Advanced Machine Learning Lecture 13

Backpropagation

14.12.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
, Regularization (Ridge, Lasso)
, Gaussian Processes
- Learning with Latent Variables
. Prob. Distributions \& Approx. Inference
, Mixture Models
, EM and Generalizations
- Deep Learning
, Linear Discriminants
, Neural Networks
, Backpropagation
- CNNs, RNNs, RBMs, etc.

Recap: Non-Linear Basis Functions

- Straightforward generalization

Output layer Weights
Feature layer Mapping (fixed) Input layer

- Remarks
, Perceptrons are generalized linear discriminants!
- Everything we know about the latter can also be applied here.
, Note: feature functions $\phi(\mathbf{x})$ are kept fixed, not learned!

Recap: Non-Linear Basis Functions

- Straightforward generalization

Output layer Weights
Feature layer Mapping (fixed) Input layer

- Outputs

$$
\begin{array}{lr}
\text { Linear outputs } & \text { with output nonlinearity } \\
y_{k}(\mathbf{x})=\sum_{i=0}^{d} W_{k i} \phi\left(x_{i}\right) & y_{k}(\mathbf{x})=g\left(\sum_{i=0}^{d} W_{k i} \phi\left(x_{i}\right)\right)
\end{array}
$$

Recap: Perceptron Learning

- Process the training cases in some permutation
- If the output unit is correct, leave the weights alone.
, If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
, If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- Translation

$$
w_{k j}^{(\tau+1)}=w_{k j}^{(\tau)}-\eta\left(y_{k}\left(\mathbf{x}_{n} ; \mathbf{w}\right)-t_{k n}\right) \phi_{j}\left(\mathbf{x}_{n}\right)
$$

, This is the Delta rule a.k.a. LMS rule!
\Rightarrow Perceptron Learning corresponds to $1^{\text {st}}$-order (stochastic) Gradient Descent of a quadratic error function!

RWIHAMCHE
UNIVERSTT

Recap: Loss Functions

- We can now also apply other loss functions

Recap: Multi-Layer Perceptrons

- Adding more layers

Output layer

Hidden layer

Input layer

- Output
$y_{k}(\mathbf{x})=g^{(2)}\left(\sum_{i=0}^{h} W_{k i}^{(2)} g^{(1)}\left(\sum_{j=0}^{d} W_{i j}^{(1)} x_{j}\right)\right)$

Learning with Hidden Units

- How can we train multi-layer networks efficiently?

Need an efficient way of adapting all weights, not just the last layer.

- Idea: Gradient Descent
, Set up an error function

$$
E(\mathbf{W})=\sum_{n} L\left(t_{n}, y\left(\mathbf{x}_{n} ; \mathbf{W}\right)\right)+\lambda \Omega(\mathbf{W})
$$

with a loss $L(\cdot)$ and a regularizer $\Omega(\cdot)$.
, E.g., $L(t, y(\mathbf{x} ; \mathbf{W}))=\sum_{n}\left(y\left(\mathbf{x}_{n} ; \mathbf{W}\right)-t_{n}\right)^{2} \quad \mathbf{L}_{2}$ loss

$$
\Omega(\mathbf{W})=\|\mathbf{W}\|_{F^{\prime}}^{2} \quad \begin{gathered}
\mathrm{L}_{2} \text { regularizer } \\
\text { ("weight decay") }
\end{gathered}
$$

\Rightarrow Update each weight $W_{i j}^{(k)}$ in the direction of the gradient $\frac{\partial L(\mathbf{W})}{\partial W_{i, 10}^{(k)}}$
B. Leibe

Gradient Descent

- Two main steps

1. Computing the gradients for each weight
today
2. Adjusting the weights in the direction of Thursday the gradient
Thursday

Excursion: Chain Rule of Differentiation

- Multi-dimensional case: Total derivative

$$
\begin{aligned}
\frac{\partial z}{\partial y_{1}} \frac{\partial z}{\partial y_{k}} & \frac{\partial z}{\partial x}
\end{aligned}=\frac{\partial z}{\partial y_{1}} \frac{\partial y_{1}}{\partial x}+\frac{\partial z}{\partial y_{2}} \frac{\partial y_{2}}{\partial x}+\ldots .
$$

\Rightarrow Need to sum over all paths that lead to the target variable x.

Obtaining the Gradients

- Approach 1: Naive Analytical Differentiation

$$
\begin{aligned}
& \frac{\partial E(\mathbf{W})}{\partial W_{10}^{(2)}} \cdots \frac{\partial E(\mathbf{W})}{\partial W_{k h}^{(2)}} \\
& \frac{\partial E(\mathbf{W})}{\partial W_{10}^{(1)}} \cdots \frac{\partial L(\mathbf{W})}{\partial W_{h d}^{(1)}}
\end{aligned}
$$

. Compute the gradients for each variable analytically.
, What is the problem when doing this?
\Rightarrow With increasing depth, there will be exponentially many paths!
\Rightarrow Infeasible to compute this way.
B. Leibe

Excursion: Chain Rule of Differentiation

- One-dimensional case: Scalar functions

$\Delta z=\frac{\mathrm{d} z}{\mathrm{~d} y} \Delta y$
$\Delta y=\frac{\mathrm{d} y}{\mathrm{~d} x} \Delta x$
$\Delta z=\frac{\mathrm{d} z}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \Delta x$
$\frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{\mathrm{d} z}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
B. Leibe

Obtaining the Gradients

- Approach 2: Numerical Differentiation

. Given the current state $\mathbf{W}^{(\tau)}$, we can evaluate $E\left(\mathbf{W}^{(\tau)}\right)$.
, Idea: Make small changes to $\mathbf{W}^{(\tau)}$ and accept those that improve $E\left(\mathbf{W}^{(\tau)}\right)$.
\Rightarrow Horribly inefficient! Need several forward passes for each weight. Each forward pass is one run over the entire dataset!

Backpropagation Algorithm

- Core steps

1. Convert the discrepancy between each output and its target value into an error derivate.

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{j \in o u t p u t}\left(t_{j}-y_{j}\right)^{2} \\
\frac{\partial E}{\partial y_{j}} & =-\left(t_{j}-y_{j}\right)
\end{aligned}
$$

3. Use error derivatives w.r.t. activities to get error derivatives w.r.t. the incoming weights

$$
\frac{\partial E}{\partial y_{j}} \rightarrow \frac{\partial E}{\partial w_{i k}}
$$

2. Compute error derivatives in each hidden layer from error derivatives in the layer above.
Slide adapted from Geoff Hinton

Backpropagation Algorithm

- Efficient propagation scheme
, y_{i} is already known from forward pass! (Dynamic Programming)
\Rightarrow Propagate back the gradient from layer j and multiply with y_{i}.

Analysis: Backpropagation

- Backpropagation is the key to make deep NNs tractable - However...
- The Backprop algorithm given here is specific to MLPs
. It does not work with more complex architectures e.g. skip connections or recurrent networks!
- Whenever a new connection function induces a different functional form of the chain rule, you have to derive a new Backprop algorithm for it.
\Rightarrow Tedious...
- Let's analyze Backprop in more detail
, This will lead us to a more flexible algorithm formulation

Factoring Paths

- Problem: Combinatorial explosion
- Example:

- There are 3 paths from X to Y and 3 more from Y to Z. - If we want to compute $\frac{\partial Z}{\partial X}$, we need to sum over 3×3 paths:

$$
\frac{\partial Z}{\partial X}=\alpha \delta+\alpha \epsilon+\alpha \zeta+\beta \delta+\beta \epsilon+\beta \zeta+\gamma \delta+\gamma \epsilon+\gamma \zeta
$$

- Instead of naively summing over paths, it's better to factor them $\frac{\partial Z}{\partial X}=(\alpha+\beta+\gamma) *(\delta+\epsilon+\zeta)$

Summary: MLP Backpropagation

- Forward Pass
$y^{(0)}=\mathrm{x}$
for $k=1, \ldots, l$ do
$\mathbf{z}^{(k)}=\mathbf{W}^{(k)} \mathbf{y}^{(k-1)}$
$\mathbf{y}^{(k)}=g_{k}\left(\mathbf{z}^{(k)}\right)$
endfor
$\mathrm{y}=\mathrm{y}^{(l)}$
$E=L(\mathbf{t}, \mathbf{y})+\lambda \Omega(\mathbf{W})$
- Backward Pass
$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{y}}=\frac{\partial}{\partial \mathbf{y}} L(\mathbf{t}, \mathbf{y})+\lambda \frac{\partial}{\partial \mathbf{y}} \Omega$
for $k=l, l-1, \ldots, 1$ do
$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{z}^{(k)}}=\mathbf{h} \odot g^{\prime}\left(\mathbf{y}^{(k)}\right)$ $\frac{\partial E}{\partial \mathbf{W}^{(k)}}=\mathbf{h} \mathbf{y}^{(k-1) \top}+\lambda \frac{\partial \Omega}{\partial \mathbf{W}^{(k)}}$
$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{y}^{(k-1)}}=\mathbf{W}^{(k) \top} \mathbf{h}$
endfor
- Notes
, For efficiency, an entire batch of data \mathbf{X} is processed at once.
, \odot denotes the element-wise product
B. Leibe

Computational Graphs

- We can think of mathematical expressions as graphs
, E.g., consider the expression

$$
e=(a+b) *(b+1)
$$

, We can decompose this into the operations
$c=a+b$
$d=b+1$
$e=c * d$
and visualize this as a computational graph.

- Evaluating partial derivatives $\frac{\partial Y}{\partial X}$ in such a graph
, General rule: sum over all possible paths from Y to X and multiply the derivatives on each edge of the path together.

Slide inspired by Christopher Olah_B. Leibe

Efficient Factored Algorithms

Apply operator $\frac{\partial}{\partial \chi}$ to every node.

- Efficient algorithms for computing the sum
- Instead of summing over all of the paths explicitly, compute the sum more efficiently by merging paths back together at every node.
Side inspired by Christopher Olah B. Leibe

Why Do We Care?

- Let's consider the example again
, Using reverse-mode differentiation from e down...
, Runtime: \mathcal{O} (\#edges)
, Result: derivative of e with respect to every node.

\Rightarrow This is what we want to compute in Backpropagation!
, Forward differentiation needs one pass per node. With backward differentiation can compute all derivatives in one single pass.
\Rightarrow Speed-up in \mathcal{O} (\#inputs) compared to forward differentiation!
\qquad

RWIHAMCHE

Topics of This Lecture

- Learning with Hidden Units
- Obtaining the Gradients
, Naive analytical differentiation
. Numerical differentiation
, Backpropagation
. Computational graphs
, Automatic differentiation
- Practical Issues

Nonlinearities
Sigmoid outputs and the L_{2} loss
Implementing Softmax correctly

- Solution in many current Deep Learning libraries
, Provide a limited form of automatic differentiation
, Restricted to "programs" composed of "modules" with a predefined set of operations.
- Each module is defined by two main functions

1. Computing the outputs y of the module given its inputs x

$$
\mathrm{y}=\operatorname{module} . \operatorname{fprop}(\mathrm{x})
$$

where x, y, and intermediate results are stored in the module.
2. Computing the gradient $\partial E / \partial \mathbf{x}$ of a scalar cost w.r.t. the inputs \mathbf{x} given the gradient $\partial E / \partial \mathbf{y}$ w.r.t. the outputs \mathbf{y}

$$
\frac{\partial E}{\partial \mathbf{x}}=\operatorname{module} . \operatorname{bprop}\left(\frac{\partial E}{\partial \mathbf{y}}\right)
$$

Topics of This Lecture

- Learning with Hidden Units
- Obtaining the Gradients

Naive analytical differentiation
Numerical differentiation
Backpropagation
Computational graphs
Automatic differentiation

- Practical Issues
, Nonlinearities
, Sigmoid outputs and the L_{2} loss
, Implementing Softmax correctly
, Efficient batch processing

Commonly Used Nonlinearities

- Sigmoid

$$
\begin{aligned}
g(a) & =\sigma(a) \\
& =\frac{1}{1+\exp \{-a\}}
\end{aligned}
$$

- Hyperbolic tangent

$$
\begin{aligned}
g(a) & =\tanh (a) \\
& =2 \sigma(2 a)-1
\end{aligned}
$$

- Softmax

$$
g(\mathbf{a})=\frac{\exp \left\{-a_{i}\right\}}{\sum_{j} \exp \left\{-a_{j}\right\}}
$$

Usage

- Output nodes
- Typically, a sigmoid or tanh function is used here.

Sigmoid for nice probabilistic interpretation (range [0,1]). tanh for regression tasks

- Internal nodes
- Historically, tanh was most often used.
- tanh is better than sigmoid for internal nodes, since it is already centered.
- Internally, tanh is often implemented as piecewise linear function (similar to hard tanh and maxout).
- More recently: ReLU often used for classification tasks.

Commonly Used Nonlinearities (2)

- Hard tanh

$$
g(a)=\max \{-1, \min \{1, a\}\}
$$

- Rectified linear unit (ReLU)

$$
g(a)=\max \{0, a\}
$$

- Maxout

$$
g(\mathbf{a})=\max _{i}\left\{\mathbf{w}_{i}^{\top} \mathbf{a}+b_{i}\right\}
$$

Topics of This Lecture

- Learning with Hidden Units
- Obtaining the Gradients

Naive analytical differentiation
Numeric differentiation
Backpropagation
Computational graphs
Automatic differentiation

- Practical Issues
, Nonlinearities
- Sigmoid outputs and the L_{2} loss
, Implementing Softmax correctly

Topics of This Lecture

- Learning with Hidden Units
- Obtaining the Gradients

Naive analytical differentiation
Numerical differentiation
Backpropagation
Computational graphs
Automatic differentiation

- Practical Issues
, Nonlinearities
- Sigmoid outputs and the L_{2} loss
, Implementing Softmax correctly

[^0]
References and Further Reading

- More information on Backpropagation can be found in Chapter 6 of the Goodfellow \& Bengio book

Ian Goodfellow, Aaron Courville, Yoshua Bengio lan Goodfellow
MIT Press, in preparation

https://goodfeli.github.io/dlbook/ Chapter 6 of the Goodellow a Bengio book

[^0]: Implementing Softmax Correctly

 - Softmax output
 - De-facto standard for multi-class outputs

 $$
 E(\mathbf{w})=-\sum_{n=1}^{N} \sum_{k=1}^{K}\left\{\mathbb{I}\left(t_{n}=k\right) \ln \frac{\exp \left(\mathbf{w}_{k}^{\top} \mathbf{x}\right)}{\sum_{j=1}^{K} \exp \left(\mathbf{w}_{j}^{\top} \mathbf{x}\right)}\right\}
 $$

 - Practical issue
 , Exponentials get very big and can have vastly different magnitudes.
 , Trick 1: Do not compute first softmax, then log,
 but instead directly evaluate log-exp in the denominator.
 - Trick 2: Softmax has the property that for a fixed vector \mathbf{b} $\operatorname{softmax}(\mathbf{a}+\mathbf{b})=\operatorname{softmax}(\mathbf{a})$
 \Rightarrow Subtract the largest weight vector \mathbf{w}_{j} from the others.

