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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Prob. Distributions & Approx. Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Linear Discriminants 

 Neural Networks 

 Backpropagation & Optimization 

 CNNs, RNNs, RBMs, etc. 
B. Leibe 
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Recap: Long Short-Term Memory 

 

 

 

 

 

 

 

 

 
 

• LSTMs 

 Inspired by the design of memory cells 

 Each module has 4 layers, interacting in a special way. 
3 

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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Recap: Elements of LSTMs 

• Forget gate layer 

 Look at ht-1 and xt and output a  

number between 0 and 1 for each 

dimension in the cell state Ct-1. 

0: completely delete this, 

1: completely keep this. 
 

• Update gate layer 

 Decide what information to store 

in the cell state. 
 

 Sigmoid network (input gate layer) 

decides which values are updated. 

 tanh layer creates a vector of new 

candidate values      that could be  

added to the state. 

 4 
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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Recap: Elements of LSTMs 

• Output gate layer 

 Output is a filtered version of our 

gate state.  

 First, apply sigmoid layer to decide 

what parts of the cell state to 

output. 

 Then, pass the cell state through a 

tanh (to push the values to be 

between -1 and 1) and multiply it 

with the output of the sigmoid gate. 
 

 

5 
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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Recap: Gated Recurrent Units (GRU) 

• Simpler model than LSTM 

 Combines the forget and input 

gates into a single update gate zt. 

 Similar definition for a reset gate rt,  

but with different weights. 

 In both cases, merge the cell state  

and hidden state. 

 

• Empirical results 

 Both LSTM and GRU can learn much 

longer-term dependencies than  

regular RNNs 

 GRU performance similar to LSTM  

(no clear winner yet), but fewer 

parameters. 
6 

B. Leibe 
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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Topics of This Lecture 

• Unsupervised Learning 
 Motivation 

 

• Energy based Models 
 Definition 

 EBMs with Hidden Units 

 Learning EBMs 
 

• Restricted Boltzmann Machines  
 Definition 

 RBMs with Binary Units 

 RBM Learning 

 Contrastive Divergence 
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Looking Back... 

• We have seen very powerful deep learning methods. 

 Deep MLPs 

 CNNs 

 RNNs (+LSTM, GRU) 

 (When used properly) they work very well and have achieved 

great successes in the last few years. 

 

• But... 

 All of those models have many parameters. 

 They need A LOT of training data to work well. 

 Labeled training data is very expensive. 

 How can we reduce the need for labeled data? 

8 
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Reducing the Need for Labeled Data 

• Reducing Model Complexity 

 E.g., GoogLeNet: big reduction in the number of parameters 

compared to AlexNet (60M  5M). 

 More efficient use of the available training data. 
 

• Transfer Learning 

 Idea: Pre-train a model on a large data corpus (e.g., ILSVRC), 

then just fine-tune it on the available task data. 

 This is what is currently done in Computer Vision. 

 Benefit from generic representation properties of the pre-

trained model. 
 

• Unsupervised / Semi-supervised Learning 

 Idea: Try to learn a generic representation from unlabeled data 

and then just adapt it for the supervised classification task. 

9 
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Topics of This Lecture 

• Unsupervised Learning 
 Motivation 

 

• Energy based Models 
 Definition 

 EBMs with Hidden Units 

 Learning EBMs 
 

• Restricted Boltzmann Machines  
 Definition 

 RBMs with Binary Units 

 RBM Learning 

 Contrastive Divergence 
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Energy Based Models (EBM) 

• Energy Based Probabilistic Models 

 Define the joint probability over a set of variables x through an 

energy function 

 

 

    where the normalization factor Z is called the partition function 

 

 
 
 

 An EBM can be learned by performing (stochastic) gradient 

descent on the negative log-likelihood of the training data 

 

 

 
 

using the stochastic gradient  
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Energy Based Models: Examples 

• We have been using EBMs all along... 

 E.g., Collections of independent variables 

 

 

 

 

 

 E.g., Markov Random Fields 

 

 

 

 

12 
Image Source: S.M. A. Eslami et al. 

MRF 

where fi encodes the NLL of vi 
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• In the following 

 We want to explore deeper models with (multiple layers of) 

hidden units 

 E.g., Restricted Boltzmann machines 

 

 

 

 

 

 

 This will lead to Deep Belief Networks (DBN) that were popular 

until very recently. 

 

 

 

 

 

 

 

EBMs with Hidden Units 
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EBMs with Hidden Units 

14 
B. Leibe 

• Hidden variable formulation 

 In many cases of interest, we do not observe the examples fully 

 Split them into an observed part x and a hidden part h: 

 

 
 

 

• Notation 

 We define the free energy (inspired by physics) 

 

 
 

    and write the joint probability as 

with 
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EBMs with Hidden Units 

• Expressing the gradient 

 Free energy formulation of the joint probability 

 

 
 

 The negative log-likelihood gradient then takes the following 

form 

 

 

 

 

 

 

    (The names do not refer to the sign of each term, but to their 

effect on the probability density defined by the model) 
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with 

Positive 

phase 

Negative 

phase 
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Challenge for Learning 

16 
B. Leibe 

 

 

• Problem 

 Difficult to determine this gradient analytically. 

 Computing it would involve evaluating 

 

 

 

i.e., the expectation over all possible configurations of the input 

x under the distribution p formed by the model! 

 Often infeasible. 

Ep

·
@F(x)

@µ

¸
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Steps Towards a Solution... 

• Monte Carlo approximation 

 Estimate the expectation using a fixed number of model samples 

for the negative phase gradient (“negative particles”) 

 

 

 

 

 

 With this, we almost have a practical stochastic algorithm for 

learning an EBM. 

 We just need to define how to extract the negative particles N. 

– Many sampling approaches can be used here. 

– MCMC methods are especially well-suited. 
 

And this is where all parts of the lecture finally come together... 
17 
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free energy 

at current point 

avg. free energy 

for all other points 
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Restricted Boltzmann Machines (RBM) 

• Boltzmann Machines (BM) 

 BMs are a particular form of log-linear MRF, for which the free 

energy is linear in its free parameters. 

 To make them powerful enough to represent complicated 

distributions, we consider some of the variables as hidden. 

 In their general form, they are very complex to handle. 
 

• Restricted Boltzmann Machines (RBM) 

 RBMs are BMs that are restricted not to contain visible-visible 

and hidden-hidden connections. 

 

 

 

 

 This makes them far easier to work with. 
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• Properties 

 Components 

– Visible units v with offsets b 

– Hidden units h with offsets c 

– Connection matrix W 
 

 Energy Function of an RBM 

 

 

 

 

 This translates to a free energy formula 

 

 

 

 

Restricted Boltzmann Machines (RBM) 
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Restricted Boltzmann Machines (RBM) 

• Properties (cont’d) 

 Because of their specific structure, 

visible and hidden units are 

conditionally independent given one 

another. 

 

 Therefore the following factorization property holds: 
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Restricted Boltzmann Machines (RBM) 

• Interpretation of RBMs 

 Factorization property 

 

 

 

 

 

 RBMs can be seen as a product of experts specializing on 

different areas. 

 Experts detect negative constraints, if one of them returns 

zero, the entire product is zero. 
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RBMs with Binary Units 

• Binary units 

 vj and hi 2 {0,1} are considered Bernoulli variables. 

 This results in a probabilistic version of the usual neuron 

activation function 

 

 

 

 The free energy of an RBM with binary units simplifies to 
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RBMs with Binary Units 

• Binary units 

 Free energy 

 

 
 

 This results in the iterative update equations for the gradient 

log-likelihoods 
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¡@log p(v)

@Wij

= Ev [p(hijv) ¢ vj ]¡ v
(t)

j ¢ ¾(Wi ¢ v(t) + ci)

¡@log p(v)

@ci
= Ev[p(hijv)]¡ sigm(Wi ¢ v(t))

¡@log p(v)

@bj
= Ev[p(vj jh)]¡ v

(t)

j
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RBM Learning 

• Iterative approach 

 

 

 

 

 
 

 Start with a training vector on the visible units. Then alternate 

between updating all the hidden units in parallel and updating 

all the visible units in parallel. 

 This implements a Markov chain that we use to approximate the 

gradient 

 

 

 Better method in practice: Contrastive Divergence 
25 

B. Leibe Slide credit: Geoff Hinton 
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Contrastive Divergence 

 

 

 

 

 
 

• A surprising shortcut 

 Start with a training vector on the visible units. 

 Update all the hidden units in parallel. 

 Update the all visible units in parallel to get a “reconstruction”. 

 Update the hidden units again (no further iterations). 
 

 This does not follow the gradient of the log likelihood.  

But it works well [Hinton]. 

 26 
B. Leibe Slide credit: Geoff Hinton 
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Example 

 

 

 

 

 

 

 

 

 

 

• RBM training on MNIST 

 Persistent Contrastive Divergence with chain length 15 
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Extension: Deep RBMs 

 

28 
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Input: pixels 

Low-level features: 

Edges 

Higher-level features: 

Combinations of edges 

Built from unlabeled input. 

Slide credit: Ruslan Salakhutdinov 


