$f: \mathcal{X} \to \mathbb{R}$

Advanced Machine Learning Lecture 10

Mixture Models II

30.11.2015

Bastian Leibe **RWTH Aachen** http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Announcement

- Exercise sheet 2 online
 - Sampling
 - Rejection Sampling
 - Importance Sampling
- Metropolis-Hastings
- Mixtures of Bernoulli distributions

[today's topic]

- Exercise will be on Wednesday, 07.12.
- ⇒ Please submit your results until 06.12. midnight.

This Lecture: Advanced Machine Learning

- · Regression Approaches
 - > Linear Regression
 - Regularization (Ridge, Lasso)
 - **Gaussian Processes**
- · Learning with Latent Variables
 - > Probability Distributions
 - > Approximate Inference
 - Mixture Models **EM and Generalizations**
- Deep Learning
- > Neural Networks

 - > CNNs, RNNs, RBMs, etc.

Topics of This Lecture

• The EM algorithm in general

- Recap: General EM
- Example: Mixtures of Bernoulli distributions
- Monte Carlo EM

· Bayesian Mixture Models

- Towards a full Bayesian treatment
- Dirichlet priors
- Finite mixtures
- Infinite mixtures
 - Approximate inference (only as supplementary material)

Recap: Mixture of Gaussians $p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ "Generative model" $p(j) = \pi_j$

Recap: GMMs as Latent Variable Models

ullet Write GMMs in terms of latent variables ${f z}$

> Marginal distribution of x

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

· Advantage of this formulation

- We have represented the marginal distribution in terms of latent variables z.
- Since $p(\mathbf{x}) = \sum_{\mathbf{z}} \, p(\mathbf{x},\,\mathbf{z})$, there is a corresponding latent variable \mathbf{z}_n for each data point \mathbf{x}_n .
- We are now able to work with the joint distribution $p(\mathbf{x},\,\mathbf{z})$ instead of the marginal distribution $p(\mathbf{x})$.
- ⇒ This will lead to significant simplifications...

Recap: Sampling from a Gaussian Mixture • MoG Sampling • We can use ancestral sampling to generate random samples from a Gaussian mixture model. 1. Generate a value $\hat{\mathbf{z}}$ from the marginal distribution $p(\mathbf{z})$. 2. Generate a value $\hat{\mathbf{x}}$ from the conditional distribution $p(\mathbf{x}|\hat{\mathbf{z}})$. Samples from the joint $p(\mathbf{x}, \mathbf{z})$ Samples from the marginal $p(\mathbf{x})$ Fevaluating the responsibilities $\gamma(z_{nk})$

Recap: Alternative View of EM • In practice, however,... • We are not given the complete data set $\{X,Z\}$, but only the incomplete data X. All we can compute about Z is the posterior distribution $p(Z|X,\theta)$. • Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variable: $Q(\theta,\theta^{\mathrm{old}}) = \sum_{Z} p(Z|X,\theta^{\mathrm{old}}) \log p(X,Z|\theta)$ • This corresponds to the E-step of the EM algorithm. • In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set θ^{new} . $\theta^{\mathrm{new}} = \arg\max_{\theta} Q(\theta,\theta^{\mathrm{old}})$

Recap: General EM Algorithm • Algorithm 1. Choose an initial setting for the parameters θ^{old} 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X},\theta^{\text{old}})$ 3. M-step: Evaluate θ^{new} given by $\theta^{\text{new}} = \arg\max_{\boldsymbol{\theta}} \mathcal{Q}(\theta,\theta^{\text{old}})$ where $\mathcal{Q}(\theta,\theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\theta^{\text{old}}) \log p(\mathbf{X},\mathbf{Z}|\theta)$ 4. While not converged, let $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$ and return to step 2.

Recap: MAP-EM Modification for MAP The EM algorithm can be adapted to find MAP solutions for models for which a prior p(θ) is defined over the parameters. Only changes needed: E-step: Evaluate p(Z|X, θ^{old}) M-step: Evaluate θ^{new} given by θ^{new} = arg max Q(θ, θ^{old}) + log p(θ) ⇒ Suitable choices for the prior will remove the ML singularities!

B. Leibe

Gaussian Mixtures Revisited

- · Maximization w.r.t. mixing coefficients
 - More complex, since the $\boldsymbol{\pi}_{\boldsymbol{k}}$ are coupled by the summation

 $\sum_{i} \pi_{j} = 1$

> Solve with a Lagrange multiplier

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) + \lambda \left(\sum_{k=1}^K \pi_k - 1 \right)$$

> Solution (after a longer derivation):

$$\pi_k = \frac{1}{N} \sum_{i=1}^{N} z_{nk}$$

⇒ The complete-data log-likelihood can be maximized trivially in

B. Leibe

Gaussian Mixtures Revisited

- In practice, we don't have values for the latent variables
 - Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
 - The posterior distribution takes the form

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})]^{z_{nk}}$$

and factorizes over n , so that the $\{\mathbf{z}_n\}$ are independent under

Expected value of indicator variable $\boldsymbol{z}_{n\boldsymbol{k}}$ under the posterior.

$$\begin{split} \mathbb{E}[z_{nk}] &= \frac{\sum_{z_{nk}} z_{nk} \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]^{z_{nk}}}{\sum_{z_{nj}} \left[\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_j) \right]^{z_{nj}}} \\ &= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \gamma(z_{nk}) \end{split}$$

Gaussian Mixtures Revisited

- · Continuing the estimation
 - > The complete-data log-likelihood is therefore

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X},\mathbf{Z}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right\}$$

⇒ This is precisely the EM algorithm for Gaussian mixtures as derived before.

Summary So Far

- We have now seen a generalized EM algorithm
 - > Applicable to general estimation problems with latent variables
 - In particular, also applicable to mixtures of other base distributions
 - In order to get some familiarity with the general EM algorithm, let's apply it to a different class of distributions...

Topics of This Lecture

- · The EM algorithm in general
 - > Recap: General EM
 - Example: Mixtures of Bernoulli distributions
 - Monte Carlo EM
- Bayesian Mixture Models
 - Towards a full Bayesian treatment
 - Dirichlet priors
 - > Finite mixtures
 - > Infinite mixtures
 - Approximate inference (only as supplementary material)

Mixtures of Bernoulli Distributions

- · Discrete binary variables
 - Consider D binary variables $\mathbf{x} = (x_1, \dots, x_D)^T$, each of them described by a Bernoulli distribution with parameter μ_i , so that

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{i=1}^{D} \mu_i^{x_i} (1 - \mu_i)^{(1 - x_i)}$$

> Mean and covariance are given by

$$\begin{array}{rcl} \mathbb{E}[\mathbf{x}] & = & \boldsymbol{\mu} \\ \operatorname{cov}[\mathbf{x}] & = & \operatorname{diag}\left\{\boldsymbol{\mu}(1-\boldsymbol{\mu})\right\} \end{array}$$

Diagonal covariance ⇒ variables independently modeled

Mixtures of Bernoulli Distributions

- · Mixtures of discrete binary variables
 - Now, consider a finite mixture of those distributions

$$\begin{split} p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\pi}) &= \sum_{k=1}^{K} \pi_k p(\mathbf{x}|\boldsymbol{\mu}_k) \\ &= \sum_{k=1}^{K} \pi_k \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{(1-x_i)} \end{split}$$

Mean and covariance of the mixture are given by
$$\mathbb{E}[\mathbf{x}] \ = \ \sum_{k=1}^K \pi_k \mu_k \qquad \begin{array}{c} \text{Covariance not diagonal} \\ \Rightarrow \text{Model can capture dependencies between variables} \\ \text{cov}[\mathbf{x}] \ = \ \sum_{k=1}^K \pi_k \left\{ \mathbf{\Sigma}_k + \mu_k \mu_k^T \right\} - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^T$$

Mixtures of Bernoulli Distributions

- · Log-likelihood for the model
 - ightarrow Given a data set $\mathbf{X} = \{\mathbf{x}_1,...,\mathbf{x}_N\}$,

$$\log p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\pi}) \ = \ \sum_{n=1}^N \log \left\{ \sum_{k=1}^K \pi_k p(\mathbf{x}_n|\boldsymbol{\mu}_k) \right\}$$

- Again observation: summation inside logarithm ⇒ difficult.
- In the following, we will derive the EM algorithm for mixtures of Bernoulli distributions.
 - This will show how we can derive EM algorithms in the general

EM for Bernoulli Mixtures

- · Latent variable formulation
 - Introduce latent variable $\mathbf{z}=(z_1,...,z_K)^T$ with 1-of-K coding.
 - Conditional distribution of x:

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}) = \prod_{k=1}^{K} p(\mathbf{x}|\boldsymbol{\mu}_k)^{z_k}$$

> Prior distribution for the latent variables

$$p(\mathbf{z}|\boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

> Again, we can verify that

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{\mathbf{z}} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}) p(\mathbf{z}|\boldsymbol{\pi}) = \sum_{k=1}^K \pi_k p(\mathbf{x}|\boldsymbol{\mu}_k)$$

Recap: General EM Algorithm

· Algorithm

- 1. Choose an initial setting for the parameters $\, heta^{
 m old} \,$
- 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}})$
- 3. M-step: Evaluate $\, heta^{
 m new}$ given by

$$\boldsymbol{\theta}^{\mathrm{new}} = \underset{\boldsymbol{\theta}}{\mathrm{arg \, max}} \ \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}})$$

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. While not converged, let $\, heta^{
m old} \subset \, heta^{
m new} \,$ and return to step 2.

EM for Bernoulli Mixtures: E-Step

· Complete-data likelihood

$$\begin{split} p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi}) &= \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_{k} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}) \right]^{z_{nk}} \\ &= \prod_{n=1}^{N} \prod_{k=1}^{K} \left\{ \pi_{k} \prod_{i=1}^{D} \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{(1 - x_{ni})} \right\}^{z_{nk}} \end{split}$$

· Posterior distribution of the latent variables Z

$$\begin{split} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\pi}) &= \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\pi})}{p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\pi})} \\ &= \prod_{n=1}^{N} \prod_{k=1}^{K} \frac{\left[\pi_{k} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{k})\right]^{z_{nk}}}{\sum_{j=1}^{K} \pi_{j} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{j})} \end{split}$$

EM for Bernoulli Mixtures: E-Step

- E-Step
 - Evaluate the responsibilities

$$\begin{split} \gamma(z_{nk}) &= \mathbb{E}[z_{nk}] &= \sum_{z_{nk}} z_{nk} \frac{\left[\pi_k p(\mathbf{x}_n | \boldsymbol{\mu}_k)\right]^{z_{nk}}}{\sum_{j=1}^K \pi_j p(\mathbf{x}_n | \boldsymbol{\mu}_j)} \\ &= \frac{\pi_k p(\mathbf{x}_n | \boldsymbol{\mu}_k)}{\sum_{j=1}^K \pi_j p(\mathbf{x}_n | \boldsymbol{\mu}_j)} \end{split}$$

> Note: we again get the same form as for Gaussian mixtures

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

4

Recap: General EM Algorithm

- Algorithm
 - 1. Choose an initial setting for the parameters $\, heta^{
 m old}$
 - 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}})$
 - 3. M-step: Evaluate $\, heta^{
 m new}$ given by

$$\boldsymbol{\theta}^{\mathrm{new}} = \arg\max_{\boldsymbol{\theta}} \ \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}})$$

where

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. While not converged, let $\, heta^{
m old} \, \subset \, heta^{
m new}$ and return to step 2.

•

EM for Bernoulli Mixtures: M-Step

• Complete-data log-likelihood

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \sum_{i=1}^{D} \left[x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log (1 - \mu_{ki}) \right] \right\}$$

Expectation w.r.t. the posterior distribution of Z

$$\underbrace{\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})]}_{\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}})} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \log \pi_{k} + \sum_{i=1}^{D} \left[x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log(1 - \mu_{ki}) \right] \right\}$$

where $\gamma(z_{nk})=\mathbb{E}[z_{nk}]$ are again the responsibilities for each \mathbf{x}_{n} , 26

RWTHAACHE UNIVERSIT

EM for Bernoulli Mixtures: M-Step

- Remark
 - ightarrow The $\gamma(z_{nk})$ only occur in two forms in the expectation:

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk})$$

$$\bar{\mathbf{x}}_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n$$

- Interpretation
 - $>N_k$ is the effective number of data points associated with component k.
 - $\mathbf{\bar{x}}_k$ is the responsibility-weighted mean of the data points softly assigned to component k.

Leibe

EM for Bernoulli Mixtures: M-Step

- M-Step
 - > Maximize the expected complete-data log-likelihood w.r.t the parameter $\mu_{k}.$

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\mu}_k} \mathbb{E}_{\mathbf{Z}}[p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})] \\ &= \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \sum_{k=1}^K \gamma(z_{nk}) \left\{ \log \pi_k + [\mathbf{x}_n \log \boldsymbol{\mu}_k + (1 - \mathbf{x}_n) \log(1 - \boldsymbol{\mu}_k)] \right\} \\ &= \frac{1}{\boldsymbol{\mu}_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n - \frac{1}{1 - \boldsymbol{\mu}_k} \sum_{n=1}^N \gamma(z_{nk}) (1 - \mathbf{x}_n) \stackrel{!}{=} 0 \end{split}$$

$$\vdots$$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n = \bar{\mathbf{x}}_k$$

eibe

EM for Bernoulli Mixtures: M-Step

- M-Step
 - Maximize the expected complete-data log-likelihood w.r.t the parameter π_k under the constraint $\sum_k \pi_k = 1$.
 - $\,\,{}^{}_{\,}\,$ Solution with Lagrange multiplier λ

$$\arg \max_{\pi_k} \mathbb{E}_{\mathbf{Z}}[p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})] + \lambda \left(\sum_{k=1}^K \pi_k - 1 \right)$$

$$\vdots$$

$$\pi_k = \frac{N_k}{N}$$

Discussion

- · Comparison with Gaussian mixtures
 - > In contrast to Gaussian mixtures, there are no singularities in which the likelihood goes to infinity.
 - . This follows from the property of Bernoulli distributions that $0 \leq p(\mathbf{x}_n|\boldsymbol{\mu}_k) \leq 1$

- However, there are still problem cases when
$$\mu_{ki}$$
 becomes 0 or 1

$$\mathbb{E}_{\sigma}[\log n(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\pi})] = \dots [x_{mi} \log \mu_{ki} + (1 - x_{mi}) \log (1 - \mu_{ki})]$$

- $\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\pi})] = \dots [x_{ni} \log \mu_{ki} + (1 x_{ni}) \log (1 \mu_{ki})]$
- \Rightarrow Need to enforce a range [MIN_VAL,1-MIN_VAL] for either μ_{ki} or γ_{\bullet}
- General remarks
 - Bernoulli mixtures are used in practice in order to represent binary data,
 - > The resulting model is also known as latent class analysis.

Leihe

$\label{eq:wave_energy} \begin{tabular}{ll} \textbf{Monte Carlo EM} \\ \bullet & \textbf{EM procedure} \\ & \bullet & \textbf{M-step: Maximize expectation of complete-data log-likelihood} \\ & \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \mathrm{d}\mathbf{Z} \\ & \bullet & \textbf{For more complex models, we may not be able to compute this analytically anymore...} \\ \bullet & \textbf{Idea} \\ & \bullet & \textbf{Use sampling to approximate this integral by a finite sum over samples } \{\mathbf{Z}^{(l)}\} \text{ drawn from the current estimate of the posterior} \\ & \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \sim \frac{1}{L} \sum_{l=1}^{L} \log p(\mathbf{X}, \mathbf{Z}^{(l)}|\boldsymbol{\theta}^{\text{old}}) \\ & \bullet & \textbf{This procedure is called the Monte Carlo EM algorithm.} \\ \end{tabular}$

Bayesian Mixture Models

Full Bayesian Treatment

> Given a dataset, we are interested in the cluster assignments

$$p(\mathbf{Z}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}{\sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}$$

where the likelihood is obtained by marginalizing over the parameters $\pmb{\theta}$

$$p(\mathbf{X}|\mathbf{Z}) = \int p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
$$= \int \prod_{k=1}^{N} \prod_{k=1}^{K} p(\mathbf{x}_{n}|z_{nk}, \boldsymbol{\theta}_{k}) p(\boldsymbol{\theta}_{k}|H) d\boldsymbol{\theta}$$

• The posterior over assignments is intractable!

- \Rightarrow Need efficient approximate inference methods to solve this... ₃₈

Bayesian Mixture Models • Let's examine this model more closely • Role of Dirichlet priors? • How can we perform efficient inference? • What happens when K goes to infinity? • This will lead us to an interesting class of models... • Dirichlet Processes • Possible to express infinite mixture distributions with their help • Clustering that automatically adapts the number of clusters to the data and dynamically creates new clusters on-the-fly.

Mixture Model with Dirichlet Priors

Finite mixture of K components

inite mixture of
$$K$$
 components $p(\mathbf{x}_n|m{ heta}) = \sum_{k=1}^K \pi_k p(\mathbf{x}_n|m{ heta}_k) = \sum_{k=1}^K p(z_{nk}=1|\pi_k) p(\mathbf{x}_n|m{ heta}_k,z_{nk}=1)$

$$p(\mathbf{z}|\boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k^{N_k}, \quad N_k \stackrel{\text{def}}{=} \sum_{n=1}^{N} z_{nk}$$

Assume mixing proportions have a given symmetric conjugate Dirichlet prior

$$p(\pi|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^K \pi_k^{\alpha/K-1}$$
 n. Zoubin Gharamani

Mixture Model with Dirichlet Priors

• Integrating out the mixing proportions π :

$$\begin{split} p(\mathbf{z}|\alpha) &= \int p(\mathbf{z}|\pi) p(\pi|\alpha) \mathrm{d}\pi \\ &= \int \prod_{k=1}^K \pi_k^{N_k} \cdot \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^K \pi_k^{\alpha/K-1} \mathrm{d}\pi \\ &= \int \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^K \pi_k^{N_k + \alpha/K - 1} \mathrm{d}\pi \end{split}$$

> This is again a Dirichlet distribution (reason for conjugate priors)

$$=\frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K}\frac{\prod_{k=1}^K\Gamma(N_k+\alpha/K)}{\Gamma(N+\alpha)}\int\frac{\Gamma(N+\alpha)}{\prod_{k=1}^K\Gamma(N_k+\alpha/K)}\prod_{k=1}^K\pi_k^{N_k+\alpha/K-1}\mathrm{d}\boldsymbol{\pi}$$

Completed Dirichlet form → integrates to 1

Mixture Models with Dirichlet Priors

• Integrating out the mixing proportions π (cont'd)

$$\begin{split} p(\mathbf{z}|\alpha) &= \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \frac{\prod_{k=1}^K \Gamma(N_k + \alpha/K)}{\Gamma(N + \alpha)} \\ &= \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \prod_{k=1}^K \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)} \end{split}$$

· Conditional probabilities

 \triangleright Let's examine the conditional of \mathbf{z}_n given all other variables

$$p(z_{nk}=1|\mathbf{z}_{-n},\alpha) \ = \ \frac{p(z_{nk}=1,\mathbf{z}_{-n}|\alpha)}{p(\mathbf{z}_{-n}|\alpha)}$$

where \mathbf{z}_{-n} denotes all indizes except n,

Mixture Models with Dirichlet Priors Conditional probabilities $p(z_{nk}=1|\mathbf{z}_{-n},\alpha) \ = \ \frac{p(z_{nk}=1,\mathbf{z}_{-n}|\alpha)}{p(\mathbf{z}_{-n}|\alpha)}$ $= \frac{\Gamma(\sigma)}{\Gamma(N+\alpha)} \frac{\Gamma(N_k+\alpha/K)}{\Gamma(\alpha/K)} \underbrace{\prod_{i=1, j\neq k}^{K} \frac{\Gamma(N_i+\alpha/K)}{\Gamma(\alpha/K)}}_{\Gamma(\alpha/K)} \underbrace{\prod_{i=1, j\neq k}^{K} \frac{\Gamma(N_i+\alpha/K)}{\Gamma(\alpha/K)}}_{\Gamma(\alpha/K)}$ $= \ \frac{\Gamma(N_{-n} + \alpha)}{\Gamma(N + \alpha)} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(N_{-n,k} + \alpha/K)}$

Mixture Models with Dirichlet Priors

· Conditional probabilities

$$\begin{split} p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) &= \frac{p(z_{nk} = 1, \mathbf{z}_{-n} | \alpha)}{p(\mathbf{z}_{-n} | \alpha)} \\ &= \frac{\frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)}}{\frac{\Gamma(N_k + \alpha)}{\Gamma(N_{-n} + \alpha)} \frac{\prod_{j=1, j \neq k}^{K} \frac{\Gamma(N_j + \alpha/K)}{\Gamma(\alpha/K)}}{\prod_{j=1, j \neq k}^{K} \frac{\Gamma(N_j + \alpha/K)}{\Gamma(\alpha/K)}} \\ &= \frac{\Gamma(N_{-n} + \alpha)}{\Gamma(N + \alpha)} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(N_{-n,k} + \alpha/K)} \end{split}$$

 $\Gamma(n+1) = n\Gamma(n)$

$$= \frac{1}{N-1+\alpha} \frac{N_{-n,k} + \alpha/K}{1}$$
$$= \frac{N_{-n,k} + \alpha/K}{N-1+\alpha}$$

 $p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha}, \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_{ik}$

· This is a very interesting result. Why?

Finite Dirichlet Mixture Models • Conditional probabilities: Finite K

- > We directly get a numerical probability, no distribution.
- The probability of joining a cluster mainly depends on the number of existing entries in a cluster.
- ⇒ The more populous a class is, the more likely it is to be joined!
- In addition, we have a base probability of also joining as-yet empty clusters.
- > This result can be directly used in Gibbs Sampling...

Infinite Dirichlet Mixture Models

ullet Conditional probabilities: Finite K

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha}, \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_i$$

- ullet Conditional probabilities: Infinite K

$$p(z_{nk}=1|\mathbf{z}_{-n},\alpha) \;=\; \left\{ \begin{array}{ll} \frac{N_{-n,k}}{N-1+\alpha} & \text{ if } k \text{ represented} \\ \\ \frac{\alpha}{N-1+\alpha} & \text{ if all } k \text{ not represented} \end{array} \right.$$

 ${\scriptstyle \succ}$ Left-over mass $\alpha \Rightarrow$ countably infinite number of indicator settings

Slide adapted from Zoubin Gharamani

B. Leibe

Discussion

- Infinite Mixture Models
 - What we have just seen is a first example of a Dirichlet Process.
 - DPs allow us to work with models that have an infinite number of components.
 - > This will raise a number of issues
 - How to represent infinitely many parameters?
 - How to deal with permutations of the class labels?
 - How to control the effective size of the model?
 - How to perform efficient inference?
 - ⇒ More background needed here!
 - DPs are a very interesting class of models, but would take us too far here.
 - If you're interested in learning more about them, take a look at the Advanced ML slides from Winter 2012.

References and Further Reading

 More information about EM estimation is available in Chapter 9 of Bishop's book (recommendable to read).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

RWITHAACHE

- Additional information
 - Original EM paper:
 - A.P. Dempster, N.M. Laird, D.B. Rubin, "<u>Maximum-Likelihood from incomplete data via EM algorithm</u>", In Journal Royal Statistical Society, Series B. Vol 39, 1977
 - EM tutorial:
 - J.A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models", TR-97-021, ICSI, U.C. Berkeley, CA,USA

B. Leibe