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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Prob. Distributions & Approx. Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Linear Discriminants 

 Neural Networks 

 Backpropagation & Optimization 

 CNNs, RNNs, RBMs, etc. 
B. Leibe 
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Recap: Learning with Hidden Units 

• How can we train multi-layer networks efficiently? 

 Need an efficient way of adapting all weights, not just the last 

layer. 

 

• Idea: Gradient Descent 

 Set up an error function 

 

 

with a loss L(¢) and a regularizer (¢). 
 

 E.g., 

 

 
 

 Update each weight          in the direction of the gradient             
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L2 loss  

L2 regularizer 

(“weight decay”)  
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Gradient Descent 

• Two main steps 

1. Computing the gradients for each weight 
 

2. Adjusting the weights in the direction of  

the gradient 

4 
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last lecture 

today 
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Recap: Backpropagation Algorithm 

• Core steps 

1. Convert the discrepancy 

between each output and its 

target value into an error 

derivate. 

 
 

2. Compute error derivatives in 

each hidden layer from error 

derivatives in the layer above. 

 
 

3. Use error derivatives w.r.t. 

activities to get error derivatives 

w.r.t. the incoming weights 

5 
B. Leibe Slide adapted from Geoff Hinton 
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• Efficient propagation scheme 

 yi is already known from forward pass! (Dynamic Programming) 

 Propagate back the gradient from layer j and multiply with  yi.  

Recap: Backpropagation Algorithm 

6 
B. Leibe Slide adapted from Geoff Hinton 
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Recap: MLP Backpropagation Algorithm 

• Forward Pass 

 

for  k = 1, ..., l do 

 

 
 

endfor 

 

 

 

• Notes 

 For efficiency, an entire batch of data X is processed at once. 

 ¯ denotes the element-wise product 
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• Backward Pass 

 

for  k = l, l-1, ...,1 do 

 

 

 

 

endfor 
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 Forward differentiation needs one pass per node. Reverse-mode 

differentiation can compute all derivatives in one single pass. 

 Speed-up in O(#inputs) compared to forward differentiation! 

 

Recap: Computational Graphs 

8 
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Apply operator 

to every node. 

Apply operator 

to every node. 

Slide inspired by Christopher Olah  Image source: Christopher Olah, colah.github.io 
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Recap: Automatic Differentiation 

• Approach  for obtaining the gradients 

 

 

 

 

 

 

 

 Convert the network into a computational graph. 

 Each new layer/module just needs to specify how it affects the 

forward and backward passes. 

 Apply reverse-mode differentiation. 

 Very general algorithm, used in today’s Deep Learning packages 
9 

B. Leibe Image source: Christopher Olah, colah.github.io 
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Topics of This Lecture 

• Gradient Descent Revisited 
 

• Data (Pre-)processing  
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Normalization 

 Initialization 
 

• Convergence of Gradient Descent 
 Choosing Learning Rates 

 Momentum & Nesterov Momentum 

 RMS Prop 

 Other Optimizers 
 

• Other Tricks 
 Batch Normalization 

 Dropout 10 
B. Leibe 
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Gradient Descent 

• Two main steps 

1. Computing the gradients for each weight 
 

2. Adjusting the weights in the direction of  

the gradient 

 

• Recall: Basic update equation 

 

 

 

• Main questions 

 On what data do we want to apply this? 

 How should we choose the step size ´ (the learning rate)? 

 In which direction should we update the weights? 
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Topics of This Lecture 

• Gradient Descent 
 

• Data (Pre-)processing  
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Normalization 

 Initialization 
 

• Convergence of Gradient Descent 
 Choosing Learning Rates 

 Momentum & Nesterov Momentum 

 RMS Prop 

 Other Optimizers 
 

• Other Tricks 
 Batch Normalization 

 Dropout 12 
B. Leibe 
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Stochastic vs. Batch Learning 

• Batch learning 

 Process the full dataset at 

once to compute the  

gradient. 

 

 
 

• Stochastic learning 

 Choose a single example 

from the training set. 

 Compute the gradient only 

based on this example 

 This estimate will generally 

be noisy, which has some 

advantages. 
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Stochastiv vs. Batch Learning 

• Batch learning advantages 

 Conditions of convergence are well understood. 

 Many acceleration techniques (e.g., conjugate gradients) only 

operate in batch learning. 

 Theoretical analysis of the weight dynamics and convergence 

rates are simpler. 

 

• Stochastic learning advantages 

 Usually much faster than batch learning. 

 Often results in better solutions. 

 Can be used for tracking changes. 

 

• Middle ground: Minibatches 

14 
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Minibatches 

• Idea 

 Process only a small batch of training examples together 

 Start with a small batch size & increase it as training proceeds. 
 

• Advantages 

 Gradients will more stable than for stochastic gradient descent, 

but still faster to compute than with batch learning. 

 Take advantage of redundancies in the training set. 

 Matrix operations are more efficient than vector operations. 
 

• Caveat 

 Error function should be normalized by the minibatch size, s.t. 

we can keep the same learning rate between minibatches 
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Shuffling the Examples 

• Ideas 

 Networks learn fastest from the most unexpected sample. 

 It is advisable to choose a sample at each iteration that is most 

unfamiliar to the system.  

– E.g. a sample from a different class than the previous one. 

 

 A large relative error indicates that an input has not been 

learned by the network yet, so it contains a lot of information. 

 It can make sense to present such inputs more frequently. 

– But: be careful, this can be disastrous when the data are outliers. 

 

• Practical advice 

 When working with stochastic gradient descent or minibatches, 

make use of shuffling. 

16 
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Data Augmentation 

• Idea 

 Augment original data with synthetic variations 

to reduce overfitting 
 

• Example augmentations for images 

 Cropping 

 
 

 Zooming 

 
 

 Flipping 

 
 

 Color PCA 
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B. Leibe Image source: Lucas Beyer 
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Data Augmentation 

• Effect 

 Much larger training set 

 Robustness against expected 

variations 
 

• During testing 

 When cropping was used 

during training, need to  

again apply crops to get 

same image size. 

 Beneficial to also apply 

flipping during test. 

 Applying several ColorPCA 

variations can bring another 

~1% improvement, but at a 

significantly increased runtime. 
18 
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Augmented training data 

(from one original image) 

Image source: Lucas Beyer 
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General Guideline 
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Normalization 

• Motivation 

 Consider the Gradient Descent update steps 

 

 

 

 From backpropagation, we know that 

 

 

 

 When all of the components of the input vector yi are positive, 

all of the updates of weights that feed into a node will be of the 

same sign.  

 Weights can only all increase or decrease together. 

 Slow convergence 

20 
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Normalizing the Inputs 

• Convergence is fastest if 

 The mean of each input variable 

over the training set is zero. 

 The inputs are scaled such that 

all have the same covariance. 

 Input variables are uncorrelated 

if possible. 

 

 

• Advisable normalization steps (for MLPs) 

 Normalize all inputs that an input unit sees to zero-mean,  

unit covariance. 

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion). 

21 
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998) 
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Choosing the Right Sigmoid 

22 
B. Leibe 

 

 

 

 

 

 

• Normalization is also important for intermediate layers 

 Symmetric sigmoids, such as tanh, often converge faster than 

the standard logistic sigmoid. 

 Recommended sigmoid: 

 
 

 When used with transformed inputs, the variance of the outputs 

will be close to 1. 

 
Image source: Yann LeCun et al., Efficient BackProp (1998) 

Largest  

curvature at 1 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
5

 

Initializing the Weights 

• Motivation 

 The starting values of the weights can have a significant effect 

on the training process. 

 Weights should be chosen randomly, but in a way that the 

sigmoid is primarily activated in its linear region. 

 

• Guideline 

 Assuming that 

– The training set has been normalized 

– The sigmoid                                           is used 

the initial weights should be randomly drawn from a distribution 

(e.g., uniform or Normal) with mean zero and standard deviation 

 

where m is the fan-in (#connections into the node). 

23 
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Topics of This Lecture 

• Gradient Descent 
 

• Data (Pre-)processing  
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Normalization 

 Initialization 
 

• Convergence of Gradient Descent 
 Choosing Learning Rates 

 Momentum & Nesterov Momentum 

 RMS Prop 

 Other Optimizers 
 

• Other Tricks 
 Batch Normalization 

 Dropout 24 
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Choosing the Right Learning Rate 

• Analyzing the convergence of Gradient Descent 

 Consider a simple 1D example first 

 

 
 

 What is the optimal learning rate ´opt?  

 

 

 If E is quadratic, the optimal learning rate is given by the 

inverse of the Hessian 

 

 
 

 What happens if we exceed this learning rate? 

25 
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998) 
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Choosing the Right Learning Rate 

• Behavior for different learning rates 

26 
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998) 
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Learning Rate vs. Training Error 

 

27 
B. Leibe Image source: Goodfellow & Bengio book 

Do not go beyond 

this point! 
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Batch vs. Stochastic Learning 

• Batch Learning 

 Simplest case: steepest decent 

on the error surface. 

 Updates perpendicular to contour  

lines 

 

 

• Stochastic Learning 

 Simplest case: zig-zag around the 

direction of steepest descent. 

 Updates perpendicular to constraints 

from training examples. 

 

28 
B. Leibe Image source: Geoff Hinton Slide adapted from Geoff Hinton 
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Why Learning Can Be Slow 

• If the inputs are correlated 

 The ellipse will be very elongated. 

 The direction of steepest descent is 

almost perpendicular to the direction 

towards the minimum! 

 

 

 

 

 

 

 

This is just the opposite of what we want! 
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B. Leibe Image source: Geoff Hinton Slide adapted from Geoff Hinton 
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The Momentum Method 

• Idea 

 Instead of using the gradient to change the position of the 

weight “particle”, use it to change the velocity. 
 

• Intuition 

 Example: Ball rolling on the error surface 

 It starts off by following the error surface, but once it has 

accumulated momentum, it no longer does steepest decent. 
 

• Effect 

 Dampen oscillations in directions of high  

curvature by combining gradients with  

opposite signs. 

 Build up speed in directions with a  

gentle but consistent gradient. 

30 
B. Leibe Image source: Geoff Hinton Slide credit: Geoff Hinton 
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The Momentum Method: Implementation 

• Change in the update equations 

 Effect of the gradient: increment the previous velocity, subject 

to a decay by ® < 1. 

 

 
 

 Set the weight change to the current velocity 
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The Momentum Method: Behavior 

32 
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• Behavior 

 If the error surface is a tilted plane, the ball reaches a terminal 

velocity 

 

 

– If the momentum ® is close to 1, this is much faster than simple 

gradient descent. 
 

 At the beginning of learning, there may be very large gradients. 

– Use a small momentum initially (e.g., ®  = 0.5). 

– Once the large gradients have disappeared and the weights are 

stuck in a ravine, the momentum can be smoothly raised to its final 

value (e.g., ®  = 0.90 or even ®  = 0.99). 
 

 This allows us to learn at a rate that would cause divergent 

oscillations without the momentum. 

 
Slide credit: Geoff Hinton 
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Improvement: Nesterov-Momentum 

 

 

 

 

• Standard Momentum method 

 First compute the gradient at the current location  

 Then jump in the direction of the updated accumulated gradient 
 

• Improvement [Sutskever 2012] 

 (Inspiration: Nesterov method for optimizing convex functions.) 

 First jump in the direction of the previous accumulated gradient 

 Then measure the gradient where you end up and make a 

correction. 

 Intuition: It’s better to correct a mistake after you’ve made it. 
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Separate, Adaptive Learning Rates 

• Problem 

 In multilayer nets, the appropriate learning rates  

can vary widely between weights. 

 The magnitudes of the gradients are often very 

different for the different layers, especially 

if the initial weights are small. 

 Gradients can get very small in the early layers 

of deep nets. 
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Separate, Adaptive Learning Rates 

• Problem 

 In multilayer nets, the appropriate learning rates  

can vary widely between weights. 

 The magnitudes of the gradients are often very 

different for the different layers, especially 

if the initial weights are small. 

 Gradients can get very small in the early layers 

of deep nets. 

 The fan-in of a unit determines the size of the 

“overshoot” effect when changing multiple weights  

simultaneously to correct the same error. 

– The fan-in often varies widely between layers 
 

• Solution 

 Use a global learning rate, multiplied by a local gain per weight 

(determined empirically) 
35 

B. Leibe Slide adapted from Geoff Hinton 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
5

 

Adaptive Learning Rates 

• One possible strategy 

 Start with a local gain of 1 for every weight 

 Increase the local gain if the gradient for the weight does not 

change the sign. 

 Use small additive increases and multiplicative decreases (for 

mini-batch) 

 

 

 

 

 

 

 

 Big gains will decay rapidly once oscillation starts. 
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Better Adaptation: RMSProp 

• Motivation 

 The magnitude of the gradient can be very different for 

different weights and can change during learning. 

 This makes it hard to choose a single global learning rate. 

 For batch learning, we can deal with this by only using the sign 

of the gradient, but we need to generalize this for minibatches. 

 

• Idea of RMSProp 

 Divide the gradient by a running average of its recent magnitude 

 

 

 

 Divide the gradient by sqrt(MeanSq(wij,t)).  
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Other Optimizers (Lucas) 

• AdaGrad       [Duchi ’10] 

 

 

• AdaDelta      [Zeiler ’12] 

 

 

• Adam     [Ba & Kingma ’14] 

 

 

• Notes 

 All of those methods have the goal to make the optimization less 

sensitive to parameter settings. 

 Adam is currently becoming the quasi-standard 
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Behavior in a Long Valley 

 

39 
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Behavior around a Saddle Point 
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Visualization of Convergence Behavior 
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Trick: Patience 

• Saddle points dominate in high-dimensional spaces! 

 

 

 

 

 

 

 

 

 

 

 Learning often doesn’t get stuck, you just may have to wait... 
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Reducing the Learning Rate 

• Final improvement step after convergence is reached 

 Reduce learning rate by a 

factor of 10. 

 Continue training for a few 

epochs. 

 Do this 1-3 times, then stop 

training. 
 

 

• Effect 

 Turning down the learning rate will reduce  

the random fluctuations in the error due to  

different gradients on different minibatches. 
 

• Be careful: Do not turn down the learning rate too soon! 

 Further progress will be much slower after that. 
43 

B. Leibe 

Reduced 

learning rate 

T
ra

in
in

g
 e

rr
o
r 

Epoch 

Slide adapted from Geoff Hinton 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
5

 

Topics of This Lecture 

• Gradient Descent 
 

• Data (Pre-)processing  
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Normalization 

 Initialization 
 

• Convergence of Gradient Descent 
 Choosing Learning Rates 

 Momentum & Nesterov Momentum 

 RMS Prop 

 Other Optimizers 
 

• Other Tricks 
 Batch Normalization 

 Dropout 44 
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Batch Normalization         [Ioffe & Szegedy ’14] 

• Motivation 

 Optimization works best if all inputs of a layer are normalized. 

 

• Idea 

 Introduce intermediate layer that centers the activations of 

the previous layer per minibatch. 

 I.e., perform transformations on all activations 

and undo those transformations when backpropagating gradients 

 

• Effect 

 Much improved convergence 
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Dropout           [Srivastava, Hinton ’12] 

 

 

 

 

 

 
 

• Idea 

 Randomly switch off units during training. 

 Change network architecture for each data point, effectively 

training many different variants of the network. 

 When applying the trained network, multiply activations with 

the probability that the unit was set to zero. 

 Greatly improved performance 
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References and Further Reading 

• More information on many practical tricks can be found 

in Chapter 1 of the book 
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