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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Prob. Distributions & Approx. Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Linear Discriminants 

 Neural Networks 

 Backpropagation & Optimization 

 CNNs, RNNs, RBMs, etc. 
B. Leibe 
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Recap: Neural Probabilistic Language Model 

 

 

 

 

 

 

 
 

• Core idea 

 Learn a shared distributed encoding (word embedding) for the 

words in the vocabulary. 

3 
B. Leibe Slide adapted from Geoff Hinton Image source: Geoff Hinton 

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language  

Model, In JMLR, Vol. 3, pp. 1137-1155, 2003. 

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Recap: word2vec 

• Goal 

 Make it possible to learn high-quality 

word embeddings from huge data sets 

(billions of words in training set). 
 

• Approach 

 Define two alternative learning tasks 

for learning the embedding: 

– “Continuous Bag of Words” (CBOW) 

– “Skip-gram” 

 Designed to require fewer parameters. 

 

4 
B. Leibe 

Image source: Mikolov et al., 2015 
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Recap: word2vec CBOW Model 

• Continuous BOW Model 

 Remove the non-linearity 

from the hidden layer 

 Share the projection layer  

for all words (their vectors 

are averaged) 
 

 Bag-of-Words model 

(order of the words does not  

 matter anymore) 

 

5 
B. Leibe 

Image source: Xin Rong, 2015 

SUM 
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Recap: word2vec Skip-Gram Model 

• Continuous Skip-Gram Model 

 Similar structure to CBOW 

 Instead of predicting the current 

word, predict words  

within a certain range of 

the current word. 

 Give less weight to the more 

distant words 

 

• Implementation 

 Randomly choose a number R 2 [1,C]. 

 Use R words from history and R words 

from the future of the current word 

as correct labels. 

 R+R word classifications for each input. 

 
6 

B. Leibe 
Image source: Xin Rong, 2015 
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Problems with 100k-1M outputs 

• Weight matrix gets huge! 

 Example: CBOW model 

 One-hot encoding for inputs 

 Input-hidden connections are 

just vector lookups. 
 

 This is not the case for the 

hidden-output connections! 

 State h is not one-hot, and  

vocabulary size is 1M. 

 W’N£V has 300£1M entries 
 

• Softmax gets expensive! 

 Need to compute normaliza- 

tion over 100k-1M outputs 

 
7 

B. Leibe 
Image source: Xin Rong, 2015 
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Recap: Hierarchical Softmax 

 

 

 

 

 

 

• Idea 

 Organize words in binary search tree, words are at leaves 

 Factorize probability of word w0 as a product of node 

probabilities along the path. 

 Learn a linear decision function y = vn(w,j)¢h at each node to 

decide whether to proceed with left or right child node. 

 Decision based on output vector of hidden units directly. 
8 

B. Leibe 
Image source: Xin Rong, 2015 
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Topics of This Lecture 

• Recurrent Neural Networks (RNNs) 
 Motivation 

 Intuition 
 

• Learning with RNNs 
 Formalization 

 Comparison of Feedforward and Recurrent networks 

 Backpropagation through Time (BPTT) 
 

• Problems with RNN Training 
 Vanishing Gradients 

 Exploding Gradients 

 Gradient Clipping 
 

 

9 
B. Leibe 
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Recurrent Neural Networks 

 

 

 

 

 

 

 

• Up to now 

 Simple neural network structure: 1-to-1 mapping of inputs to 

outputs 
 

• This lecture: Recurrent Neural Networks 

 Generalize this to arbitrary mappings 

10 
B. Leibe 

Image source: Andrej Karpathy 
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Application: Part-of-Speech Tagging 

 

11 
B. Leibe 

Image source: http://rewordify.com 
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Application: Predicting the Next Word  
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B. Leibe 

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, Recurrent Neural Network  

Based Language Model, Interspeech 2010. 

Slide credit: Andrej Karpathy, Fei-Fei Li Image source: Mikolov et al., 2010 

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
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Application: Machine Translation  

 

13 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li 

I. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks,  

NIPS 2014. 

papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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RNNs: Intuition 

• Example: Language modeling 

 Suppose we had the training sequence “cat sat on mat” 

 

 We want to train a language model 

 

 

 First assume we only have a finite, 1-word history. 

 I.e., we want those probabilities to be high: 

– p(cat | <S>) 

– p(sat | cat) 

– p(on | sat) 

– p(mat | on) 

– p(<E> | mat) 
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B. Leibe 

p(next word | previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Vanilla 2-layer classification net 

15 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li 

Word embedding 

(300D vector for  

 each word) 

Hidden layer 

(e.g., 500D vectors) 

10,001D class scores 

(Softmax over 10k  

 words and a special 

 <END> token) 
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RNNs: Intuition 

• Turning this into an RNN (wait for it...) 

16 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li Image source: Andrej Karpathy 

Word embedding 

(300D vector for  

 each word) 

Hidden layer 

(e.g., 500D vectors) 

10,001D class scores 

(Softmax over 10k  

 words and a special 

 <END> token) 
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RNNs: Intuition 

• Turning this into an RNN (done!) 

17 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li Image source: Andrej Karpathy 

Word embedding 

(300D vector for  

 each word) 

Hidden layer 

(e.g., 500D vectors) 

10,001D class scores 

(Softmax over 10k  

 words and a special 

 <END> token) 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

18 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

19 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

20 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

21 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

22 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

23 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

24 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

25 
B. Leibe 

p(next word |  

         previous words) 

sample! 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

26 
B. Leibe 

p(next word |  

         previous words) 

samples <END>? Done! 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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Topics of This Lecture 

• Recurrent Neural Networks (RNNs) 
 Motivation 

 Intuition 
 

• Learning with RNNs 
 Formalization 

 Comparison of Feedforward and Recurrent networks 

 Backpropagation through Time (BPTT) 
 

• Problems with RNN Training 
 Vanishing Gradients 

 Exploding Gradients 

 Gradient Clipping 
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RNNs: Introduction 

• RNNs are regular NNs whose 

hidden units have additional 

forward connections over time. 

 You can unroll them to create 

a network that extends over 

time. 

 When you do this, keep in mind 

that the weights for the hidden 

are shared between temporal 

layers.   

28 
B. Leibe 

Image source: Andrej Karpathy 
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RNNs: Introduction 

• RNNs are very powerful,  

because they combine two  

properties: 

 Distributed hidden state that  

allows them to store a lot of  

information about the past  

efficiently. 

 Non-linear dynamics that allows 

them to update their hidden 

state in complicated ways. 

 

• With enough neurons and time, RNNs can compute 

anything that can be computed by your computer. 

29 
B. Leibe Slide credit: Geoff Hinton Image source: Andrej Karpathy 
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Feedforward Nets vs. Recurrent Nets 

• Imagine a feedforward network 

 Assume there is a time delay 

of 1 in using each connec- 

tion. 

 This is very similar to how 

an RNN works. 

 Only change: the layers  

share their weights. 

 

 

 

 
 

 The recurrent net is just a feedforward net that keeps 

reusing the same weights.  

30 
B. Leibe 

time t0 

time t1 

time t2 

w22 w12 

w21 

w23 

w32 

w22 w12 

w21 

w23 

w32 
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Backpropagation with Weight Constraints 

• It is easy to modify the backprop algorithm to 

incorporate linear weight constraints 

 To constrain                , we start with the same initialization 

and then make sure that the gradients are the same: 

 
 

 We compute the gradients as usual and then use 

 

 

 

for both w1 and w2. 

31 
B. Leibe Slide adapted from Geoff Hinton 
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Backpropagation Through Time (BPTT) 

• Formalization 

 Inputs   xt 

 Outputs   yt 

 Hidden units  ht 

 Initial state h0 
 

 Connection matrices 

– Wxh 

–Why 

– Whh 

 

 Configuration 

 

 
32 

B. Leibe 
Image source: Richard Socher 
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• Efficient propagation scheme 

 yi is already known from forward pass! (Dynamic Programming) 

 Propagate back the gradient from layer j and multiply with  yi.  

Recap: Backpropagation Algorithm 

33 
B. Leibe Slide adapted from Geoff Hinton 
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Backpropagation Through Time (BPTT) 
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• Error function 

 Computed over all time steps: 
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Backpropagation Through Time (BPTT) 
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• Backpropagated gradient 
 

 For weight wij: 
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Backpropagation Through Time (BPTT) 
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• Backpropagated gradient 
 

 For weight wij: 
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Backpropagation Through Time (BPTT) 
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• Backpropagated gradient 
 

 For weight wij: 

 
 

 In general: 
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Backpropagation Through Time (BPTT) 
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• Analyzing the terms 
 

 For weight wij: 

 
 

 This is the “immediate” partial derivative (with hk-1 as constant) 
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Backpropagation Through Time (BPTT) 
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• Analyzing the terms 
 

 For weight wij: 

 
 

 Propagation term: 
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Backpropagation Through Time (BPTT) 

• Summary 

 Backpropagation equations 

 

 

 

 

 

 

 

 

 

 Remaining issue: how to set the initial state h0? 

 Learn this together with all the other parameters. 
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Topics of This Lecture 

• Recurrent Neural Networks (RNNs) 
 Motivation 

 Intuition 
 

• Learning with RNNs 
 Formalization 

 Comparison of Feedforward and Recurrent networks 

 Backpropagation through Time (BPTT) 
 

• Problems with RNN Training 
 Vanishing Gradients 

 Exploding Gradients 

 Gradient Clipping 
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Problems with RNN Training 

• Training RNNs is very hard 

 As we backpropagate through the layers, the magnitude of the 

gradient may grow or shrink exponentially 

 Exploding or vanishing gradient problem! 
 

 In an RNN trained on long sequences (e.g., 100 time steps) the 

gradients can easily explode or vanish. 

 Even with good initial weights, it is very hard to detect that the 

current target output depends on an input from many time-steps 

ago. 
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Exploding / Vanishing Gradient Problem 

• Consider the propagation equations: 

 

 

 

 

 

 

 if t goes to infinity and l = t – k. 
 

 We are effectively taking the weight matrix to a high power. 

 The result will depend on the eigenvalues of Whh. 

– Largest eigenvalue > 1  Gradients may explode. 

– Largest eigenvalue < 1  Gradients will vanish. 

– This is very bad... 
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Why Is This Bad? 

• Vanishing gradients in language modeling 

 Words from time steps far away are not taken into consideration 

when training to predict the next word. 

 

• Example: 

 „Jane walked into the room. John walked in too. It was late in 

the day. Jane said hi to ____“ 

 

 The RNN will have a hard time learning such long-range 

dependencies. 
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Gradient Clipping 

• Trick to handle exploding gradients 

 If the gradient is larger than a threshold, clip it to that 

threshold. 

 

 

 

 

 

 

 

 

 This makes a big difference in RNNs 
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Gradient Clipping Intuition 

 

 

 

 

 

 

 
 

• Example 

 Error surface of a single RNN neuron 

 High curvature walls 

 Solid lines: standard gradient descent trajectories 

 Dashed lines: gradients rescaled to fixed size 
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Image source: Pascalu et al., 2013 Slide adapted from Richard Socher 
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