Advanced Machine Learning Lecture 10

Mixture Models II

30.11.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

- Regression Approaches
- Linear Regression
, Regularization (Ridge, Lasso)
- Gaussian Processes
- Learning with Latent Variables
, Probability Distributions
- Approximate Inference
, Mixture Models
, EM and Generalizations
- Deep Learning

Neural Networks

- CNNs, RNNs, RBMs, etc.

- Bayesian Mixture Models
, Towards a full Bayesian treatment
, Dirichlet priors
, Finite mixtures
- Infinite mixtures
. Approximate inference (only as supplementary material)

Topics of This Lecture

- The EM algorithm in general
, Recap: General EM
, Example: Mixtures of Bernoulli distributions
- Monte Carlo EM

Recap: Mixture of Gaussians

- "Generative model"

$$
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

RWITMACHE

Recap: GMMs as Latent Variable Models

- Write GMMs in terms of latent variables z

Marginal distribution of x

$$
p(\mathbf{x})=\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right)
$$

- Advantage of this formulation
- We have represented the marginal distribution in terms of latent variables z .
- Since $p(\mathbf{x})=\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$, there is a corresponding latent variable \mathbf{z}_{n} for each data point \mathbf{x}_{n}.
- We are now able to work with the joint distribution $p(\mathbf{x}, \mathbf{z})$ instead of the marginal distribution $p(\mathbf{x})$.
\Rightarrow This will lead to significant simplifications...

Recap: Gaussian Mixtures Revisited

- Applying the latent variable view of EM
, Goal is to maximize the log-likelihood using the observed data X

- Suppose we are additionally given the values of the latent variables \mathbf{Z}.
- The corresponding graphical model for the complete data now looks like this:
\Rightarrow Straightforward to marginalize...

Recap: General EM Algorithm

- Algorithm

1. Choose an initial setting for the parameters $\boldsymbol{\theta}^{\text {old }}$
2. E-step: Evaluate $p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$
3. M-step: Evaluate $\theta^{\text {new }}$ given by

$$
\boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)
$$

where

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

4. While not converged, let $\theta^{\text {old }}<\theta^{\text {1ew }}$ and return to step 2.

In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set $\theta^{\text {new }}$.

$$
\boldsymbol{\theta}^{\text {new }}=\underset{\boldsymbol{\theta}}{\arg \max } \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)
$$

Recap: Alternative View of EM

- In practice, however,...

We are not given the complete data set $\{\mathbf{X}, \mathbf{Z}\}$, but only the incomplete data \mathbf{X}. All we can compute about \mathbf{Z} is the posterior distribution $p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})$.

Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variable:

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

This corresponds to the E-step of the EM algorithm.
$\boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)$

- Modification for MAP
, The EM algorithm can be adapted to find MAP solutions for models for which a prior $p(\boldsymbol{\theta})$ is defined over the parameters.
- Only changes needed:

2. E-step: Evaluate $p\left(\mathbf{Z} \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$
3. M-step: Evaluate $\theta^{\text {new }}$ given by

$$
\boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)+\log p(\boldsymbol{\theta})
$$

\Rightarrow Suitable choices for the prior will remove the ML singularities!

Gaussian Mixtures Revisited

- Maximize the likelihood
- For the complete-data set $\{\mathbf{X}, \mathbf{Z}\}$, the likelihood has the form

$$
p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=\prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{n k}} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)^{z_{n k}}
$$

Taking the logarithm, we obtain
$\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=\sum_{n=1}^{N} \sum_{k=1}^{K} z_{n k}\left\{\log \pi_{k}+\log \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$

- Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.
\Rightarrow Much simpler solution to the ML problem.
- Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are "assigned" to that component.

Gaussian Mixtures Revisited

- Maximization w.r.t. mixing coefficients

More complex, since the π_{k} are coupled by the summation constraint

$$
\sum_{j=1}^{\kappa} \pi_{j}=1
$$

- Solve with a Lagrange multiplier

$$
\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})+\lambda\left(\sum_{k=1}^{K} \pi_{k}-1\right)
$$

. Solution (after a longer derivation):

$$
\pi_{k}=\frac{1}{N} \sum_{n=1}^{N} z_{n k}
$$

\Rightarrow The complete-data log-likelihood can be maximized trivially in closed form.

Gaussian Mixtures Revisited

- Continuing the estimation
, The complete-data log-likelihood is therefore
$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})]=\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma\left(z_{n k}\right)\left\{\log \pi_{k}+\log \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$
\Rightarrow This is precisely the EM algorithm for Gaussian mixtures as derived before.

Gaussian Mixtures Revisited

- In practice, we don't have values for the latent variables
, Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
, The posterior distribution takes the form

$$
p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K}\left[\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{n k}}
$$

and factorizes over n, so that the $\left\{\mathbf{z}_{n}\right\}$ are independent under the posterior.
Expected value of indicator variable $z_{n k}$ under the posterior.

$$
\begin{aligned}
\mathbb{E}\left[z_{n k}\right] & =\frac{\sum_{z_{n k}} z_{n k}\left[\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]^{z_{n k}}}{\sum_{z_{n j}}\left[\pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)\right]^{z_{n j}}} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}=\gamma\left(z_{n k}\right)
\end{aligned}
$$

Summary So Far

- We have now seen a generalized EM algorithm
- Applicable to general estimation problems with latent variables
, In particular, also applicable to mixtures of other base distributions
In order to get some familiarity with the general EM algorithm, let's apply it to a different class of distributions...

Topics of This Lecture

- The EM algorithm in general
- Recap: General EM
, Example: Mixtures of Bernoulli distributions
Monte Carlo EM
- Bayesian Mixture Models

Towards a full Bayesian treatment
Dirichlet priors
Finite mixtures
Infinite mixtures
Approximate inference (only as supplementary material)

Mixtures of Bernoulli Distributions

- Discrete binary variables

Consider D binary variables $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)^{T}$, each of them described by a Bernoulli distribution with parameter μ_{i}, so that

$$
p(\mathbf{x} \mid \boldsymbol{\mu})=\prod_{i=1}^{D} \mu_{i}^{x_{i}}\left(1-\mu_{i}\right)^{\left(1-x_{i}\right)}
$$

- Mean and covariance are given by

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\boldsymbol{\mu} \\
\operatorname{cov}[\mathbf{x}] & =\operatorname{diag}\{\boldsymbol{\mu}(1-\boldsymbol{\mu})\}
\end{aligned}
$$

Mixtures of Bernoulli Distributions

- Mixtures of discrete binary variables
, Now, consider a finite mixture of those distributions

$$
\begin{aligned}
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\pi}) & =\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}\right) \\
& =\sum_{k=1}^{K} \pi_{k} \prod_{i=1}^{D} \mu_{k i}^{x_{i}}\left(1-\mu_{k i}\right)^{\left(1-x_{i}\right)}
\end{aligned}
$$

- Mean and covariance of the mixture are given by

$$
\begin{aligned}
& \qquad \mathbb{E}[\mathbf{x}]=\sum_{k=1}^{K} \pi_{k} \boldsymbol{\mu}_{k} \quad \begin{array}{r}
\begin{array}{l}
\text { Covariance not dia } \\
\text { Model can captur } \\
\text { dencies between }
\end{array} \\
\operatorname{cov}[\mathbf{x}]
\end{array}=\sum_{k=1}^{K} \pi_{k}\left\{\boldsymbol{\Sigma}_{k}+\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{T}\right\}-\mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^{T}
\end{aligned} ~ \begin{aligned}
& \text { where } \boldsymbol{\Sigma}_{k}=\operatorname{diag}\left\{\mu_{k i}\left(1-\mu_{k i}\right)\right\} .
\end{aligned}
$$

Mixtures of Bernoulli Distributions

- Log-likelihood for the model
. Given a data set $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$,

$$
\log p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\pi})=\sum_{n=1}^{N} \log \left\{\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}\right)\right\}
$$

, Again observation: summation inside logarithm \Rightarrow difficult.
, In the following, we will derive the EM algorithm for mixtures of Bernoulli distributions.

This will show how we can derive EM algorithms in the general case...

EM for Bernoulli Mixtures

- Latent variable formulation
, Introduce latent variable $\mathbf{z}=\left(z_{1}, \ldots, z_{K}\right)^{T}$ with 1-of-K coding.
- Conditional distribution of x :

$$
p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\mu})=\prod_{k=1}^{K} p\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}\right)^{z_{k}}
$$

- Prior distribution for the latent variables

$$
p(\mathbf{z} \mid \boldsymbol{\pi})=\prod_{k=1}^{K} \pi_{k}^{z_{k}}
$$

- Again, we can verify that

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\pi})=\sum_{\mathbf{z}} p(\mathbf{x} \mid \mathbf{z}, \boldsymbol{\mu}) p(\mathbf{z} \mid \boldsymbol{\pi})=\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}\right)
$$

Recap: General EM Algorithm

- Algorithm

1. Choose an initial setting for the parameters $\boldsymbol{\theta}^{\text {old }}$
2. E-step: Evaluate $p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$
3. M-step: Evaluate $\theta^{\text {new }}$ given by

$$
\boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)
$$

where

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

4. While not converged, let $\theta^{\text {old }}<\theta^{\text {uew }}$ and return to step 2.

EM for Bernoulli Mixtures: E-Step

- Complete-data likelihood

$$
\begin{aligned}
p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi}) & =\prod_{n=1}^{N} \prod_{k=1}^{K}\left[\pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}\right)\right]^{z_{n k}} \\
& =\prod_{n=1}^{N} \prod_{k=1}^{K}\left\{\pi_{k} \prod_{i=1}^{D} \mu_{k i}^{x_{n i}}\left(1-\mu_{k i}\right)^{\left(1-x_{n i}\right)}\right\}^{z_{n k}}
\end{aligned}
$$

- Posterior distribution of the latent variables \mathbf{Z}

$$
\begin{aligned}
p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\pi}) & =\frac{p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi})}{p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\pi})} \\
& =\prod_{n=1}^{N} \prod_{k=1}^{K} \frac{\left[\pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}\right)\right]^{z_{n k}}}{\sum_{j=1}^{K} \pi_{j} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}\right)}
\end{aligned}
$$

RWITMACHE
UNIVERSITY

EM for Bernoulli Mixtures: E-Step

- E-Step

Evaluate the responsibilities

$$
\begin{aligned}
\gamma\left(z_{n k}\right)=\mathbb{E}\left[z_{n k}\right] & =\sum_{z_{n k}} z_{n k} \frac{\left[\pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}\right)\right]^{z_{n k}}}{\sum_{j=1}^{K} \pi_{j} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}\right)} \\
& =\frac{\pi_{k} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}\right)}
\end{aligned}
$$

Note: we again get the same form as for Gaussian mixtures

$$
\gamma_{j}\left(\mathbf{x}_{n}\right) \leftarrow \frac{\pi_{j} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}{\sum_{k=1}^{N} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}
$$

Recap: General EM Algorithm

- Algorithm

1. Choose an initial setting for the parameters $\boldsymbol{\theta}^{\text {old }}$
2. E-step: Evaluate $p\left(\mathbf{Z} \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right)$

$$
\begin{aligned}
& \text { 3. M-step: Evaluate } \boldsymbol{\theta}^{\text {new }} \text { given by } \\
& \qquad \boldsymbol{\theta}^{\text {new }}=\arg \max _{\boldsymbol{\theta}} \mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)
\end{aligned}
$$

where

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\sum_{\mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

4. While not converged, let $\theta^{\text {old }}<\theta^{\text {1eww }}$ and return to step 2 .

EM for Bernoulli Mixtures: M-Step

- Remark
- The $\gamma\left(z_{n k}\right)$ only occur in two forms in the expectation:

$$
\begin{aligned}
N_{k} & =\sum_{n=1}^{N} \gamma\left(z_{n k}\right) \\
\overline{\mathbf{x}}_{k} & =\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right) \mathbf{x}_{n}
\end{aligned}
$$

- Interpretation
, N_{k} is the effective number of data points associated with component k.
, $\overline{\mathrm{X}}_{k}$ is the responsibility-weighted mean of the data points softly assigned to component k.

EM for Bernoulli Mixtures: M-Step

- Complete-data log-likelihood

$$
\begin{aligned}
\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi})= & \sum_{n=1}^{N} \sum_{k=1}^{K} z_{n k}\left\{\log \pi_{k}\right. \\
& \left.+\sum_{i=1}^{D}\left[x_{n i} \log \mu_{k i}+\left(1-x_{n i}\right) \log \left(1-\mu_{k i}\right)\right]\right\}
\end{aligned}
$$

- Expectation w.r.t. the posterior distribution of \mathbf{Z}
$\underbrace{\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi})]}=\sum_{n=1}^{N} \sum_{k=1}^{K} \gamma\left(z_{n k}\right)\left\{\log \pi_{k}\right.$
$\left.\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}}\right) \quad+\sum_{i=1}^{D}\left[x_{n i} \log \mu_{k i}+\left(1-x_{n i}\right) \log \left(1-\mu_{k i}\right)\right]\right\}$
where $\gamma\left(z_{n k}\right)=\mathbb{E}\left[z_{n k}\right] \underset{\text { B. Leibe }}{\text { are again }}$ the responsibilities for each $\mathbf{x}_{n}{ }_{26}$

EM for Bernoulli Mixtures: M-Step

- M-Step
- Maximize the expected complete-data log-likelihood w.r.t the parameter μ_{k}.
$\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \mathbb{E}_{\mathbf{Z}}[p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi})]$
$=\frac{\partial}{\partial \boldsymbol{\mu}_{k}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma\left(z_{n k}\right)\left\{\log \pi_{k}+\left[\mathbf{x}_{n} \log \mu_{k}+\left(1-\mathbf{x}_{n}\right) \log \left(1-\mu_{k}\right)\right]\right\}$
$=\frac{1}{\boldsymbol{\mu}_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right) \mathbf{x}_{n}-\frac{1}{1-\boldsymbol{\mu}_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right)\left(1-\mathbf{x}_{n}\right) \stackrel{!}{=} 0$
$\boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{n k}\right) \mathbf{x}_{n}=\overline{\mathbf{x}}_{k}$

EM for Bernoulli Mixtures: M-Step

- M-Step
- Maximize the expected complete-data log-likelihood w.r.t the parameter π_{k} under the constraint $\sum_{k} \pi_{k}=1$.
, Solution with Lagrange multiplier λ

$$
\begin{gathered}
\arg \max _{\pi_{k}} \mathbb{E}_{\mathbf{Z}}[p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi})]+\lambda\left(\sum_{k=1}^{K} \pi_{k}-1\right) \\
\vdots \\
\pi_{k}=\frac{N_{k}}{N}
\end{gathered}
$$

Topics of This Lecture

- The EM algorithm in general
, Recap: General EM
, Example: Mixtures of Bernoulli distributions
- Monte Carlo EM
- Bayesian Mixture Models

Towards a full Bayesian treatment
Dirichlet priors
Finite mixtures
Infinite mixtures
Approximate inference (only as supplementary material)
B. Leibe

Monte Carlo EM

- EM procedure
, M-step: Maximize expectation of complete-data log-likelihood

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right)=\int p\left(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}^{\text {old }}\right) \log p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \mathrm{d} \mathbf{Z}
$$

. For more complex models, we may not be able to compute this analytically anymore...

- Idea
, Use sampling to approximate this integral by a finite sum over samples $\left\{\mathbf{Z}^{(l)}\right\}$ drawn from the current estimate of the posterior

$$
\mathcal{Q}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text {old }}\right) \sim \frac{1}{L} \sum_{l=1}^{L} \log p\left(\mathbf{X}, \mathbf{Z}^{(l)} \mid \boldsymbol{\theta}^{\text {old }}\right)
$$

, This procedure is called the Monte Carlo EM algorithm.

Towards a Full Bayesian Treatment..

- Mixture models
- We have discussed mixture distributions with K components

$$
p(\mathbf{X} \mid \boldsymbol{\theta})=\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta})
$$

- So far, we have derived the ML estimates $\quad \Rightarrow E M$
- Introduced a prior $p(\boldsymbol{\theta})$ over parameters $\quad \Rightarrow$ MAP-EM
, One question remains open: how to set K ?
\Rightarrow Let's also set a prior on the number of components...

Topics of This Lecture

- The EM algorithm in general

Recap: General EM
Example: Mixtures of Bernoulli distributions Monte Carlo EM

- Bayesian Mixture Models
, Towards a full Bayesian treatment
, Dirichlet priors
. Finite mixtures
- Infinite mixtures
, Approximate inference (only as supplementary material)
B. Leibe
B. Leibe

RWITAACHE
UNIVERSTT

Bayesian Mixture Models

- Let's be Bayesian about mixture models
- Place priors over our parameters
, Again, introduce variable z_{n} as indicator which component data point \mathbf{x}_{n} belongs to.

$$
\begin{aligned}
\mathbf{z}_{n} \mid \boldsymbol{\pi} & \sim \operatorname{Multinomial}(\boldsymbol{\pi}) \\
\mathbf{x}_{n} \mid \mathbf{z}_{n}=k, \boldsymbol{\mu}, \boldsymbol{\Sigma} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{k}, \Sigma_{k}\right)
\end{aligned}
$$

, This is similar to the graphical model we've used before, but now the $\boldsymbol{\pi}$ and $\theta_{k}=\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ are also treated as random variables.
, What would be suitable priors for them?

Bayesian Mixture Models

- Full Bayesian Treatment
, Given a dataset, we are interested in the cluster assignments

$$
p(\mathbf{Z} \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \mathbf{Z}) p(\mathbf{Z})}{\sum_{\mathbf{Z}} p(\mathbf{X} \mid \mathbf{Z}) p(\mathbf{Z})}
$$

where the likelihood is obtained by marginalizing over the parameters θ

$$
\begin{aligned}
s(\mathbf{X} \mid \mathbf{Z}) & =\int p(\mathbf{X} \mid \mathbf{Z}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \\
& =\int \prod_{n=1}^{N} \prod_{k=1}^{K} p\left(\mathbf{x}_{n} \mid z_{n k}, \boldsymbol{\theta}_{k}\right) p\left(\boldsymbol{\theta}_{k} \mid H\right) \mathrm{d} \boldsymbol{\theta}
\end{aligned}
$$

- The posterior over assignments is intractable!
, Denominator requires summing over all possible partitions of the data into K groups!
\Rightarrow Need efficient approximate inference methods to solve this... 38

Bayesian Mixture Models

- Let's examine this model more closely
, Role of Dirichlet priors?
, How can we perform efficient inference?
, What happens when K goes to infinity?
- This will lead us to an interesting class of models...
, Dirichlet Processes
, Possible to express infinite mixture distributions with their help
, Clustering that automatically adapts the number of clusters to the data and dynamically creates new clusters on-the-fly.

Recap: The Dirichlet Distribution

- Dirichlet Distribution
- Conjugate prior for the Categorical and the Multinomial distrib.

$$
\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1} \quad \text { with } \quad \alpha_{0}=\sum_{k=1}^{K} \alpha_{k}
$$

- Symmetric version (with concentration parameter α)
$\operatorname{Dir}(\boldsymbol{\mu} \mid \alpha)=\frac{\Gamma(\alpha)}{\Gamma(\alpha / K)^{K}} \prod_{k=1}^{K} \mu_{k}^{\alpha / K-1}$

$$
\begin{array}{rlrlrl}
\text { Properties } & & & \text { (symmetric version } \\
\mathbb{E}\left[\mu_{k}\right] & =\frac{\alpha_{k}}{\alpha_{0}} & & =\frac{1}{K} \\
\operatorname{var}\left[\mu_{k}\right] & =\frac{\alpha_{k}\left(\alpha_{0}-\alpha_{k}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)} & & =\frac{K-1}{K^{2}(\alpha+1)} \\
\operatorname{cov}\left[\mu_{j} \mu_{k}\right] & =-\frac{\alpha_{j} \alpha_{k}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)} & & =-\frac{1}{K^{2}(\alpha+1)} \\
& &
\end{array}
$$

Mixture Model with Dirichlet Priors

- Finite mixture of K components

$$
\begin{aligned}
p\left(\mathbf{x}_{n} \mid \boldsymbol{\theta}\right) & =\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x}_{n} \mid \theta_{k}\right) \\
& =\sum_{k=1}^{K} p\left(z_{n k}=1 \mid \pi_{k}\right) p\left(\mathbf{x}_{n} \mid \theta_{k}, z_{n k}=1\right)
\end{aligned}
$$

The distribution of latent variables \mathbf{z}_{n} given π is multinomial

$$
p(\mathbf{z} \mid \boldsymbol{\pi})=\prod_{k=1}^{K} \pi_{k}^{N_{k}}, \quad N_{k} \stackrel{\text { def }}{=} \sum_{n=1}^{N} z_{n k}
$$

Assume mixing proportions have a given symmetric conjugate Dirichlet prior

$$
\begin{aligned}
& \text { hlet prior } \\
& \qquad p(\boldsymbol{\pi} \mid \alpha)=\frac{\Gamma(\alpha)}{\Gamma(\alpha / K)^{K}} \prod_{k=1}^{K} \pi_{k}^{\alpha / K-1}
\end{aligned}
$$

Mixture Models with Dirichlet Priors

- Integrating out the mixing proportions π (cont'd)

$$
\begin{aligned}
p(\mathbf{z} \mid \alpha) & =\frac{\Gamma(\alpha)}{\Gamma(\alpha / K)^{K}} \frac{\prod_{k=1}^{K} \Gamma\left(N_{k}+\alpha / K\right)}{\Gamma(N+\alpha)} \\
& =\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \prod_{k=1}^{K} \frac{\Gamma\left(N_{k}+\alpha / K\right)}{\Gamma(\alpha / K)}
\end{aligned}
$$

- Conditional probabilities

Let's examine the conditional of \mathbf{z}_{n} given all other variables

$$
p\left(z_{n k}=1 \mid \mathbf{z}_{-n}, \alpha\right)=\frac{p\left(z_{n k}=1, \mathbf{z}_{-n} \mid \alpha\right)}{p\left(\mathbf{z}_{-n} \mid \alpha\right)}
$$

where \mathbf{z}_{-n} denotes all indizes except n.

Mixture Models with Dirichlet Priors

- Conditional probabilities
$\Gamma(n+1)=n \Gamma(n$
$p\left(z_{n k}=1 \mid \mathbf{z}_{-n}, \alpha\right)=\frac{p\left(z_{n k}=1, \mathbf{z}_{-n} \mid \alpha\right)}{p\left(\mathbf{z}_{-n} \mid \alpha\right)}$
$=\frac{\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}}{\frac{\Gamma\left(N_{k}+\alpha / K\right)}{\Gamma(\alpha / K)}} \prod_{j=1, j \neq k}^{K} \frac{\Gamma\left(N_{j}+\alpha / K\right)}{\Gamma(\alpha / K)}$
$=\frac{\Gamma\left(N_{-n}+\alpha\right)}{\Gamma(N+\alpha)} \frac{\Gamma\left(N_{k}+\alpha / K\right)}{\Gamma\left(N_{-n, k}+\alpha / K\right)}$
$=\frac{1}{N-1+\alpha} \frac{N_{-n, k}+\alpha / K}{1}$
$=\frac{N_{-n, k}+\alpha / K}{N-1+\alpha}$
B. Leibe

Mixture Model with Dirichlet Priors

- Integrating out the mixing proportions π :

$$
\begin{aligned}
p(\mathbf{z} \mid \alpha) & =\int p(\mathbf{z} \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) \mathrm{d} \boldsymbol{\pi} \\
& =\int \prod_{k=1}^{K} \pi_{k}^{N_{k}} \cdot \frac{\Gamma(\alpha)}{\Gamma(\alpha / K)^{K}} \prod_{k=1}^{K} \pi_{k}^{\alpha / K-1} \mathrm{~d} \boldsymbol{\pi} \\
& =\int \frac{\Gamma(\alpha)}{\Gamma(\alpha / K)^{K}} \prod_{k=1}^{K} \pi_{k}^{N_{k}+\alpha / K-1} \mathrm{~d} \boldsymbol{\pi}
\end{aligned}
$$

- This is again a Dirichlet distribution (reason for conjugate priors) $=\frac{\Gamma(\alpha)}{\Gamma(\alpha / K)^{K}} \frac{\prod_{k=1}^{K} \Gamma\left(N_{k}+\alpha / K\right)}{\Gamma(N+\alpha)} \int \frac{\Gamma(N+\alpha)}{\prod_{k=1}^{K} \Gamma\left(N_{k}+\alpha / K\right)} \prod_{k=1}^{K} \pi_{k}^{N_{k}+\alpha / K-1} \mathrm{~d} \pi$ Completed Dirichlet form \rightarrow integrates to 1

Mixture Models with Dirichlet Priors

- Conditional probabilities

$$
p\left(z_{n k}=1 \mid \mathbf{z}_{-n}, \alpha\right)=\frac{p\left(z_{n k}=1, \mathbf{z}_{-n} \mid \alpha\right)}{p\left(\mathbf{z}_{-n} \mid \alpha\right)}
$$

$$
\left.=\frac{\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}}{\frac{\Gamma\left(N_{k}+\alpha / K\right)}{\Gamma(\alpha / K)}} \prod_{j=1, j \neq k}^{K} \frac{\Gamma\left(N_{j}+\alpha / K\right)}{\Gamma(\alpha / K)} \right\rvert\,
$$

$$
=\frac{\Gamma\left(N_{-n}+\alpha\right)}{\Gamma(N+\alpha)} \frac{\Gamma\left(N_{k}+\alpha / K\right)}{\Gamma\left(N_{-n, k}+\alpha / K\right)}
$$

Infinite Dirichlet Mixture Models

- Conditional probabilities: Finite K

$$
p\left(z_{n k}=1 \mid \mathbf{z}_{-n}, \alpha\right)=\frac{N_{-n, k}+\alpha / K}{N-1+\alpha}, \quad N_{-n, k} \stackrel{\text { def }}{=} \sum_{i=1, i \neq n}^{N} z_{i k}
$$

- Conditional probabilities: Infinite K
, Taking the limit as $K \rightarrow \infty$ yields the conditionals

$$
p\left(z_{n k}=1 \mid \mathbf{z}_{-n}, \alpha\right)= \begin{cases}\frac{N_{-n, k}}{N-1+\alpha} & \text { if } k \text { represented } \\ \frac{\alpha}{N-1+\alpha} & \text { if all } k \text { not represented }\end{cases}
$$

, Left-over mass $\alpha \Rightarrow$ countably infinite number of indicator settings

Discussion

- Infinite Mixture Models
, What we have just seen is a first example of a Dirichlet Process.
- DPs allow us to work with models that have an infinite number of components.
- This will raise a number of issues
- How to represent infinitely many parameters?
- How to deal with permutations of the class labels?

How to control the effective size of the model?
How to perform efficient inference?
\Rightarrow More background needed here!
, DPs are a very interesting class of models, but would take us too far here.

- If you're interested in learning more about them, take a look at the Advanced ML slides from Winter 2012.

	References and Further Reading - More information about EM estimation is available in Chapter 9 of Bishop's book (recommendable to read). Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006 - Additional information , Original EM paper: A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from incomplete data via EM algorithm", In Journal Royal Statistical Society, Series B. Vol 39, 1977 EM tutorial: J.A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models", TR-97-021, ICSI, U.C. Berkeley, CA,USA B. Leibe

