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Announcement
Advanced Machine Learning « Exercise sheet 2 online

Lecture 10 - Sampling
» Rejection Sampling

. » Importance Sampling

Mixture Models Il > Metropolis-Hastings
> EM
30.11.2015 . Mixtures of Bernoulli distributions [today’s topic]

» Exercise will be on Wednesday, 07.12.
= Please submit your results until 06.12. midnight.

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
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This Lecture: Advanced Machine Learning Topics of This Lecture
« Regression Approaches I‘ X =R e The EM algorithm in general
» Linear Regression — » Recap: General EM
. Regularization (Ridge, Lasso) X z P » Example: Mixtures of Bernoulli distributions

» Gaussian Processes > Monte Carlo EM

+ Bayesian Mixture Models
» Towards a full Bayesian treatment
» Dirichlet priors
» Finite mixtures
» Infinite mixtures
» Approximate inference (only as supplementary material)

¢ Learning with Latent Variables
» Probability Distributions
» Approximate Inference
> Mixture Models

» EM and Generalizations

¢ Deep Learning
» Neural Networks
> CNNs, RNNs, RBMs, etc.
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Recap: Mixture of Gaussians Recap: GMMs as Latent Variable Models

K
e “Generative model” p(x) = 3w N (e g, i)
k=1

¢ Write GMMs in terms of latent variables z
» Marginal distribution of x .

K

p(x) =3 plx,z) =Y plz)p(xlz) = > mNix|pg. Ex)
F3 z k=1 x
¢ Advantage of this formulation

» We have represented the marginal distribution in terms of
latent variables z.

» Since p(x) = X, p(x, z), there is a corresponding latent
variable z, for each data point x,,.

~ We are now able to work with the joint distribution p(x, z)
instead of the marginal distribution p(x).
= This will lead to significant simplifications...
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Recap: Sampling from a Gaussian Mixture

¢ MoG Sampling
» We can use ancestral sampling to generate random samples from
a Gaussian mixture model. s
1. Generate a value z from the marginal distribution p(z).
2. Generate a value X from the conditional distribution p(x|Z).

Samples from the
joint p(x, z)

Samples from the
marginal p(x)

Evaluating the
responsibilities y(z,,)

1
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B. Leibe
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Image source: CM, Bishop, 2001

Recap: Alternative View of EM

¢ In practice, however,...

We are not given the complete data set {X,Z}, but only the
incomplete data X. All we can compute about Z is the posterior
distributionp(Z X, &).

v

v

Since we cannot use the complete-data log-likelihood, we
consider instead its expected value under the posterior
distribution of the latent variable:

0(8,6") = 3" p(Z[X, 07" oz p(X, Z/6)
VA

v

This corresponds to the E-step of the EM algorithm.

v

In the subsequent M-step, we then maximize the expectation to
obtain the revised parameter set §"°".

e — a,rgmeax Q(B Bnhl)

B. Leibe
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Recap: MAP-EM
¢ Modification for MAP
» The EM algorithm can be adapted to find MAP solutions for

models for which a prior p(#) is defined over the parameters.
» Only changes needed:

2. E-step: Evaluate p(Z X, 8°)

3. M-step: Evaluate #""™ given by
9" = argmeax Q(8,8°)+ log p(0)

= Suitable choices for the prior will remove the ML singularities!

B. Leibe
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Recap: Gaussian Mixtures Revisited

¢ Applying the latent variable view of EM
» Goal is to maximize the log-likelihood using the observed data X

logp(X|6) = log {Zp(x. Z 9)} e

Z
Corresponding graphical model:

v

o

Suppose we are additionally given the values
of the latent variables Z.

The corresponding graphical model for the
complete data now looks like this:

= Straightforward to marginalize...

v

v

B. Leibe Image source; C.M, Bishop,

Recap: General EM Algorithm
¢ Algorithm

1. Choose an initial setting for the parameters §°'*

2. E-step: Evaluate p(Z X,8)

3. M-step: Evaluate 0"“™ given by

em'w _ argméix Q(G. G”M)
where
Q(8,6"") =3 p(Z|X. 0" log p(X. Z|9)
Z

4. While not converged, let ¢ ¢ g and return to step 2.

B. Leibe
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Gaussian Mixtures Revisited

¢ Maximize the likelihood
» For the complete-data set {X,Z}, the likelihood has the form

N K
p(X, 2, B w) = [ ] iV (el Zi)ee

n=1k=1

» Taking the logarithm, we obtain
N

logp(X. Z|p. X, 7) = Z: Xz,,,,. {log . + log N(x, | gty T ) }
n=1k=1

» Compared to the incomplete-data case, the order of the sum
and logarithm has been interchanged.

= Much simpler solution to the ML problem.

» Maximization w.r.t. a mean or covariance is exactly as for a
single Gaussian, except that it involves only the subset of data
points that are “assigned” to that component.

B. Leibe
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Gaussian Mixtures Revisited Gaussian Mixtures Revisited

¢ Maximization w.r.t. mixing coefficients
» More complex, since the 7 are coupled by the summation

constraint "
E ;=1
j=1

» Solve with a Lagrange multiplier

K
log p(X, Z|p, T, ) + A (Z T 1)
k=1

¢ In practice, we don’t have values for the latent variables

» Consider the expectation w.r.t. the posterior distribution of the
latent variables instead.

» The posterior distribution takes the form
N K
p(ZX, p, B, ) H H [N (%0 | e, o))"
n=1k=1
and factorizes over n, so that the {z,} are independent under
the posterior.
Expected value of indicator variable z,;, under the posterior.
2., 2k [T N (X, B)]
Elzny] = =2 g
sz [F]N(X"\NJ, 2]’)}
N (x|, 2
= NGl B
Z]:l TN (%n |15, ;)

B. Leibe

» Solution (after a longer derivation):
N
1
T = N Z Znk
ol
= The complete-data log-likelihood can be maximized trivially in
closed form.
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Gaussian Mixtures Revisited Summary So Far
¢ Continuing the estimation

* We have now seen a generalized EM algorithm
» The complete-data log-likelihood is therefore

» Applicable to general estimation problems with latent variables

» In particular, also applicable to mixtures of other base
distributions

» In order to get some familiarity with the general EM algorithm,
let’s apply it to a different class of distributions...

N K
Ez[logp(X, Z|pt, B, )] = > Y~ v(znk) {log m + log N (n pty,, =)}
n=1k=1

= This is precisely the EM algorithm for Gaussian mixtures as
derived before.

Advanced Machine Learning Winter’15
Advanced Machine Learning Winter’15

B. Leibe

B. Leibe

RWTHACHEN

Topics of This Lecture Mixtures of Bernoulli Distributions
¢ The EM algorithm in general
» Recap: General EM
» Example: Mixtures of Bernoulli distributions
» Monte Carlo EM

¢ Discrete binary variables

» Consider D binary variables x = (z,,...,zp)7, each of them
described by a Bernoulli distribution with parameter ;, so that

D
plxp) = [T w1 = p) =0
i=1

» Mean and covariance are given by
Ex] = p
covlx] = diag{u(l—p)}

Diagonal covariance
= variables indepen-
dently modeled
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Mixtures of Bernoulli Distributions

¢ Mixtures of discrete binary variables
> Now, consider a f1n|te m1xture of those distributions

an x|p2y.)
Z"r‘ H#f‘;(l — pugi) 17
k=1 i=1

» Mean and covariance of the mixture are given by
K

Zﬂkﬂk
k=1

px|p, )

Covariance not diagonal
= Model can capture depen-
dencies between variables

K
covpd = S my {Si+ pnd} — BB
k=1
where X, = diag{u(1 - )}

EM for Bernoulli Mixtures

¢ Latent variable formulation
» Introduce latent variable z = (z
» Conditional distribution of x:[
28
1T ol
k=1
» Prior distribution for the latent variables

K
T = H:rr:f

k=1

1r--2x) T with 1-of-K coding.

plx|z, p) =

» Again, we can verify that

K
ZP x|z, w)p(zlm) = mip(xpey)

k=1

p(x|p,m)

B. Leibe
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RWTH ACHET
EM for Bernoulli Mixtures: E-Step

¢ Complete-data likelihood

N K
pXzlpm) = [T [T reptealpm)]
n=1 k=1

N K
1R )

¢ Posterior distribution of the latent variables Z
(X, Z|p, 17)
p(Xlu m)

H H [u,\p X, |1 )]

n=1k=1 24j l“Jp(x"‘lu)

p(Z|X, p, ) =

B. Leibe
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Mixtures of Bernoulli Distributions

¢ Log-likelihood for the model
» Given a dataset X = {x,,...,xy},

= Z log {ZWA-P(XJJ‘“.&)}

n=1 k=1

log p(X|p. )
» Again observation: summation inside logarithm = difficult.

» In the following, we will derive the EM algorithm for mixtures of
Bernoulli distributions.

- This will show how we can derive EM algorithms in the general
case...

B. Leibe

Recap: General EM Algorithm

¢ Algorithm
1. Choose an initial setting for the parameters 0"

2. E-step: Evaluate p(Z X,8)

3. M-step: Evaluate 0"“™ given by
ent'w = arg max Q(G. Gnlfi)
]
where

Q(8,6"") =3 p(Z|X. 0" log p(X. Z|9)
Z

4. While not converged, let ¢ ¢ g and return to step 2.

B. Leibe
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RWTH ACHET
EM for Bernoulli Mixtures: E-Step

e E-Step
» Evaluate the responsibilities
Znk
TrEP(X
—Elo] = 3 oo LRl
Znk Zj:l ”.ip(xn‘ﬂj)
TP (Xn| i)
K _
3o b (% )

'Y(an)

» Note: we again get the same form as for Gaussian mixtures
WJN(Xn‘NJa %))
Sy N (%l g, i)

Y5(%n) <

B. Leibe
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Recap: General EM Algorithm

¢ Algorithm
1. Choose an initial setting for the parameters ¢°'

2. E-step: Evaluate p(Z X, 8

3. M-step: Evaluate #"" given by
g — argmeax 0(6,6")
where

Q(0,67) =3 p(Z[X.0°) log p(X, Z|9)
Z

4. While not converged, let ' ¢ @ and return to step 2.

B. Leibe
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EM for Bernoulli Mixtures: M-Step

¢ Remark

» The ~(z,;) only occur in two forms in the expectation:
N

N, = Z’Y(ZJ..A:)

n=1
N

. 1
o= 4o > ()%

n=1

¢ Interpretation

» N is the effective number of data points associated with
component k.

» Xy is the responsibility-weighted mean of the data points softly
assigned to component k.

B. Leibe
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RWTH ACHET
EM for Bernoulli Mixtures: M-Step

¢ M-Step
» Maximize the expected complete-data log-likelihood w.r.t the
parameter 7, under the constraint >, 7, = 1.

» Solution with Lagrange multiplier A

K
argmax Ez[p(X, Z|p, )] + A (Z T — 1)
Tk

k=1

B. Leibe
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EM for Bernoulli Mixtures: M-Step

¢ Complete-data log-likelihood

N K
logp(X, Z|p, m) = Z Z 2k {log 7

=1 k=1
D

+ Z [0 log pai + (1 — 243) log(1 — ﬂ-iw'ﬂ}
=1

¢ Expectation w.r.t. the posterior distribution of Z

N K
Egzllogp(X, Z|u, )] = Y (2zni) {log
—_— n=1k=1
(6.6 D
+ Z [@ni log pri + (1 — @) log(1 — puri)]
i=1

where 7(z,;,) = E[z,,] are again the responsibilities for each Ko
B. Leibe
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EM for Bernoulli Mixtures: M-Step
e M-Step

» Maximize the expected complete-data log-likelihood w.r.t the
parameter ;.

D Balp(X, Zls, ™)

opy,
g MK
= o ST vznr) {log T + [xn log g, + (1 — %) log(1 — g2}
k n=1k=1
1 N 1 N !
= — > Y(znk)xn — Y(znk) (1 —xn) =0
X e

N
1 -
Hi = N—kZ’Y(an)Xn = Xk

B. Leibe
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Discussion

¢ Comparison with Gaussian mixtures

» In contrast to Gaussian mixtures, there are no singularities in
which the likelihood goes to infinity.

» This follows from the property of Bernoulli distributions that
0 < plxalpy) <1
» However, there are still problem cases when ;i;; becomes 0 or 1
Ezllogp(X, Z|p, ™)] = . .. [Tn; log s + (1 — ;) log(1 — prs)]
= Need to enforce a range [MIN_VAL,1-MIN_VAL] for either 1, or .

e General remarks

» Bernoulli mixtures are used in practice in order to represent
binary data.

» The resulting model is also known as latent class analysis.

B. Leibe
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Example: Handwritten Digit Recognition Topics of This Lecture
 Binarized digit data (examples from set of 600 digits) e The EM algorithm in general
r 1 » Recap: General EM
» Example: Mixtures of Bernoulli distributions
» Monte Carlo EM
g ¢ Means of a 3-component Bernoulli mixture (10 EM iter.) g
2493
7| » Comparison: ML result of single multivariate Bernoulli 5
=| distribution =
2 2 2
B. Leibe Image source: C,M, Bishop, 200 B. Leibe
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Monte Carlo EM Topics of This Lecture
¢ EM procedure
» M-step: Maximize expectation of complete-data log-likelihood

Q(8,8°) = [[J(Z|X.9”H)1r)gp(x<Z\ﬂ){lz

¢ Bayesian Mixture Models
» Towards a full Bayesian treatment
» Dirichlet priors
» Finite mixtures
» Infinite mixtures
» Approximate inference (only as supplementary material)

» For more complex models, we may not be able to compute this
analytically anymore...
¢ |dea

» Use sampling to approximate this integral by a finite sum over
samples {Z()} drawn from the current estimate of the posterior

L
(8. 8oy ~ % Z log p(X, Zl’ﬂ)lg..l.i)

=1

Advanced Machine Learning Winter’15
Advanced Machine Learning Winter’15

» This procedure is called the Monte Carlo EM algorithm.

B. Leibe

B. Leibe
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Towards a Full Bayesian Treatment... Bayesian Mixture Models

¢ Mixture models
» We have discussed mixture distributions with K components

p(X[0) = p(X.Z) - ,o
VA

¢ Let’s be Bayesian about mixture models
» Place priors over our parameters
~ Again, introduce variable z, as indicator
which component data point x, belongs to.

z,|m ~ Multinomial()
u = Xolzn =k, . B~ Ny, i)
» So far, we have derived the ML estimates = EM

~ Introduced a prior p(8) over parameters = MAP-EM

v

This is similar to the graphical model we’ve
used before, but now the 7 and 8, = (p,;,X,)
are also treated as random variables.

» One question remains open: how to set K ?
= Let’s also set a prior on the number of components...

v

What would be suitable priors for them? e
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ide inspired by Yee Whve Teh B. Leibe
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Bayesian Mixture Models

¢ Let’s be Bayesian about mixture models
» Place priors over our parameters
~ Again, introduce variable z, as indicator
which component data point x,, belongs to.
z,|m ~ Multinomial()
Xn|Zn =k, . B~ N{p,. Zi)
» Introduce conjugate priors over parameters
T o~ Dlrlchlet(l, s —,}
By ~ H=N—TW(0,s,d,0)

“Normal - Inverse Wishart”

Slide inspired by Yee Whye Teh B. Leibe

Bayesian Mixture Models

¢ Let’s examine this model more closely
» Role of Dirichlet priors?
» How can we perform efficient inference?
» What happens when K goes to infinity?

¢ This will lead us to an interesting class of models...
» Dirichlet Processes
» Possible to express infinite mixture distributions with their help

» Clustering that automatically adapts the number of clusters to
the data and dynamically creates new clusters on-the-fly.

B. Leibe
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RWTH ACHET
Recap: The Dirichlet Distribution

¢ Dirichlet Distribution
» Conjugate prior for the Categorical and the Multinomial distrib.

K
(ln ap—1 . _
Dir(p|ax) = Flan). Tlan H 1y with g e
» Symmetric version (with concentration parameter «) |
Disuler) — @) T e
(o) = Wk—l k
» Properties (symmetric version)
Qg 1
Elp] = — —
[121] @ e ‘
[ia] ag(ao — ax) K-1
ar’ o
varlp a3 +1) K2(a+1)
Qo 1
cov{p; pir] - = -0
! aglao +1) I <ICES)
B. Leibe o0

Image source: C, Bishop, 200
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Bayesian Mixture Models

¢ Full Bayesian Treatment
» Given a dataset, we are interested in the cluster assignments
P(X|Z)p( )
P(2X) = =~ 77
>z P(X[Z)p(
where the likelihood is obtained by marginalizing over the
parameters 6 )
WX|Z) = / W(X|Z.8)p(8)0

-/ TL TT w60 o 000001 7200

n=1k=1

¢ The posterior over assignments is intractable!

» Denominator requires summing over all possible partitions of the
data into K groups!

= Need efficient approximate inference methods to solve this...
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ide credit: Frik Sudderth B. Leibe

B. Leibe
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Sneak Preview: Dirichlet Process MoG
N=10 N=20
2 ' ' 2 ’ ) | Samples drawn
: + from DP mixture
0 of T
2 -2
2 0 2 2 0 2
N=100 N=300
= More structure
2 2 >
. appears as more
o . -,-.;ti: e points are drawn
- AT
2 ‘ -2 kN
2 0 2 20 2 ©
ide credit: Zoubin i B. Leibe
RWTH/ACHET
Dirichlet Samples
) Sanplos bom D aphas0 1) Sampios o D
e S - .

“ N ——

Dir(# | 0.1,0.1,0.1,0.1,0.1) Dir(# | 1.0,1.0,1.0, 1.0, 1.0)

o Effect of concentration parameter «
» Controls sparsity of the resulting samples

42

lmage source: Erik Suddert]
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Mixture Model with Dirichlet Priors

¢ Finite mixture of K components
K

p(xn|0) = Xﬂ:jﬂ(xuwk)
k=1

K
= plzar = Umdpxn fr 2o = 1)

» The distribution of latent variables z, given 7 is multinomial

K . N
Nie A def
= H T N = E Zok

k=1 n=1

p(z|w)

» Assume mixing proportions have a given symmetric conjugate
Dirichlet prior

©
T
g
JE|
=)
=
<
&
51
3
o
=
S
a
=
©
@
o
=
8
3
<

pimla) = T(a) ﬁ gl K1
Tla/K)" ¥
43
Slide adapted from Zouhin B. Leibe Jmage source: Zoubin
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Mixture Models with Dirichlet Priors
* Integrating out the mixing proportions = (cont’d)
_T{a) ILE TN +a/K)
plzle) = r(mmh‘ TN +a)
ﬁ T(N;. + a/K)
F(\ + a) & Tle/K)
+ Conditional probabilities
» Let’s examine the conditional of z, given all other variables
plzne =1,2_4|a)
Pl =1z, a) = ="
(zn =1| ) Paa)
where z_, denotes all indizes except n.
. 45
Slide adanted from Zoubin B. Leibe
RWTH/ACHEN

Mixture Models with Dirichlet Priors

¢ Conditional probabilities
plzar = 1,2_4/a)
plz_nla)
L [(Np+a/K) K (N
TTLAR) ;

I'(n+1)=nl(n)

plzap =1z_n.a) =

_ TINta) T o+ Tla/K)
= Te] T(N_n +..,»[\’)W
TIN_,+a) L’k =T7Zk Tla/K)

T(N_, +a) T(N;+a/K)
[(N+a) T(N_,r+a/K)
1 N_pi+a/K
N-1l+4a 1

N oor+o/K
N-l+a

47
B. Leibe
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Mixture Model with Dirichlet Priors

¢ Integrating out the mixing proportions =:

p&a):jp&WWWMMw
o K-1
/H i —n;Ix)“ :Hlfrk’ dmw
Ni+a/K—14
= / ﬁR)f\ H“A

» This is again a Dirichlet distribution (reason for conjugate priors)

s . AT K

- l(n? ]_[.: (N +a/K) : T(N +a) . HW?A«F";K?l(l’T
Pla/K)k [(N +a) [T, DNy + o/ K) 4

Completed Dirichlet form — integrates to 1

44
B. Leibe
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Mixture Models with Dirichlet Priors

Tla) o T(Ny +a/K)
15,\'+u;n T(a/k)

pizle) =

¢ Conditional probabilities
Plzgr = 1,2_,]a)
p(z_u|a)

et Ny +a/K) C
T(N+a) TlarR ) S EaL] y g

LT L[N 7’*+“’[\)W
TN +a) Ller k) =TJ#k  T{a/K)

T(N_,+a) T(N,+a/K)
[(N+a) T(N_,.+a/K)

plznk = 1|z_pn,0) =
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Finite Dirichlet Mixture Models
¢ Conditional probabilities: Finite K
N
N_,p+a/K Ar def .
plzpr =1z, 0) = ﬁ N_nk :,-:;;_:Jk
¢ This is a very interesting result. Why?
» We directly get a numerical probability, no distribution.
» The probability of joining a cluster mainly depends on the
number of existing entries in a cluster.
= The more populous a class is, the more likely it is to be joined!
» In addition, we have a base probability of also joining as-yet
empty clusters.
» This result can be directly used in Gibbs Sampling...
48
ide adapted from Zoubin B. Leibe
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Infinite Dirichlet Mixture Models Discussion

¢ Conditional probabilities: Finite K ¢ Infinite Mixture Models

N ~ What we have just seen is a first example of a Dirichlet Process.

N_pp+a/K - def
plzar = 1z_p.a) = % Nopw = sz
+a i=1,i#n

» DPs allow us to work with models that have an infinite number
of components.
» This will raise a number of issues
- How to represent infinitely many parameters?
- How to deal with permutations of the class labels?
- How to control the effective size of the model?
- How to perform efficient inference?
= More background needed here!

¢ Conditional probabilities: Infinite K
» Taking the limit as K’ — oo yields the conditionals

N

N—1+4o

if k represented

P(zokx = 1z_n,a) =

~—i= ifall k not represented
» DPs are a very interesting class of models, but would take us too

» Left-over mass a = countably infinite number of indicator far here.

Advanced Machine Learning Winter’15
Advanced Machine Learning Winter’15

settings » If you’re interested in learning more about them, take a look at
the Advanced ML slides from Winter 2012.
49 50
Slide adapted from Zoubin i B. Leibe B. Leibe
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Next Lecture... References and Further Reading

¢ More information about EM estimation is available in
Chapter 9 of Bishop’s book (recommendable to read).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

¢ Additional information
» Original EM paper:
- A.P. Dempster, N.M. Laird, D.B. Rubin, ,,Maximum-Likelihood from
incomplete data via EM algorithm”, In Journal Royal Statistical
Society, Series B. Vol 39, 1977
» EM tutorial:
- J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA
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