Advanced Machine Learning Lecture 17

Word Embeddings

18.01.2016

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning • Regression Approaches • Linear Regression • Regularization (Ridge, Lasso) • Gaussian Processes • Learning with Latent Variables • Prob. Distributions & Approx. Inference • Mixture Models • EM and Generalizations • Deep Learning • Linear Discriminants • Neural Networks • Backpropagation & Optimization • CNNs, RNNs, RBMs, etc.

Topics of This Lecture

- Recap: CNN Architectures
- Applications of CNNs
- Word Embeddings
 - > Neuroprobabilistic Language Models
 - word2vec
 - GloVe
- Hierarchical Softmax
- Outlook: Recurrent Neural Networks

B. Leibe

Recap: Convolutional Neural Networks Recap: Convolutional Neural Networks Settlemen 100/05.5 Settlemen

Neural Networks for Sequence Data Up to now

- - Simple structure: Input vector → Processing → Output
- · In the following, we will look at sequence data
 - > Interesting new challenges
 - Varying input/output length, need to memorize state, long-term dependencies, ...
- · Currently a hot topic
 - > Early successes of NNs for text / language processing.
 - Very good results for part-of-speech tagging, automatic translation, sentiment analysis, etc.
 - Recently very interesting developments for video understanding, image+text modeling (e.g., creating image descriptions), and even single-image understanding (attention processes).

Motivating Example · Predicting the next word in a sequence Important problem for speech recognition, text autocorrection, etc. Possible solution: The trigram (n-gram) method > Take huge amount of text and count the frequencies of all triplets (n-tuples) of words.

Use those frequencies to predict the relative probabilities of words given the two previous words

$$\frac{p(w_3 = c | w_2 = b, w_1 = a)}{p(w_3 = d | w_2 = b, w_1 = a)} = \frac{\text{count}(abc)}{\text{count}(abd)}$$

State-of-the-art until not long ago...

Problems with N-grams · Problem: Scalability > The number of possible combinations increases exponentially > So does the required amount of data Problem: Partial Observability \triangleright With larger N, many counts would be zero. > The probability is not zero, just because the count is zero! ⇒ Need to back off to (N-1)-grams when the count for N-grams is ⇒ Necessary to use elaborate techniques, such as Kneser-Ney smoothing, to compensate for uneven sampling frequencies.

B. Leibe

Interesting property • Embedding often preserves linear regularities between words • Analogy questions can be answered through simple algebraic operations with the vector representation of words. • Example • What is the word that is similar to small in the same sense as bigger is to big? • For this, we can simply compute • X = vec("bigger") - vec("big") + vec("small") • Then search the vector space for the word closes to X using the cosine distance. ⇒ Result (when words are well trained): vec("smaller"). • Other example • E.g., vec("King") - vec("Man") + vec("Woman") ≈ vec("Queen") B. Lenbe

		Analogy Quest			
	Type of relationship	Word Pair 1		Word Pair 2	
	Common capital city	Athens	Greece	Oslo	Norway
semantic	All capital cities	Astana	Kazakhstan	Harare	Zimbabwe
	Currency	Angola	kwanza	Iran	rial
	City-in-state	Chicago	Illinois	Stockton	California
•	Man-Woman	brother	sister	grandson	granddaughte
syntactic	Adjective to adverb	apparent	apparently	rapid	rapidly
	Opposite	possibly	impossibly	ethical	unethical
	Comparative	great	greater	tough	tougher
	Superlative	easy	easiest	lucky	luckiest
	Present Participle	think	thinking	read	reading
	Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
	Past tense	walking	walked	swimming	swam
	Plural nouns	mouse	mice	dollar	dollars
	Plural verbs	work	works	speak	speaks

References and Further Reading

• Neural Probabilistic Language Model

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, <u>A Neural Probabilistic Language Model</u>, In JMLR, Vol. 3, pp. 1137-1155, 2003.

word2vec

T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word Representations in Vector Space, ICLR'13 Workshop Proceedings, 2013.

GloVe

Jeffrey Pennington, Richard Socher, and Christopher D. Manning, GloVe: Global Vectors for Word Representation, 2014.

Hierarchical Softmax

- F. Morin and Y. Bengio, <u>Hierarchical probabilistic neural network language</u> <u>model</u>. In AISTATS 2005.
- A. Mnih and G.E. Hinton (2009). <u>A scalable hierarchical distributed language model</u>. In NIPS 2009.

B. Leibe

14