to explore deeper models with (multiple layers of) hidden units
, E.g., Restricted Boltzmann machines

This will lead to Deep Belief Networks (DBN) that were popular until very recently.

EBMs with Hidden Units

- Hidden variable formulation
, In many cases of interest, we do not observe the examples fully
, Split them into an observed part x and a hidden part h :

$$
p(\mathbf{x})=\sum_{\mathbf{h}} p(\mathbf{x}, \mathbf{h})=\frac{1}{Z} \sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}
$$

- Notation
- We define the free energy (inspired by physics)

$$
\mathcal{F}(\mathbf{x})=-\log \sum_{\mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}
$$

and write the joint probability as

$$
p(\mathbf{x})=\frac{e^{\mathcal{F}(\mathbf{x})}}{Z} \quad \text { with } \quad Z=\sum_{\mathbf{x}} e^{-\mathcal{F}(\mathbf{x})} .
$$

Challenge for Learning

$$
-\frac{\partial \log p(\mathbf{x})}{\partial \theta}=\frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta}-\sum_{\tilde{\mathbf{x}}} p(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}
$$

- Problem
, Difficult to determine this gradient analytically.
. Computing it would involve evaluating

$$
\mathbb{E}_{p}\left[\frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta}\right]
$$

i.e., the expectation over all possible configurations of the input \mathbf{x} under the distribution p formed by the model!
\Rightarrow Often infeasible.
(The names do not refer to the sign of each term, but to their effect on the probability density defined by the model)

EBMs with Hidden Units

- Expressing the gradient
- Free energy formulation of the joint probability

$$
p(\mathbf{x})=\frac{e^{\mathcal{F}(\mathbf{x})}}{Z} \quad \text { with } \quad Z=\sum_{\mathbf{x}} e^{-\mathcal{J}(\mathbf{x})}
$$

- The negative log-likelihood gradient then takes the following form

$$
-\frac{\partial \log p(\mathbf{x})}{\partial \theta}=\underbrace{\frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta}}_{\begin{array}{c}
\text { Positive } \\
\text { phase }
\end{array}}-\underbrace{\sum_{\tilde{\mathbf{x}}} p(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}}_{\begin{array}{c}
\text { Negative } \\
\text { phase }
\end{array}} .
$$

Steps Towards a Solution...

- Monte Carlo approximation

Estimate the expectation using a fixed number of model samples for the negative phase gradient ("negative particles")

$$
-\frac{\partial \log p(\mathbf{x})}{\partial \theta} \approx \underbrace{\frac{\partial \mathcal{F}(\mathbf{x})}{\partial \theta}}_{\begin{array}{c}
\text { free energy } \\
\text { at current point }
\end{array}}-\underbrace{\frac{1}{|\mathcal{N}|} \sum_{\tilde{\mathbf{x}} \in \mathcal{N}} \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \theta}}_{\begin{array}{c}
\text { avg. free energy } \\
\text { for all other points }
\end{array}}
$$

, With this, we almost have a practical stochastic algorithm for learning an EBM.

- We just need to define how to extract the negative particles \mathcal{N}.

Many sampling approaches can be used here.
MCMC methods are especially well-suited.
And this is where all parts of the lecture finally come together...

Topics of This Lecture

- Unsupervised Learning

Motivation

- Energy based Models

Definition
EBMs with Hidden Units
Learning EBMs

- Restricted Boltzmann Machines
- Definition
, RBMs with Binary Units
, RBM Learning
, Contrastive Divergence

Restricted Boltzmann Machines (RBM)

- Boltzmann Machines (BM)
- BMs are a particular form of log-linear MRF, for which the free energy is linear in its free parameters.
- To make them powerful enough to represent complicated distributions, we consider some of the variables as hidden.
In their general form, they are very complex to handle.
- Restricted Boltzmann Machines (RBM)
- RBMs are BMs that are restricted not to contain visible-visible and hidden-hidden connections.

This makes them far easier to work with.

- Properties (cont'd)
- Because of their specific structure, visible and hidden units are conditionally independent given one another.

- Therefore the following factorization property holds:

$$
\begin{aligned}
& p(\mathbf{h} \mid \mathbf{v})=\prod_{i} p\left(h_{i} \mid \mathbf{v}\right) \\
& p(\mathbf{v} \mid \mathbf{h})=\prod_{j} p\left(v_{j} \mid \mathbf{h}\right) .
\end{aligned}
$$

Restricted Boltzmann Machines (RBM)

- Properties
- Components

Visible units \mathbf{v} with offsets \mathbf{b} Hidden units \mathbf{h} with offsets \mathbf{c} Connection matrix W

. Energy Function of an RBM
$E(\mathbf{v}, \mathbf{h})=-\sum_{i} b_{i} v_{i}-\sum_{j} c_{j} h_{j}-\sum_{i, j} w_{i j} v_{i} h_{j}$
$=-\mathbf{b}^{\top} \mathbf{v}-\mathbf{c}^{\top} \mathbf{h}-\mathbf{h}^{\top} W \mathbf{v}$

- This translates to a free energy formula

$$
\mathcal{F}(\mathbf{v})=-\mathbf{b}^{\top} \mathbf{v}-\sum_{i} \log \sum_{h_{i}} e^{h_{i}\left(c_{i}+W_{i} \mathbf{v}\right)}
$$

- Interpretation of RBMs

Factorization property

$$
\begin{aligned}
p(\mathbf{h} \mid \mathbf{v}) & =\prod_{i} p\left(h_{i} \mid \mathbf{v}\right) \\
p(\mathbf{v} \mid \mathbf{h}) & =\prod_{j} p\left(v_{j} \mid \mathbf{h}\right)
\end{aligned}
$$

RBMs can be seen as a product of experts specializing on different areas.

Experts detect negative constraints, if one of them returns zero, the entire product is zero.
B. Leibe

RBMs with Binary Units

- Binary units
, v_{j} and $h_{i} \in\{0,1\}$ are considered Bernoulli variables.
This results in a probabilistic version of the usual neuron activation function

$$
\begin{aligned}
p\left(h_{i}=1 \mid \mathbf{v}\right) & =\sigma\left(c_{i}+W_{i} \mathbf{v}\right) \\
p\left(v_{j}=1 \mid \mathbf{h}\right) & =\sigma\left(b_{j}+W_{j}^{\top} \mathbf{h}\right)
\end{aligned}
$$

The free energy of an RBM with binary units simplifies to

$$
\mathcal{F}(\mathbf{v})=-\mathbf{b}^{\top} \mathbf{v}-\sum_{i} \log \left(1+e^{\left(c_{i}+W_{i} \mathbf{v}\right)}\right)
$$

RBMs with Binary Units

- Binary units

Free energy

$$
\mathcal{F}(\mathbf{v})=-\mathbf{b}^{\top} \mathbf{v}-\sum_{i} \log \left(1+e^{\left(c_{i}+W_{i} \mathbf{v}\right)}\right) .
$$

This results in the iterative update equations for the gradient log-likelihoods

$$
\begin{aligned}
& -\frac{\partial \log p(\mathbf{v})}{\partial W_{i j}}=\mathbb{E}_{\mathbf{v}}\left[p\left(h_{i} \mid \mathbf{v}\right) \cdot v_{j}\right]-v_{j}^{(t)} \cdot \sigma\left(W_{i} \cdot \mathbf{v}^{(t)}+c_{i}\right) \\
& -\frac{\partial \log p(\mathbf{v})}{\partial c_{i}}=\mathbb{E}_{\mathbf{v}}\left[p\left(h_{i} \mid \mathbf{v}\right)\right]-\operatorname{sigm}\left(W_{i} \cdot \mathbf{v}^{(t)}\right) \\
& -\frac{\partial \log p(\mathbf{v})}{\partial b_{j}}=\mathbb{E}_{\mathbf{v}}\left[p\left(v_{j} \mid \mathbf{h}\right)\right]-\mathbf{v}_{j}^{(t)}
\end{aligned}
$$

- Start with a training vector on the visible units. Then alternate between updating all the hidden units in parallel and updating all the visible units in parallel.
- This implements a Markov chain that we use to approximate the gradient

$$
\frac{\partial \log p(\mathbf{v})}{\partial w_{i j}}=<v_{i}, h_{j}>^{0}-<v_{i}, h_{j}>^{\infty}
$$

, Better method in practice: Contrastive Divergence
Slide credit: Geoff Hinton

