

Advanced Machine Learning Lecture 17

Word Embeddings

18.01.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes
- Learning with Latent Variables
 - Prob. Distributions & Approx. Inference
 - Mixture Models
 - EM and Generalizations

- Linear Discriminants
- Neural Networks
- Backpropagation & Optimization
- CNNs, RNNs, RBMs, etc.

Topics of This Lecture

- Recap: CNN Architectures
- Applications of CNNs
- Word Embeddings
 - Neuroprobabilistic Language Models
 - word2vec
 - GloVe
 - Hierarchical Softmax
- Outlook: Recurrent Neural Networks

Recap: Convolutional Neural Networks

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278-2324, 1998.

4

Recap: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10⁶ images instead of 10³)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012.

Recap: VGGNet (2014/15)

Main ideas

- Deeper network
- Stacked convolutional layers with smaller filters (+ nonlinearity)
- Detailed evaluation of all components

Results

Improved ILSVRC top-5 error rate to 6.7%.

ConvNet Configuration						
A	A-LRN	В	C	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
input $(224 \times 224 \text{ RGB imag})$						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
maxpool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
maxpool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
FC-4096 Mainly use					y usea	
FC-4096						
FC-1000						
soft-max						

Recap: GoogLeNet (2014)

- Ideas:
 - Learn features at multiple scales

B. Leibe

(b) Inception module with dimension reductions

Image source: Szegedy et al.

Discussion

GoogLeNet

- 12× fewer parameters than AlexNet
- ⇒ ~5M parameters
- Where does the main reduction come from?
- ⇒ From throwing away the fully connected (FC) layers.

Effect

- \rightarrow After last pooling layer, volume is of size [7×7×1024]
- Normally you would place the first 4096-D FC layer here (Many million params).
- Instead: use Average pooling in each depth slice:
- \Rightarrow Reduces the output to [1×1×1024].
- ⇒ Performance actually improves by 0.6% compared to when using FC layers (less overfitting?)

Recap: Visualizing CNNs

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Topics of This Lecture

- Recap: CNN Architectures
- Applications of CNNs
- Word Embeddings
 - Neuroprobabilistic Language Models
 - word2vec
 - GloVe
 - Hierarchical Softmax
- Outlook: Recurrent Neural Networks

The Learned Features are Generic

state of the art level (pre-CNN)

- Experiment: feature transfer
 - Train AlexNet-like network on ImageNet
 - Chop off last layer and train classification layer on CalTech256
 - ⇒ State of the art accuracy already with only 6 training images!

Transfer Learning with CNNs

1. Train on ImageNet

Transfer Learning with CNNs

1. Train on ImageNet

3. If you have medium sized dataset, "finetune" instead: use the old weights as initialization, train the full network or only some of the higher layers.

Retrain bigger portion of the network

FC-4096

FC-4096

FC-1000

softmax

Other Tasks: Detection

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

Results on PASCAL VOC Detection benchmark

[Uijlings et al., 2013] Pre-CNN state of the art: 35.1% mAP

> 33.4% mAP **DPM**

R-CNN: 53.7% mAP

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR 2014

Other Tasks: Semantic Segmentation

[Farabet et al. ICML 2012, PAMI 2013]

Other Tasks: Semantic Segmentation

[Farabet et al. ICML 2012, PAMI 2013]

Other Tasks: Face Verification

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, <u>DeepFace: Closing the Gap to Human-Level Performance in Face Verification</u>, CVPR 2014

Slide credit: Svetlana Lazebnik

Commercial Recognition Services

• E.g., clarifai

Try it out with your own media

Upload an image or video file under 100mb or give us a direct link to a file on the web.

*By using the demo you agree to our terms of service

Commercial Recognition Services

- Be careful when taking test images from Google Search
 - Chances are they may have been seen in the training set...

Topics of This Lecture

- Recap: CNN Architectures
- Applications of CNNs
- Word Embeddings
 - Neuroprobabilistic Language Models
 - word2vec
 - GloVe
 - Hierarchical Softmax
- Outlook: Recurrent Neural Networks

Neural Networks for Sequence Data

- Up to now
 - Simple structure: Input vector → Processing → Output
- In the following, we will look at sequence data
 - Interesting new challenges
 - Varying input/output length, need to memorize state, long-term dependencies, ...
- Currently a hot topic
 - Early successes of NNs for text / language processing.
 - Very good results for part-of-speech tagging, automatic translation, sentiment analysis, etc.
 - Recently very interesting developments for video understanding, image+text modeling (e.g., creating image descriptions), and even single-image understanding (attention processes).

Motivating Example

- Predicting the next word in a sequence
 - Important problem for speech recognition, text autocorrection, etc.
- Possible solution: The trigram (n-gram) method
 - Take huge amount of text and count the frequencies of all triplets (n-tuples) of words.
 - Use those frequencies to predict the relative probabilities of words given the two previous words

$$\frac{p(w_3 = c | w_2 = b, w_1 = a)}{p(w_3 = d | w_2 = b, w_1 = a)} = \frac{\text{count}(abc)}{\text{count}(abd)}$$

State-of-the-art until not long ago...

Problems with N-grams

- Problem: Scalability
 - $\,\,floor$ We cannot easily scale this to large N.
 - > The number of possible combinations increases exponentially
 - So does the required amount of data
- Problem: Partial Observability
 - ightarrow With larger N, many counts would be zero.
 - The probability is not zero, just because the count is zero!
 - \Rightarrow Need to back off to (N-1)-grams when the count for N-grams is too small.
 - ⇒ Necessary to use elaborate techniques, such as Kneser-Ney smoothing, to compensate for uneven sampling frequencies.

Let's Try Neural Networks for this Task

Important issues

- How should we encode the words to use them as input?
- What internal NN structure do we need?
- How can we perform classification (softmax) with so many possible outputs?

Neural Probabilistic Language Model

Core idea

Learn a shared distributed encoding (word embedding) for the words in the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, <u>A Neural Probabilistic Language</u> <u>Model</u>, In JMLR, Vol. 3, pp. 1137-1155, 2003.

Word Embedding

Idea

- > Encode each word as a vector in a d-dimensional feature space.
- > Typically, $V \sim 1 \mathrm{M}$, $d \in (50, 300)$

Learning goal

- > Determine weight matrix $\mathbf{W}_{V\!\times d}$ that performs the embedding.
- Shared between all input words

Input

- Vocabulary index x in 1-of-K encoding.
- ightarrow For each input ${f x}$, only one row of ${f W}_{V\! imes d}$ is needed.
- \Rightarrow $\mathbf{W}_{V \times d}$ is effectively a look-up table.

Word Embedding: Full Network

- ullet Train on large corpus of data, learn $\mathbf{W}_{V\! imes d}$.
 - \Rightarrow Shown to outperform n-grams by [Bengio et al., 2003].

Visualization of the Resulting Embedding

```
winner
player
                      nfl
    team
                                  hasehall
                                     wrestling
                        olympic
  leaque
                                      sports
                  champion
             finals championships
                  olympics
                               matches
                          races <sup>games</sup>
                                clubs
     medal
       prize
                                plavers
                                  fans
           awarvic
```

(part of a 2.5D map of the most common 2500 words)

Visualization of the Resulting Embedding

```
virginia
             columbia
                     montreal
                                        caribraldge
                 manchester
          London
                              victoria
       beդ<u>իկու</u>չ
                      quebec
         MOSCOW
                                scotland
                    mexico
                            wal angland
                            ireland <sub>britain</sub>
              canada
        singapore america norwa
19
                  india
korea japan rome
```

RWTHAACHEN UNIVERSITY

Visualization of the Resulting Embedding

Popular Word Embeddings

- Open issue
 - What is the best setup for learning such an embedding from large amounts of data (billions of words)?
- Several recent improvements

word2vec [Mikolov 2013]

GloVe [Pennington 2014]

⇒ Pretrained embeddings available for everyone to download.

RWTHAACHEN UNIVERSITY

word2vec

Goal

Make it possible to learn high-quality word embeddings from huge data sets (billions of words in training set).

Approach

- Define two alternative learning tasks for learning the embedding:
 - "Continuous Bag of Words" (CBOW)
 - "Skip-gram"
- Designed to require fewer parameters.

word2vec: CBOW Model

Continuous BOW Model

- Remove the non-linearity from the hidden layer
- Share the projection layer for all words (their vectors are averaged)
- ⇒ Bag-of-Words model (order of the words does not matter anymore)

word2vec: Skip-Gram Model

- Continuous Skip-Gram Model
 - Similar structure to CBOW
 - Instead of predicting the current word, predict words within a certain range of Input layer the current word.
 - Give less weight to the more distant words

Implementation

- Randomly choose a number $R \in [1,C]$.
- > Use R words from history and R words from the future of the current word as correct labels.
- $\Rightarrow R+R$ word classifications for each input.

B. Leibe

 x_k

V-dim

Interesting property

- Embedding often preserves linear regularities between words
 - Analogy questions can be answered through simple algebraic operations with the vector representation of words.

Example

- What is the word that is similar to small in the same sense as bigger is to big?
- For this, we can simply compute X = vec("bigger") vec("big") + vec("small")
- > Then search the vector space for the word closes to X using the cosine distance.
- ⇒ Result (when words are well trained): vec("smaller").

Other example

 $_{ imes}$ E.g., vec("King") - vec("Man") + vec("Woman") pprox vec("Queen") $_{36}$

Evaluation on Analogy Questions

comantic	זכווומוויני
cvntactic	שלווימריור

Type of relationship	Word Pair 1		Word Pair 2	
Common capital city	Athens	Greece	Oslo	Norway
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe
Currency	Angola	kwanza	Iran	rial
City-in-state	Chicago	Illinois	Stockton	California
Man-Woman	brother	sister	grandson	granddaughter
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

Results

Model	Vector	Training	Accuracy [%]			Training time
	Dimensionality	words			[days x CPU cores]	
			Semantic	Syntactic	Total	
NNLM	100	6B	34.2	64.5	50.8	14 x 180
CBOW	1000	6B	57.3	68.9	63.7	2 x 140
Skip-gram	1000	6B	66.1	65.1	65.6	2.5 x 125

Results

- word2vec embedding is able to correctly answer many of those analogy questions.
- CBOW structure better for syntactic tasks
- Skip-gram structure better for semantic tasks

Problems with 100k-1M outputs

- Weight matrix gets huge!
- Example: CBOW model
 - One-hot encoding for inputs
 - ⇒ Input-hidden connections are just vector lookups.
 - This is not the case for the hidden-output connections!
 - State h is not one-hot, and vocabulary size is 1M.
 - \Rightarrow W'_{N×V} has 300×1M entries
 - ⇒ All of those need to be updated by backprop.

Problems with 100k-1M outputs

- Softmax gets expensive!
 - Need to compute normalization over 100k-1M outputs

Solution: Hierarchical Softmax

Idea

- Organize words in binary search tree, words are at leaves
- > Factorize probability of word w_0 as a product of node probabilities along the path.
- Learn a linear decision function $y=v_{n(w,j)}\cdot h$ at each node to decide whether to proceed with left or right child node.
- ⇒ Decision based on output vector of hidden units directly.

Topics of This Lecture

- Recap: CNN Architectures
- Applications of CNNs
- Word Embeddings
 - Neuroprobabilistic Language Models
 - word2vec
 - GloVe
 - Hierarchical Softmax
- Outlook: Recurrent Neural Networks

Outlook: Recurrent Neural Networks

- Up to now
 - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- Next lecture: Recurrent Neural Networks
 - Generalize this to arbitrary mappings

References and Further Reading

Neural Probabilistic Language Model

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, <u>A Neural Probabilistic</u> <u>Language Model</u>, In JMLR, Vol. 3, pp. 1137-1155, 2003.

word2vec

T. Mikolov, K. Chen, G. Corrado, J. Dean, <u>Efficient Estimation of Word Representations in Vector Space</u>, ICLR'13 Workshop Proceedings, 2013.

GloVe

Jeffrey Pennington, Richard Socher, and Christopher D. Manning, <u>GloVe</u>: <u>Global Vectors for Word Representation</u>, 2014.

Hierarchical Softmax

- F. Morin and Y. Bengio, <u>Hierarchical probabilistic neural network language</u> model. In AISTATS 2005.
- A. Mnih and G.E. Hinton (2009). <u>A scalable hierarchical distributed language model</u>. In NIPS 2009.