

Advanced Machine Learning Lecture 10

Mixture Models II

30.11.2015

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Announcement

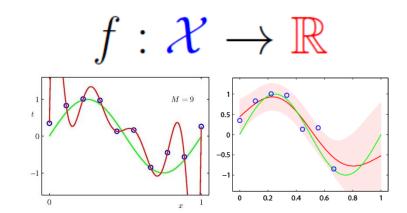
- Exercise sheet 2 online
 - Sampling
 - Rejection Sampling
 - Importance Sampling
 - Metropolis-Hastings
 - > EM
 - Mixtures of Bernoulli distributions

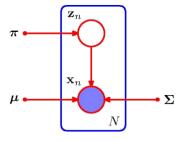
[today's topic]

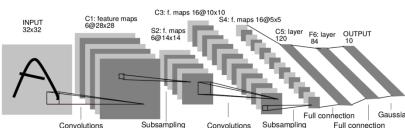
- Exercise will be on Wednesday, 07.12.
- ⇒ Please submit your results until 06.12. midnight.

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes
- Learning with Latent Variables
 - Probability Distributions
 - Approximate Inference
 - Mixture Models
 - EM and Generalizations
- Deep Learning
 - Neural Networks
 - CNNs, RNNs, RBMs, etc.







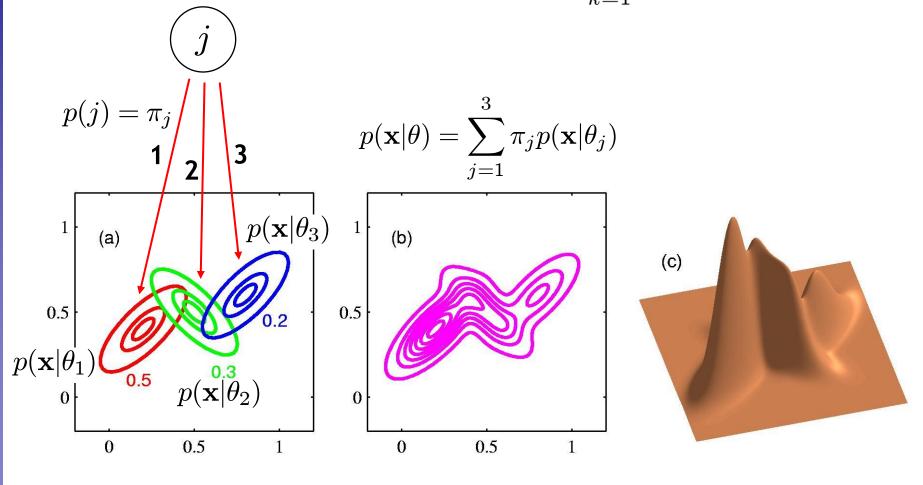
Topics of This Lecture

- The EM algorithm in general
 - Recap: General EM
 - Example: Mixtures of Bernoulli distributions
 - Monte Carlo EM
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - Infinite mixtures
 - Approximate inference (only as supplementary material)

Recap: Mixture of Gaussians

"Generative model"

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$



B. Leibe Image source: C.M. Bishop, 2006

Recap: GMMs as Latent Variable Models

- Write GMMs in terms of latent variables z
 - > Marginal distribution of ${f x}$

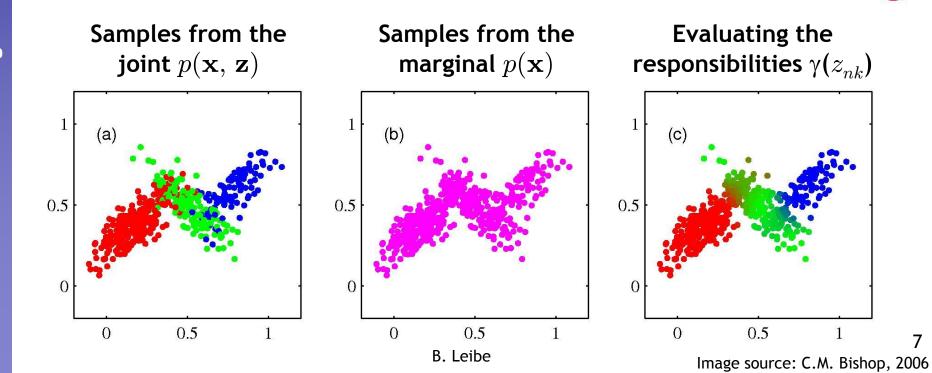
$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} | \mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Advantage of this formulation
 - > We have represented the marginal distribution in terms of latent variables z.
 - > Since $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$, there is a corresponding latent variable \mathbf{z}_n for each data point \mathbf{x}_n .
 - We are now able to work with the joint distribution $p(\mathbf{x}, \mathbf{z})$ instead of the marginal distribution $p(\mathbf{x})$.
 - ⇒ This will lead to significant simplifications...

Recap: Sampling from a Gaussian Mixture

MoG Sampling

- We can use ancestral sampling to generate random samples from a Gaussian mixture model.
 - 1. Generate a value $\hat{\mathbf{z}}$ from the marginal distribution $p(\mathbf{z})$.
 - 2. Generate a value $\hat{\mathbf{x}}$ from the conditional distribution $p(\mathbf{x}|\hat{\mathbf{z}})$.

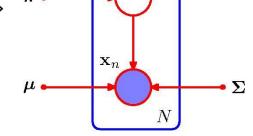


Recap: Gaussian Mixtures Revisited

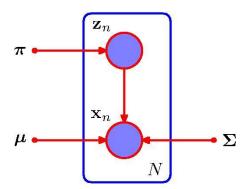
- Applying the latent variable view of EM
 - ightarrow Goal is to maximize the log-likelihood using the observed data ${f X}$

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}^{\pi}$$

Corresponding graphical model:



- Suppose we are additionally given the values of the latent variables Z.
- The corresponding graphical model for the complete data now looks like this:
- ⇒ Straightforward to marginalize...



Recap: Alternative View of EM

- In practice, however,...
 - We are not given the complete data set $\{X,Z\}$, but only the incomplete data X. All we can compute about Z is the posterior distribution $p(Z|X,\theta)$.
 - Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variable:

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

- This corresponds to the E-step of the EM algorithm.
- > In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set θ^{new} .

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \ \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

Recap: General EM Algorithm

- Algorithm
 - 1. Choose an initial setting for the parameters $oldsymbol{ heta}^{\mathrm{old}}$
 - 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
 - 3. M-step: Evaluate $heta^{
 m new}$ given by

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \ \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

where

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. While not converged, let $heta^{ ext{old}} \leftarrow heta^{ ext{new}}$ and return to step 2.

Recap: MAP-EM

- Modification for MAP
 - > The EM algorithm can be adapted to find MAP solutions for models for which a prior $p(\theta)$ is defined over the parameters.
 - Only changes needed:
 - 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
 - 3. M-step: Evaluate $heta^{ ext{new}}$ given by

$$m{ heta}^{ ext{new}} = rg \max_{m{ heta}} \; \mathcal{Q}(m{ heta}, m{ heta}^{ ext{old}}) + \log p(m{ heta})$$

⇒ Suitable choices for the prior will remove the ML singularities!

- Maximize the likelihood
 - \triangleright For the complete-data set $\{X,Z\}$, the likelihood has the form

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

> Taking the logarithm, we obtain

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.
- \Rightarrow Much simpler solution to the ML problem.
- Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are "assigned" to that component.

- Maximization w.r.t. mixing coefficients
 - More complex, since the π_k are coupled by the summation constraint

$$\sum_{j=1}^{K} \pi_j = 1$$

Solve with a Lagrange multiplier

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)$$

Solution (after a longer derivation):

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} z_{nk}$$

⇒ The complete-data log-likelihood can be maximized trivially in closed form.

- In practice, we don't have values for the latent variables
 - Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
 - The posterior distribution takes the form

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]^{z_{nk}}$$

and factorizes over n, so that the $\{\mathbf{z}_n\}$ are independent under the posterior.

Expected value of indicator variable \boldsymbol{z}_{nk} under the posterior.

$$\mathbb{E}[z_{nk}] = \frac{\sum_{z_{nk}} z_{nk} \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]^{z_{nk}}}{\sum_{z_{nj}} \left[\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)\right]^{z_{nj}}}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \gamma(z_{nk})$$

- Continuing the estimation
 - > The complete-data log-likelihood is therefore

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

⇒ This is precisely the EM algorithm for Gaussian mixtures as derived before.

Summary So Far

- We have now seen a generalized EM algorithm
 - > Applicable to general estimation problems with latent variables
 - In particular, also applicable to mixtures of other base distributions
 - In order to get some familiarity with the general EM algorithm, let's apply it to a different class of distributions...

Topics of This Lecture

- The EM algorithm in general
 - Recap: General EM
 - Example: Mixtures of Bernoulli distributions
 - Monte Carlo EM
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - Infinite mixtures
 - Approximate inference (only as supplementary material)

Mixtures of Bernoulli Distributions

- Discrete binary variables
 - > Consider D binary variables $\mathbf{x}=(x_1,\ldots,x_D)^T$, each of them described by a Bernoulli distribution with parameter μ_i , so that

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{i=1}^{D} \mu_i^{x_i} (1 - \mu_i)^{(1 - x_i)}$$

Mean and covariance are given by

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$$
$$\operatorname{cov}[\mathbf{x}] = \operatorname{diag}\{\boldsymbol{\mu}(1-\boldsymbol{\mu})\}\$$

Diagonal covariance

⇒ variables independently modeled

Mixtures of Bernoulli Distributions

- Mixtures of discrete binary variables
 - Now, consider a finite mixture of those distributions

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\boldsymbol{\mu}_k)$$
$$= \sum_{k=1}^{K} \pi_k \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{(1-x_i)}$$

Mean and covariance of the mixture are given by

$$\mathbb{E}[\mathbf{x}] = \sum_{k=1}^K \pi_k oldsymbol{\mu}_k \Rightarrow ext{Model can capture dependencies between variables}$$

dencies between variables

$$\operatorname{cov}[\mathbf{x}] = \sum_{k=1}^{K} \pi_k \left\{ \mathbf{\Sigma}_k + \boldsymbol{\mu}_k \boldsymbol{\mu}_k^T \right\} - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^T$$

where
$$\Sigma_k = \mathrm{diag}\{\mu_{ki}(1 - \mu_{ki})\}$$
.

Mixtures of Bernoulli Distributions

- Log-likelihood for the model
 - ightharpoonup Given a data set $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$,

$$\log p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k p(\mathbf{x}_n | \boldsymbol{\mu}_k) \right\}$$

- \rightarrow Again observation: summation inside logarithm \Rightarrow difficult.
- In the following, we will derive the EM algorithm for mixtures of Bernoulli distributions.
 - This will show how we can derive EM algorithms in the general case...

EM for Bernoulli Mixtures

- Latent variable formulation
 - > Introduce latent variable $\mathbf{z} = (z_1, \dots, z_K)^T$ with 1-of-K coding.
 - Conditional distribution of x:

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}) = \prod_{k=1}^{K} p(\mathbf{x}|\boldsymbol{\mu}_k)^{z_k}$$

Prior distribution for the latent variables

$$p(\mathbf{z}|\boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

Again, we can verify that

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{\mathbf{z}} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}) p(\mathbf{z}|\boldsymbol{\pi}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\boldsymbol{\mu}_k)$$

Recap: General EM Algorithm

- Algorithm
 - 1. Choose an initial setting for the parameters $oldsymbol{ heta}^{
 m old}$
 - 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
 - 3. M-step: Evaluate $heta^{
 m new}$ given by

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \; \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. While not converged, let $heta^{ ext{old}} \leftarrow heta^{ ext{new}}$ and return to step 2.

Complete-data likelihood

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_{k} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}) \right]^{z_{nk}}$$

$$= \prod_{n=1}^{N} \prod_{k=1}^{K} \left\{ \pi_{k} \prod_{i=1}^{D} \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{(1 - x_{ni})} \right\}^{z_{nk}}$$

Posterior distribution of the latent variables Z

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\pi}) = \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\pi})}{p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\pi})}$$
$$= \prod_{n=1}^{N} \prod_{k=1}^{K} \frac{\left[\pi_{k} p(\mathbf{x}_{n}|\boldsymbol{\mu}_{k})\right]^{z_{nk}}}{\sum_{j=1}^{K} \pi_{j} p(\mathbf{x}_{n}|\boldsymbol{\mu}_{j})}$$

- E-Step
 - Evaluate the responsibilities

$$\gamma(z_{nk}) = \mathbb{E}[z_{nk}] = \sum_{z_{nk}} z_{nk} \frac{\left[\pi_k p(\mathbf{x}_n | \boldsymbol{\mu}_k)\right]^{z_{nk}}}{\sum_{j=1}^K \pi_j p(\mathbf{x}_n | \boldsymbol{\mu}_j)}$$
$$= \frac{\pi_k p(\mathbf{x}_n | \boldsymbol{\mu}_k)}{\sum_{j=1}^K \pi_j p(\mathbf{x}_n | \boldsymbol{\mu}_j)}$$

Note: we again get the same form as for Gaussian mixtures

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

Recap: General EM Algorithm

- Algorithm
 - 1. Choose an initial setting for the parameters $oldsymbol{ heta}^{\mathrm{old}}$
 - 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
 - 3. M-step: Evaluate $heta^{
 m new}$ given by

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \; \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. While not converged, let $heta^{ ext{old}} \leftarrow heta^{ ext{new}}$ and return to step 2.

Complete-data log-likelihood

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \{ \log \pi_k + \sum_{i=1}^{D} [x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log(1 - \mu_{ki})] \}$$

Expectation w.r.t. the posterior distribution of Z

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \boldsymbol{\gamma}(z_{nk}) \{\log \pi_{k} + \sum_{i=1}^{D} [x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log(1 - \mu_{ki})] \}$$

where $\gamma(z_{nk})=\mathbb{E}[z_{nk}]$ are again the responsibilities for each \mathbf{x}_{n}

Remark

> The $\gamma(z_{nk})$ only occur in two forms in the expectation:

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

$$\bar{\mathbf{x}}_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n$$

Interpretation

- > N_k is the effective number of data points associated with component k.
- $ar{\mathbf{x}}_k$ is the responsibility-weighted mean of the data points softly assigned to component k.

M-Step

Maximize the expected complete-data log-likelihood w.r.t the parameter μ_k .

$$\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathbb{E}_{\mathbf{Z}}[p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})]$$

$$= \frac{\partial}{\partial \boldsymbol{\mu}_{k}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \log \pi_{k} + \left[\mathbf{x}_{n} \log \boldsymbol{\mu}_{k} + (1 - \mathbf{x}_{n}) \log(1 - \boldsymbol{\mu}_{k}) \right] \right\}$$

$$= \frac{1}{\boldsymbol{\mu}_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n} - \frac{1}{1 - \boldsymbol{\mu}_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (1 - \mathbf{x}_{n}) \stackrel{!}{=} 0$$

$$\vdots$$

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n} = \bar{\mathbf{x}}_{k}$$

- M-Step
 - Maximize the expected complete-data log-likelihood w.r.t the parameter π_k under the constraint $\sum_k \pi_k = 1$.
 - > Solution with Lagrange multiplier λ

$$\arg \max_{\pi_k} \mathbb{E}_{\mathbf{Z}}[p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})] + \lambda \left(\sum_{k=1}^K \pi_k - 1 \right)$$

$$\vdots \\ \pi_k = \frac{N_k}{N}$$

Discussion

Comparison with Gaussian mixtures

- In contrast to Gaussian mixtures, there are no singularities in which the likelihood goes to infinity.
- This follows from the property of Bernoulli distributions that

$$0 \le p(\mathbf{x}_n | \boldsymbol{\mu}_k) \le 1$$

ightarrow However, there are still problem cases when μ_{ki} becomes 0 or 1

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})] = \dots [x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log (1 - \mu_{ki})]$$

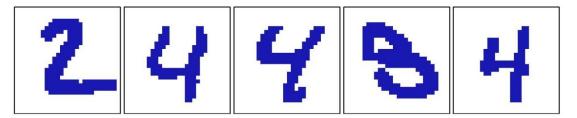
 \Rightarrow Need to enforce a range [MIN_VAL,1-MIN_VAL] for either μ_{ki} or γ .

General remarks

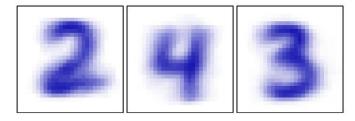
- Bernoulli mixtures are used in practice in order to represent binary data.
- The resulting model is also known as latent class analysis.

Example: Handwritten Digit Recognition

Binarized digit data (examples from set of 600 digits)



Means of a 3-component Bernoulli mixture (10 EM iter.)



• Comparison: ML result of single multivariate Bernoulli distribution

Topics of This Lecture

- The EM algorithm in general
 - Recap: General EM
 - Example: Mixtures of Bernoulli distributions
 - Monte Carlo EM
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - Infinite mixtures
 - Approximate inference (only as supplementary material)

Monte Carlo EM

EM procedure

M-step: Maximize expectation of complete-data log-likelihood

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) d\mathbf{Z}$$

For more complex models, we may not be able to compute this analytically anymore...

Idea

> Use sampling to approximate this integral by a finite sum over samples $\{\mathbf{Z}^{(l)}\}$ drawn from the current estimate of the posterior

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \sim \frac{1}{L} \sum_{l=1}^{L} \log p(\mathbf{X}, \mathbf{Z}^{(l)} | \boldsymbol{\theta}^{\text{old}})$$

This procedure is called the Monte Carlo EM algorithm.

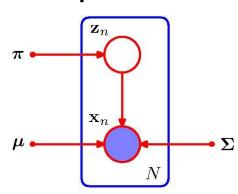
Topics of This Lecture

- The EM algorithm in general
 - Recap: General EM
 - Example: Mixtures of Bernoulli distributions
 - Monte Carlo EM
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - Finite mixtures
 - > Infinite mixtures
 - Approximate inference (only as supplementary material)

Towards a Full Bayesian Treatment...

- Mixture models
 - $\,\,\,\,\,\,\,\,\,$ We have discussed mixture distributions with K components

$$p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$



- So far, we have derived the ML estimates
- \Rightarrow EM

> Introduced a prior $p(oldsymbol{ heta})$ over parameters

- \Rightarrow MAP-EM
- > One question remains open: how to set K ?
- ⇒ Let's also set a prior on the number of components...

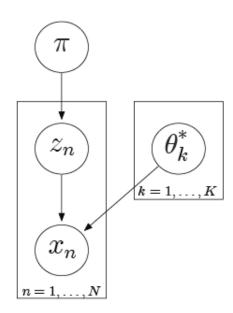
Bayesian Mixture Models

- Let's be Bayesian about mixture models
 - Place priors over our parameters
 - > Again, introduce variable \mathbf{z}_n as indicator which component data point \mathbf{x}_n belongs to.

$$\mathbf{z}_n | \boldsymbol{\pi} \sim \mathrm{Multinomial}(\boldsymbol{\pi})$$

 $\mathbf{x}_n | \mathbf{z}_n = k, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\boldsymbol{\mu}_k, \Sigma_k)$

- This is similar to the graphical model we've used before, but now the π and $\theta_k=(\mu_k, \Sigma_k)$ are also treated as random variables.
- What would be suitable priors for them?



Bayesian Mixture Models

- Let's be Bayesian about mixture models
 - Place priors over our parameters
 - > Again, introduce variable \mathbf{z}_n as indicator which component data point \mathbf{x}_n belongs to.

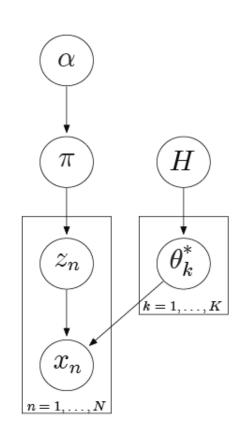
$$\mathbf{z}_n | \boldsymbol{\pi} \sim \mathrm{Multinomial}(\boldsymbol{\pi})$$

 $\mathbf{x}_n | \mathbf{z}_n = k, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\boldsymbol{\mu}_k, \Sigma_k)$

Introduce conjugate priors over parameters

$$m{\pi} \sim \operatorname{Dirichlet}(rac{lpha}{K}, \dots, rac{lpha}{K})$$
 $m{\mu}_k, m{\Sigma}_k \sim H = \mathcal{N} - \mathcal{IW}(0, s, d, \phi)$

"Normal - Inverse Wishart"



Bayesian Mixture Models

- Full Bayesian Treatment
 - Given a dataset, we are interested in the cluster assignments

$$p(\mathbf{Z}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}{\sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}$$

where the likelihood is obtained by marginalizing over the parameters θ

$$p(\mathbf{X}|\mathbf{Z}) = \int p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
$$= \int \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathbf{x}_n|z_{nk}, \boldsymbol{\theta}_k) p(\boldsymbol{\theta}_k|H) d\boldsymbol{\theta}$$

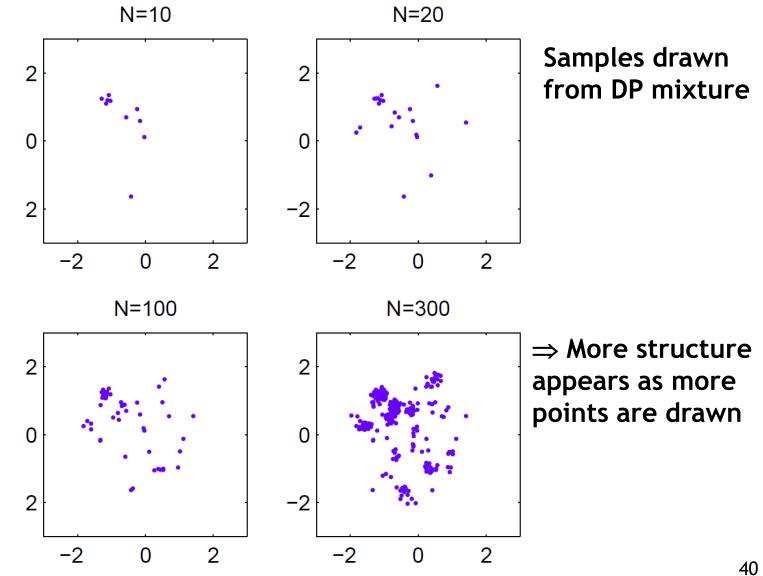
- The posterior over assignments is intractable!
 - $\,\,\,$ Denominator requires summing over all possible partitions of the data into K groups!
 - ⇒ Need efficient approximate inference methods to solve this...

Bayesian Mixture Models

- Let's examine this model more closely
 - Role of Dirichlet priors?
 - How can we perform efficient inference?
 - $\,\,f{ iny}\,$ What happens when K goes to infinity?
- This will lead us to an interesting class of models...
 - Dirichlet Processes
 - Possible to express infinite mixture distributions with their help
 - Clustering that automatically adapts the number of clusters to the data and dynamically creates new clusters on-the-fly.

RWTHAACHEN UNIVERSITY

Sneak Preview: Dirichlet Process MoG



Slide credit: Zoubin Gharamani

Recap: The Dirichlet Distribution

- **Dirichlet Distribution**
 - Conjugate prior for the Categorical and the Multinomial distrib.

$$\operatorname{Dir}(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1} \quad \text{with} \quad \alpha_0 = \sum_{k=1}^K \alpha_k$$

Symmetric version (with concentration parameter α)

$$Dir(\boldsymbol{\mu}|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^K \mu_k^{\alpha/K-1}$$

Properties

$$\mathbb{E}[\mu_k] = \frac{\alpha_k}{\alpha_0}$$

$$\operatorname{ran}[\mu_k] = \frac{\alpha_k(\alpha_0 - \alpha_0)}{\alpha_0}$$

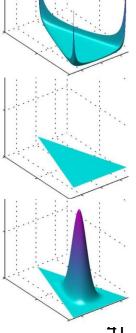
$$\operatorname{cov}[\mu_j \mu_k] = -\frac{\alpha_j \alpha_k}{\alpha_0^2 (\alpha_0 + 1)} = -\frac{1}{K^2 (\alpha + 1)}$$

(symmetric version)

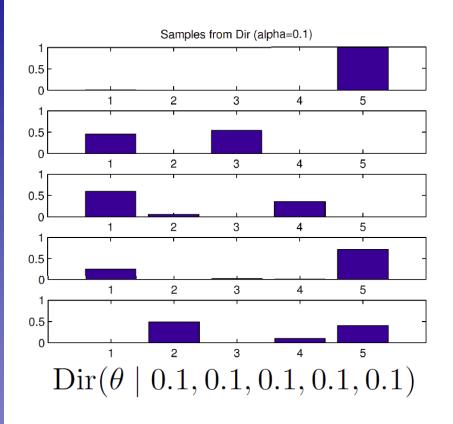
$$\mathbb{E}[\mu_k] = \frac{\alpha_k}{\alpha_0} = \frac{1}{K}$$

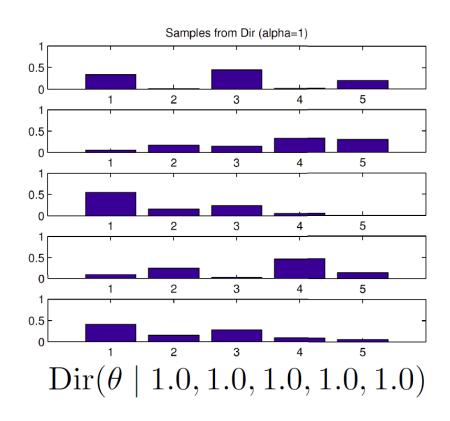
$$\operatorname{var}[\mu_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)} = \frac{K - 1}{K^2(\alpha + 1)}$$

$$\operatorname{vv}[\mu_j \mu_k] = -\frac{\alpha_j \alpha_k}{\alpha_0^2(\alpha_0 + 1)} = -\frac{1}{K^2(\alpha + 1)}$$



Dirichlet Samples





- Effect of concentration parameter lpha
 - Controls sparsity of the resulting samples

RWTHAACHEN UNIVERSITY

Mixture Model with Dirichlet Priors

Finite mixture of K components

$$p(\mathbf{x}_n|\boldsymbol{\theta}) = \sum_{k=1}^K \pi_k p(\mathbf{x}_n|\theta_k)$$

$$= \sum_{k=1}^K p(z_{nk} = 1|\pi_k) p(\mathbf{x}_n|\theta_k, z_{nk} = 1)$$

ightarrow The distribution of latent variables \mathbf{z}_n given π is multinomial

$$p(\mathbf{z}|\boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k^{N_k}, \quad N_k \stackrel{\text{def}}{=} \sum_{n=1}^{N} z_{nk}$$

Assume mixing proportions have a given symmetric conjugate Dirichlet prior

$$p(\boldsymbol{\pi}|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^K \pi_k^{\alpha/K-1}$$

Mixture Model with Dirichlet Priors

• Integrating out the mixing proportions π :

$$p(\mathbf{z}|\alpha) = \int p(\mathbf{z}|\boldsymbol{\pi}) p(\boldsymbol{\pi}|\alpha) d\boldsymbol{\pi}$$

$$= \int \prod_{k=1}^{K} \pi_k^{N_k} \cdot \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^{K} \pi_k^{\alpha/K-1} d\boldsymbol{\pi}$$

$$= \int \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^{K} \pi_k^{N_k + \alpha/K - 1} d\boldsymbol{\pi}$$

> This is again a Dirichlet distribution (reason for conjugate priors)

$$= \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \frac{\prod_{k=1}^K \Gamma(N_k + \alpha/K)}{\Gamma(N + \alpha)} \int \frac{\Gamma(N + \alpha)}{\prod_{k=1}^K \Gamma(N_k + \alpha/K)} \prod_{k=1}^K \pi_k^{N_k + \alpha/K - 1} d\boldsymbol{\pi}$$

Completed Dirichlet form → integrates to 1

Mixture Models with Dirichlet Priors

• Integrating out the mixing proportions π (cont'd)

$$p(\mathbf{z}|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \frac{\prod_{k=1}^K \Gamma(N_k + \alpha/K)}{\Gamma(N + \alpha)}$$
$$= \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \prod_{k=1}^K \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)}$$

- Conditional probabilities
 - ightharpoonup Let's examine the conditional of \mathbf{z}_n given all other variables

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{p(z_{nk} = 1, \mathbf{z}_{-n} | \alpha)}{p(\mathbf{z}_{-n} | \alpha)}$$

where \mathbf{z}_{-n} denotes all indizes except n.

Mixture Models with Dirichlet Priors

Conditional probabilities

$$p(\mathbf{z}|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \prod_{k=1}^{K} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)}$$

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{p(z_{nk} = 1, \mathbf{z}_{-n} | \alpha)}{p(\mathbf{z}_{-n} | \alpha)}$$

$$= \frac{\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)} \prod_{j=1, j \neq k}^{K} \frac{\Gamma(N_j + \alpha/K)}{\Gamma(\alpha/K)}}{\frac{\Gamma(\alpha)}{\Gamma(N-n+\alpha)} \frac{\Gamma(N_{-n,k} + \alpha/K)}{\Gamma(\alpha/K)} \prod_{j=1, j \neq k}^{K} \frac{\Gamma(N_j + \alpha/K)}{\Gamma(\alpha/K)}}{\Gamma(\alpha/K)}$$

$$\Gamma(N_{-n} + \alpha) \Gamma(N_k + \alpha/K)$$

$$= \frac{\Gamma(N_{-n} + \alpha)}{\Gamma(N + \alpha)} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(N_{-n,k} + \alpha/K)}$$

Mixture Models with Dirichlet Priors

Conditional probabilities

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{p(z_{nk} = 1, \mathbf{z}_{-n} | \alpha)}{p(\mathbf{z}_{-n} | \alpha)}$$

$$\prod K \qquad \Gamma(N_j + \alpha/K)$$

 $\Gamma(n+1) = n\Gamma(n)$

$$= \frac{\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)} \prod_{j=1, j \neq k}^{K} \frac{\Gamma(N_j + \alpha/K)}{\Gamma(\alpha/K)}}{\frac{\Gamma(\alpha)}{\Gamma(N-n+\alpha)} \frac{\Gamma(N_{-n,k} + \alpha/K)}{\Gamma(\alpha/K)} \prod_{j=1, j \neq k}^{K} \frac{\Gamma(N_j + \alpha/K)}{\Gamma(\alpha/K)}}{\frac{\Gamma(N_j + \alpha/K)}{\Gamma(\alpha/K)}}$$

$$= \frac{\Gamma(N_{-n} + \alpha)}{\Gamma(N + \alpha)} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(N_{-n,k} + \alpha/K)}$$

$$= \frac{1}{N-1+\alpha} \frac{N_{-n,k} + \alpha/K}{1}$$

$$= \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha}$$

Finite Dirichlet Mixture Models

Conditional probabilities: Finite K

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha}, \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1}^{N} z_{ik}$$

$$N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1,i\neq n}^{N} z_{ik}$$

- This is a very interesting result. Why?
 - We directly get a numerical probability, no distribution.
 - The probability of joining a cluster mainly depends on the number of existing entries in a cluster.
 - \Rightarrow The more populous a class is, the more likely it is to be joined!
 - In addition, we have a base probability of also joining as-yet empty clusters.
 - This result can be directly used in Gibbs Sampling...

Infinite Dirichlet Mixture Models

Conditional probabilities: Finite *K*

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha}, \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_{ik}$$

$$N_{-n,k} \stackrel{\mathrm{def}}{=} \sum_{i=1,i \neq n}^{N} z_{ik}$$

- Conditional probabilities: Infinite K
 - ightarrow Taking the limit as $K o\infty$ yields the conditionals

$$p(z_{nk}=1|\mathbf{z}_{-n},\alpha) \ = \ \begin{cases} \frac{N_{-n,k}}{N-1+\alpha} & \text{if } k \text{ represented} \\ \frac{\alpha}{N-1+\alpha} & \text{if all } k \text{ not represented} \end{cases}$$

Left-over mass $\alpha \Rightarrow$ countably infinite number of indicator settings

Discussion

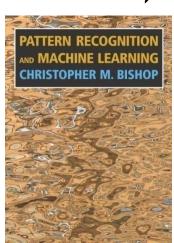
- Infinite Mixture Models
 - > What we have just seen is a first example of a Dirichlet Process.
 - DPs allow us to work with models that have an infinite number of components.
 - This will raise a number of issues
 - How to represent infinitely many parameters?
 - How to deal with permutations of the class labels?
 - How to control the effective size of the model?
 - How to perform efficient inference?
 - ⇒ More background needed here!
 - DPs are a very interesting class of models, but would take us too far here.
 - If you're interested in learning more about them, take a look at the Advanced ML slides from Winter 2012.

Next Lecture...

References and Further Reading

 More information about EM estimation is available in Chapter 9 of Bishop's book (recommendable to read).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006



Additional information

- Original EM paper:
 - A.P. Dempster, N.M. Laird, D.B. Rubin, "<u>Maximum-Likelihood from incomplete data via EM algorithm</u>", In Journal Royal Statistical Society, Series B. Vol 39, 1977
- EM tutorial:
 - J.A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models", TR-97-021, ICSI, U.C. Berkeley, CA,USA