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Announcement

e Exercise sheet 2 online
> Sampling
» Rejection Sampling
~ Importance Sampling
~ Metropolis-Hastings
> EM
» Mixtures of Bernoulli distributions [today’s topic]
~ Exercise will be on Wednesday, 07.12.
= Please submit your results until 06.12. midnight.
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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables
Probability Distributions m e
> Approximate Inference
»  Mixture Models

> EM and Generalizations

Y

e Deep Learning

> Neural Networks
> CNNs, RNNs, RBMs, etc.
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Topics of This Lecture

e The EM algorithm in general
> Recap: General EM

> Example: Mixtures of Bernoulli distributions
~ Monte Carlo EM

e Bayesian Mixture Models
~ Towards a full Bayesian treatment
~ Dirichlet priors
> Finite mixtures
> Infinite mixtures
> Approximate inference (only as supplementary material)
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CHEN
UNIVERSITY

Recap: Mixture of Gaussians

» “Generative model” p(x) =Y mN (Xnlpy, Tie)
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RWTH
Recap: GMMs as Latent Variable Models

e Write GMMs in terms of latent variables z
- Marginal distribution of x .

K
— Zp(x y/ Zp p(x|z) = Z TN (x|, k)
Z k=1

X

e Advantage of this formulation

> We have represented the marginal distribution in terms of
latent variables z.

- Since p(x) = 2, p(x, z), there is a corresponding latent
variable z , for each data point x,..

- We are now able to work with the joint distribution p(x, z)
instead of the marginal distribution p(x).

= This will lead to significant simplifications...
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RWNTH
Recap: Sampling from a Gaussian Mixture

e MoG Sampling
> We can use ancestral sampling to generate random samples from

a Gaussian mixture model. z

1. Generate a value z from the marginal distribution p(z).
2. Generate a value X from the conditional distribution p(x|z).

X

Samples from the Samples from the Evaluating the
joint p(x, z) marginal p(x) responsibilities y(z,,,)

1 L

0.5 0.5¢
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RWTH
Recap: Gaussian Mixtures Revisited

e Applying the latent variable view of EM
» Goal is to maximize the log-likelihood using the observed data X

log p(X|0) = log {ZP(X, ZH)} ]

~ Corresponding graphical model: H

» Suppose we are additionally given the values 7))
of the latent variables Z.

~ The corresponding graphical model for the
complete data now looks like this:

= Straightforward to marginalize...
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Recap: Alternative View of EM

e In practice, however,...

>

We are not given the complete data set {X,Z}, but only the
incomplete data X. All we can compute about Z is the posterior
distributionp(Z|X, 0).

Since we cannot use the complete-data log-likelihood, we
consider instead its expected value under the posterior
distribution of the latent variable:

Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

This corresponds to the E-step of the EM algorithm.

In the subsequent M-step, we then maximize the expectation to
obtain the revised parameter set 6%V,

0" = arg mgx Q(0, 901(1)

B. Leibe
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Recap: General EM Algorithm

e Algorithm
1. Choose an initial setting for the parameters

2. E-step: Evaluate p(Z|X,901d)

Gold

Bl'leW

3. M-step: Evaluate
0"V = arg mgx Q(0, 9°1d)

given by

where
Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let 9°'9 «— 9™V and return to step 2.

B. Leibe
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Recap: MAP-EM

e Modification for MAP

> The EM algorithm can be adapted to find MAP solutions for
models for which a prior p(0) is defined over the parameters.

> Only changes needed:

2. E-step: Evaluate p(Z|X,0°7)

3. M-step: Evaluate 6"°" given by

6" = arg max Q(0,6°)+1og p(8)

= Suitable choices for the prior will remove the ML singularities!

B. Leibe
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Gaussian Mixtures Revisited

e Maximize the likelihood
» For the complete-data set {X,Z}, the likelihood has the form

N K
p(X,Zlp By m) = [ [] 7V (ol g Zi) =
n=1k=1

~ Taking the logarithm, we obtain

N K
logp(Xa Z|ﬂ'7 277‘-) — Z Zznk: {logﬂ-k + logN(Xn‘H’ka Ekﬁ)}
n=1k=1
~- Compared to the incomplete-data case, the order of the sum
and logarithm has been interchanged.
= Much simpler solution to the ML problem.

> Maximization w.r.t. a mean or covariance is exactly as for a
single Gaussian, except that it involves only the subset of data
points that are “assigned” to that component.

B. Leibe

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(D]
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

12




Gaussian Mixtures Revisited

e Maximization w.r.t. mixing coefficients
- More complex, since the 7, are coupled by the summation

constraint K
E Ty = 1
j=1

» Solve with a Lagrange multiplier

K
log p(X, Z|p, X, 7) + A (Z T — 1)

k=1

> Solution (after a longer derivation):
N

1
Tk — N Z:l “nk
= The complete-data log-likelihood can be maximized trivially in
closed form.
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Gaussian Mixtures Revisited

e |In practice, we don’t have values for the latent variables

» Consider the expectation w.r.t. the posterior distribution of the
latent variables instead.

» The posterior distribution takes the form
N K

p(ZI1X, 1, Zym) o || 1] [V (g Z)] 7
n=1 k=1
and factorizes over n, so that the {z_} are independent under
the posterior.

Expected value of indicator variable z , under the posterior.
2z 2k [TeN (X |1y, Ze)] ™
> N (g, 25)] 7
Nl )
S TN (aly, B5)

B. Leibe

Elznk] =

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

14




n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

Gaussian Mixtures Revisited

e Continuing the estimation
> The complete-data log-likelihood is therefore

N K
]EZ [logp(Xv Zlu’a 27 ﬂ-)] — Z ZV(an) {log Tk + IOgN(Xn“J’Im Ek>}
n=1k=1

= This is precisely the EM algorithm for Gaussian mixtures as
derived before.

B. Leibe
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Summary So Far

e We have now seen a generalized EM algorithm
~ Applicable to general estimation problems with latent variables

~ In particular, also applicable to mixtures of other base
distributions

> In order to get some familiarity with the general EM algorithm,
let’s apply it to a different class of distributions...
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Topics of This Lecture

e The EM algorithm in general
> Recap: General EM

» Example: Mixtures of Bernoulli distributions
~ Monte Carlo EM
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RWNTH
Mixtures of Bernoulli Distributions

e Discrete binary variables

- Consider D binary variables x = (x_,...,x)’, each of them
described by a Bernoulli distribution with parameter p;, so that

X“JJ Humz 1 . (1 x;)

~ Mean and covariance are given by
Ex] = n
covlx| = diag{p(l—p)}

Diagonal covariance
= variables indepen-
dently modeled
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RWNTH
Mixtures of Bernoulli Distributions

e Mixtures of discrete binary variables
> Now, consider a finite mixture of those distributions

p(xlp, ) = > mep(x|py)

K D

= Zm H s (1 — g ) )

k=1 i=1
> Mean and covariance of the mixture are given by

K
Covariance not diagonal
Elx] = Z Tk [y, — Model can capture depen-
k=1 dencies between variables

cov|x|] = Zwk {3k + pppr b — EXEX]
k=1

where X, = diag{s;(1 - py)}- 9
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RWNTH
Mixtures of Bernoulli Distributions

e Log-likelihood for the model
- Given a data set X = {x,,..., Xy},

log p(X|p, ™ Zlog {Zﬂkp Xn|pg) }

~ Again observation: summation inside logarithm = difficult.

> In the following, we will derive the EM algorithm for mixtures of
Bernoulli distributions.

- This will show how we can derive EM algorithms in the general
case...
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EM for Bernoulli Mixtures

e Latent variable formulation
- Introduce latent variable z = (2

1,---,

> Conditional distribution of x
p(x|z, 1) H p(x|py) "

> Prior distribution for the latent variables
K
- 1l
k=1

> Again, we can verify that

p(x|p, Zp x|z, p)p Z'mcp x|pt)

B. Leibe

zi)! with 1-of-K coding.
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Recap: General EM Algorithm

e Algorithm

1. Choose an initial setting for the parameters geld

2. E-step: Evaluate p(Z|X,901d)

Bl'leW

3. M-step: Evaluate
0"V = arg mgx Q(0, BOId)

given by

where
Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let 9°'9 «— 9™V and return to step 2.

B. Leibe
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EM for Bernoulli Mixtures: E-Step

e Complete-data likelihood

p(X,Z|p, ) = ][ (repGenl )1

p(Z‘Xa M, ﬂ-) —

B. Leibe
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RWNTH
EM for Bernoulli Mixtures: E-Step

e E-Step

~ Evaluate the responsibilities

Z [mrp(Xn |y, )"
Znk 174
Znk Zj:l ij(xn‘u’j)
TEP(Xn | g )
K
Zj:l ij(xn‘/'l'j)

Y(ens) = Efza] =

> Note: we again get the same form as for Gaussian mixtures
ﬂ-jN(Xnm'ja Zj)

7'(Xn> —
! Sy TN (X gy Si)

B. Leibe
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Recap: General EM Algorithm

e Algorithm
1. Choose an initial setting for the parameters

2. E-step: Evaluate p(Z|X,901d)

Gold

Bl'leW

3. M-step: Evaluate
0"V = arg mgx Q(0, BOId)

given by

where
Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let 9°'9 «— 9™V and return to step 2.

B. Leibe
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RWNTH
EM for Bernoulli Mixtures: M-Step

e Complete-data log-likelihood

N K
logp(X: Z’#’a ﬂ-) — Z Z “nk {log Tk

n=1 k=1

D
+ Z (i log ki + (1 — x4;) log(1 — uk@)}}

1=1

e Expectation w.r.t. the posterior distribution of Z

I[':‘:'Z [logp(Xa Z|u’7 Z “nk {IOg Tk
~ ~ - n=1 k=1
0(8,6°)

D
+ Z Lni 1Og Mki + 1 CC’m) 1Og(1 — :LLkZ>] }
1=1
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where ~(z,,.) = E|z,,] are again the responsibilities for each Xpn
B. Leibe



RWNTH
EM for Bernoulli Mixtures: M-Step

e Remark
- The 7(z,,) only occur in two forms in the expectation:

N

N = Z'Y(an)

n=1

|

Xp = — Znk )X

k Nk ;7( nk) n

e Interpretation

> N, is the effective number of data points associated with
component k.

> Xgis the responsibility-weighted mean of the data points softly
assigned to component k.
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RWNTH
EM for Bernoulli Mixtures: M-Step

e M-Step
~ Maximize the expected complete-data log-likelihood w.r.t the
parameter ;.

0

— K X.Z
o T zp(X, Z|p, )]
g 9 N K
= = 5D > V() {logms + [xnlog i + (1= xn) log(1 — )]}
> g
£ 1] & 1 & .
< - — ’Y(znk)xn - ’Y(an)(]' o Xn) =0
é Fr n=1 1- Fr nzz:l
.:__:é
S
5 1 — )
% My — m;’)’(znk)xn = Xg
g -
<

28
B. Leibe



n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

RWNTH
EM for Bernoulli Mixtures: M-Step

e M-Step
~ Maximize the expected complete-data log-likelihood w.r.t the
parameter 7, under the constraint >, 7, = 1.

» Solution with Lagrange multiplier A

K
arg max Bz [p(X, Z|u, 7)] + A (Z Tk — 1)
Tk
k=1

B. Leibe
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Discussion

e Comparison with Gaussian mixtures

> In contrast to Gaussian mixtures, there are no singularities in
which the likelihood goes to infinity.

~ This follows from the property of Bernoulli distributions that
0 < p(xn|p) <1
- However, there are still problem cases when p,; becomes 0 or 1
Ezllogp(X, Z|p, )] = ... [Tnilog pri + (1 — Tns) log(1 — puxi )]
= Need to enforce a range [MIN_VAL,1-MIN_VAL] for either p,, or ~.

e General remarks

~ Bernoulli mixtures are used in practice in order to represent
binary data.

~ The resulting model is also known as latent class analysis.
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Example: Handwritten Digit Recognition

e Binarized digit data (examples from set of 600 digits)

A

7

Lt’

D

H

e Means of a 3-component Bernoulli mixture (10 EM iter.)

2

g

3

e Comparison: ML result of single multivariate Bernoulli

distribution

a

B. Leibe
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Topics of This Lecture

e The EM algorithm in general
> Recap: General EM

> Example: Mixtures of Bernoulli distributions
> Monte Carlo EM

B. Leibe
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Monte Carlo EM

e EM procedure
» M-step: Maximize expectation of complete-data log-likelihood

Q(6.6™%) = [ (ZIX.67")logp(X. Z/0)dZ

~  For more complex models, we may not be able to compute this
analytically anymore...

e |Idea

> Use sampling to approximate this integral by a finite sum over
samples {Z ()} drawn from the current estimate of the posterior

L
1
Q(6,6°) ~ = > logp(X, Z]6°)
=1

> This procedure is called the Monte Carlo EM algorithm.
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Topics of This Lecture

e Bayesian Mixture Models
~ Towards a full Bayesian treatment
~ Dirichlet priors
> Finite mixtures
> Infinite mixtures
> Approximate inference (only as supplementary material)
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RWNTH
Towards a Full Bayesian Treatment...

e Mixture models
> We have discussed mixture distributions with X components

p(X|6) = pr yAl) o

> So far, we have derived the ML estimates = EM
- Introduced a prior p(f) over parameters = MAP-EM

> One question remains open: how to set K ?
= Let’s also set a prior on the humber of components...

B. Leibe
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Bayesian Mixture Models

e Let’s be Bayesian about mixture models
~ Place priors over our parameters

- Again, introduce variable z  as indicator
which component data point x,, belongs to.

Zn|T™ ~ Multinomial ()
Xn‘zn — ka”’a 2~ N(uka Ek)

2
> This is similar to the graphical model we’ve
e

used before, but now the w and 0, = (u,,3,)
are also treated as random variables.

» What would be suitable priors for them?
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Bayesian Mixture Models

e Let’s be Bayesian about mixture models
~ Place priors over our parameters

- Again, introduce variable z  as indicator
which component data point x,, belongs to.

Zn|T™ ~ Multinomial ()

Xn‘zn — ka”’az ~ N(ukazk)

> Introduce conjugate priors over parameters
Q Q

™ ~ Dirichlet(?, e E)

Py, X ~ H=N—-1IW(0,s,d,¢) n=l N

“Normal - Inverse Wishart”
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Bayesian Mixture Models

e Full Bayesian Treatment
» Given a dataset, we are interested in the cluster assignments

p(X|Z)p(Z)
PEX) = s X DD

where the likelihood is obtained by marginalizing over the
parameters 6

p(X|Z) = / p(X|Z,0)p(6)d6

= [ TL T pcalznes 003061l 1)0

n=1k=1

e The posterior over assignments is intractable!

~ Denominator requires summing over all possible partitions of the
data into K groups!

= Need efficient approximate inference methods to solve this...
B. Leibe
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Bayesian Mixture Models

e Let’s examine this model more closely
> Role of Dirichlet priors?
> How can we perform efficient inference?
- What happens when K goes to infinity?

e This will lead us to an interesting class of models...
> Dirichlet Processes
~ Possible to express infinite mixture distributions with their help

> Clustering that automatically adapts the number of clusters to
the data and dynamically creates new clusters on-the-fly.
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RWNTH
Sneak Preview: Dirichlet Process MoG

N=10 N=20
5 5 Samples drawn
: - from DP mixture
0 . of
=L
e 2 -2
£
= -2 0 2 -2 0 2
S
= N=100 N=300
@
h ) ) = More structure
= . » appears as more
= PR oy FETL points are drawn
g 0 PR 0 c. f.
PR e
No] o o TR
S . -
c 2 -2 .
©
>
©
< -2 0 2 -2 0 2 40
B. Leibe

Slide credit: Zoubin Gharamani



RWNTH
Recap: The Dirichlet Distribution

e Dirichlet Distribution
> Conjugate prior for the Categorical and the Multinomial distrib.

Mao) 1
Dir(p|ar) = ° =l \with g =
o (N| ) F(()dl)r(()t}() ’guk 0
:i-’- > Symmetric version (with concentration parameter «)
= K
. I['(a) a/K—1

(@)]

D —
E 11'([.1,‘05) F(Oé/K)K 11 Mg
§ > Properties (symmetric version)
o K
= ] ag (o — ag) K -1

var — =
3 kS 2(cp + 1) K2(a+ 1)
S . rey 1
3 COV[:“’ Mkl = = —
< ! aglao +1) K2(a+ 1)

B. Leibe 00

Image source: C. Bishop, 2006
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Dirichlet Samples

Samples from Dir (alpha=0.1) Samples from Dir (alpha=1)
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Dir(6 | 0.1,0.1,0.1,0.1,0.1) Dir(6 | 1.0,1.0,1.0,1.0,1.0)

e Effect of concentration parameter o
» Controls sparsity of the resulting samples

, 4?2
Slide credit: Erik Sudderth B. Leibe Image source: Erik Sudderth
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Mixture Model with Dirichlet Priors

e Finite mixture of K components A
K R s
K s I R
e -_.},-,a .
— ZP(Z’nk = 17 )p(X0n |0y 2nie = 1) W
k=1

- The distribution of latent variables z_ given 7 is multinomial
K N
N def
p(z|m) = H Ty Ni = Zznk
k=1 n=1

~ Assume mixing proportions have a given symmetric conjugate

Dirichlet prior K

. F(Oé) a/K-1
p(ﬂ“O&) — F(oz/K)K P 4y’
B. Leibe
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Slide adapted from Zoubin Gharamani Image source: Zoubin Gharamani
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Mixture Model with Dirichlet Priors

e Integrating out the mixing proportions

pzla) = f p(z|m)p(r|c)dm

(@) T _a/K—1
/Hﬂ . oz/K)Kk 1 ,‘: dm
:f INE) s _Nita/K-14
Fla/m)x L7

> This is again a Dirichlet distribution (reason for conjugate priors)

N(a) [I5,T Nk+oe/K/ ['(N +a) il
[T, I

a/F TV 0) Nt a/K)

Uy T
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Completed Dirichlet form — integrates to 1
44
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Mixture Models with Dirichlet Priors

e Integrating out the mixing proportions 7w (cont’d)

(z]a) = L(e) Héil ['(Ng + a/K)
P10 = Fa/KR T TV + )

. T(a) 7 T(Nk+a/K)
B + ) kl;[1

T(N T(a/K)

e Conditional probabilities
- Let’s examine the conditional of z_ given all other variables
p(znk — 1,Z_n|Oé)
p(z—n|@)

p(znk — 1|Z_n,Oé) —

where z_, denotes all indizes except n.
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Mixture Models with Dirichlet Priors

() ﬁ T(Ny, + o/K)

 Conditional probabilities Pel) = wv v o) L Trm)
p(znk — 1,Z_n‘Od)
P\Znk = 1 Z_p,) =
( | ) oz o)

;ﬁ I'(Ni+o/K) K (N

I'(N+a)  LlafK) Lli=1 I'(a/ K

~ g T(N_nxta/K) W
T(N_p+a) LlefK) A2=Tj#k I(a/K)

. T(N_,+a) T(Ny+a/K)
T T(N+a) T(N_ns +a/K)
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Mixture Models with Dirichlet Priors

e Conditional probabilities I'(n+1) =nl(n)
p(znk — 17Z_n‘Od)
p(z—n|a)

;ﬁ I'(Ni+o/K) K (N
I'( N+« [ (aFK) 11l=1-5 '/ K
~ g T(N_nxta/K) W
T(N_p+a) LlefK) A2=Tj#k I(a/K)
'(N_,+a) I'(Np+a/K)
I'N+a) I'(N_pir+a/K)

1 N_n,k—l—a/K
N -1+« 1

N—n,k + Oé/K
N -1+«

B. Leibe

p(znk — ]-‘Z—naa) —
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Finite Dirichlet Mixture Models

e Conditional probabilities: Finite K

N
N pnrta/K def
p(znk = 1lz_p,a) = N1 +{1 : N_pnr = Z Zik
i=1,i#n

e This is a very interesting result. Why?
» We directly get a numerical probability, no distribution.

~ The probability of joining a cluster mainly depends on the
number of existing entries in a cluster.

= The more populous a class is, the more likely it is to be joined!

> In addition, we have a base probability of also joining as-yet
empty clusters.

> This result can be directly used in Gibbs Sampling...

Slide adapted from Zoubin Gharamani B. Leibe
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Infinite Dirichlet Mixture Models

e Conditional probabilities: Finite K

N
N nr+a/K def
p(znk = 1lz_p,a) = ’ : N_pnr = Z Zik
N—-1+a i=1,i%n
-
N « Conditional probabilities: Infinite K
= > Taking the limit as K — oo yields the conditionals
(@))
c
= ( N—n,k o
5 N—1ia if k represented
® p(an — 1|Z—?’Laa) = 9
c o .
§ \ n—175 ifall & notrepresented
>
§ ~ Left-over mass a = countably infinite number of indicator
S settings
3
<
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Discussion

e Infinite Mixture Models
> What we have just seen is a first example of a Dirichlet Process.

- DPs allow us to work with models that have an infinite number
of components.
> This will raise a number of issues
- How to represent infinitely many parameters?
- How to deal with permutations of the class labels?
- How to control the effective size of the model?
- How to perform efficient inference?

= More background needed here!

~ DPs are a very interesting class of models, but would take us too
far here.

~ |If you’re interested in learning more about them, take a look at
the Advanced ML slides from Winter 2012.

B. Leibe
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References and Further Reading

 More information about EM estimation is available in
Chapter 9 of Bishop’s book (recommendable to read).

= PATTERN RECOGNITION [&

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

o Additional information
> Original EM paper:
- A.P. Dempster, N.M. Laird, D.B. Rubin, ,,Maximum-Likelihood from

incomplete data via EM algorithm”, In Journal Royal Statistical
Society, Series B. Vol 39, 1977

> EM tutorial:

- J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA

B. Leibe
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