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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables
Probability Distributions m e
> Approximate Inference
> Mixture Models

» EM and Generalizations

Y

e Deep Learning

> Neural Networks
> CNNs, RNNs, RBMs, etc.

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

B. Leibe



Recap: Importance Sampling

e Approach

» Approximate expectations directly
(but does not enable to draw samples from p(z) directly).

et By - [ fap()i

e |dea
» Use a proposal distribution ¢(z) from which it is easy to sample.

> Express expectations in the form of a finite sum over samples
{zD} drawn from ¢(z

Blfl = [ dz—[f P

1 (l)
I Z
=1 4

Importance weights
B. Leibe Aage source: C.M. Bishop, 2006
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RWTH
Recap: MCMC - Markov Chain Monte Carlo

e Overview
> Allows to sample from a large class of distributions.
~ Scales well with the dimensionality of the sample space.

e |dea
- We maintain a record of the current state z("
. The proposal distribution depends on the current state: ¢(z|z()
- The sequence of samples forms a Markov chain z(V, z@), ..

e Approach ;

» At each time step, we generate a candidate |
sample from the proposal distribution and
accept the sample according to a criterion.

> Different variants of MCMC for different 1]
criteria. 0}
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RWTH
Recap: Markov Chains - Properties

e |nvariant distribution

> A distribution is said to be invariant (or stationary) w.r.t. a
Markov chain if each step in the chain leaves that distribution
invariant.

~ Transition probabilities:
T (z<m>, Z<m+1>) —p (Z<m+1> |z<m>)
. For homogeneous Markov chain, distribution p’(z) is invariant if:

p*(z) =) T(z,2)p"(2)

e Detailed balance

» Sufficient (but not necessary) condition to ensure that a
distribution is invariant:

p*(2)T (z,2') = p*(2')T (', 2)
> A Markov chain which respects detailed balance is reversible.
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RWTH
Recap: MCMC - Metropolis Algorithm

e Metropolis algorithm [Metropolis et al., 1953]
. Proposal distribution is symmetric: ¢(za|zg) = q(zgB|z4)
- The new candidate sample z’ is accepted with probability

A(z*,2')) = min (1, %)

= New candidate samples always accepted if p(z*) > p(z(™).
> The algorithm sometimes accepts a state with lower probability.
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RWTH
MCMC - Metropolis-Hastings Algorithm

e Metropolis-Hastings Algorithm

~ Generalization: Proposal distribution not required to be
symmetric.

» The new candidate sample z  is accepted with probability

A(z*,2) = min (1, ,?(Z*)Qk(Z(T”Z*) )
p(zM)qx(2*|z()

> where k labels the members of the set of possible transitions
considered.

e Note

> Evaluation of acceptance criterion does not require normalizing
constant Z .

- When the proposal distributions are symmetric, Metropolis-
Hastings reduces to the standard Metropolis algorithm.
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Random Walks

e Example: Random Walk behavior

~ Consider a state space consisting of the integers z € Z with
initial state z(1) = 0 and transition probabilities

p(zm Y =27) = 0.5
p(z) =27 £ 1) = 0.25
p(zm D) =27 1) = 0.25

e Analysis
- Expected state at time 7:  [E[2(7)] =0
. Variance: E[(z™)] = 7/2

» After 7 steps, the random walk has only traversed a distance
that is on average proportional to \T.

= Central goal in MCMC is to avoid random walk behavior!
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RWTH
MCMC - Metropolis-Hastings Algorithm

e Schematic illustration

> For continuous state spaces, a common g
choice of proposal distribution is a
Gaussian centered on the current state.

= What should be the variance of the ami:x
proposal distribution?
- Large variance: rejection rate will be high for complex problems.

- The scale p of the proposal distribution should be as large as
possible without incurring high rejection rates.

= p should be of the same order as the smallest length scale o ;,.

» This causes the system to explore the distribution by means of a
random walk.

- Undesired behavior: nhumber of steps to arrive at state that is
independent of original state is of order (0., /0 pin)?-

- Strong correlations can slow down the Metropolis(-Hastings)

algorithm! 13
B. Leibe
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Gibbs Sampling

e Approach
- MCMC-algorithm that is simple and widely applicable.
~ May be seen as a special case of Metropolis-Hastings.

e |ldea

- Sample variable-wise: replace z; by a value drawn from the
distribution p(z;| z\;).
- This means we update one coordinate at a time.

- Repeat procedure either by cycling through all variables or by
choosing the next variable.
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Gibbs Sampling

e Example

- Assume distribution p(z,, z,, 2,).

(7)

. Replace 2" with new value drawn from ("% ~

p(21 Zg—)7 Z:g)T))
- Replace zéT) with new value drawn from z; p(22 zYH), z:(f))
- Replace z:gf) with new value drawn from z§T+1) ~ p(z3 zYH) zgﬂ))

)
> And so on...

T+1) N
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Gibbs Sampling

e Properties

. Since the components are unchanged by sampling: z™*, = z,,.

~ The factor that determines the acceptance probability in the
Metropolis-Hastings is thus determined by

p(z*)qr(z|z*) p(2 |23, )P (2, )P (2| 233,)

A(z",z) = p(z)ar(z*z)  p(zi|zyi)p(z\n)p (2|20 1)

=1

- (we have used ¢,(z*|z) = p(z';]zy;) and p(z) = p(z;/zy;) p(2))-

> l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can
apply Gibbs sampling.
= The algorithm is completely parameter free.

= Can also be applied to subsets of variables.

16
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Discussion

e Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:
~ Conditionals with a few discrete settings can be explicitly
normalized:

P(l‘i, Xj#z’) < This sum is small

p(£i|xj#i) = Zmr p(.ﬂ?;, Xj;éi) and easy.

~ Continuous conditionals are often only univariate.
= amenable to standard sampling methods.

> In case of graphical models, the conditional distributions depend
only on the variables in the corresponding Markov blankets.
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Gibbs Sampling

e Example
~ 20 iterations of Gibbs sampling on a bivariate Gaussian.

> Note: strong correlations can slow down Gibbs sampling.
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How Should We Run MCMC?

e Arbitrary initialization means starting iterations are bad
- Discard a “burn-in” period.

e How do we know if we have run for long enough?
> You don’t. That’s the problem.

e The samples are not independent
» Solution 1: Keep only every Mth sample (“thinning”).

> Solution 2: Keep all samples and use the simple Monte Carlo
estimator on MCMC samples

- It is consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x()) is expensive.

e For opinion on thinning, multiple runs, burn in, etc.

> Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science.
7(4):473{483, 1992. (http://www.jstor.org/stable/2246094)
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Topics of This Lecture

e Recap: Mixtures of Gaussians
> Mixtures of Gaussians
> ML estimation
> EM algorithm for MoGs

e An alternative view of EM
> Latent variables
> General EM
> Mixtures of Gaussians revisited
> Mixtures of Bernoulli distributions

e The EM algorithm in general

> Generalized EM
> Monte Carlo EM
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Recap: Mixture of Gaussians (MoG)

e “Generative model”

. “Weight” of mixture
@ p(j) = m; component
T Mixture
ajl*
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p(z) /% p(z|0) = Z p(z0;)p(5)
T =

Slide credit: Bernt Schiele B. Leibe



RWNTH
Recap: Mixture of Multivariate Gaussians

o Multivariate Gaussians
p(x|0) = Zp x|0;)p

p<ij>=(%)D/i‘w/gexp{ S0 1) T2 )}

> Mixture weights / mixture coeff1c1ents

p(j):Wj with O - - 1andZ7Tj—1 :

0.5
> Parameters:

0 = (m1, 10y, X1, TLs Bpgs 20M) o
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Recap: Mixture of Multivariate Gaussians

K
» “Generative model” p(x) =Y mN (Xnlpy, Tie)
k=1
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RWTH
Recap: ML for Mixtures of Gaussians

e Maximum Likelihood

N
- Minimize £ = —In L(0) = — Zlnp(xn|9)
n=1

> We can already see that this will be difficult, since

N
Inp(X|m, pu, ) = Zln < TN (X | Ek)}
n=1

This will cause problems!

Slide adapted from Bernt Schiele B. Leibe
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RWTH
Recap: ML for Mixture of Gaussians

e Minimization: 0

—N(Xn“j’kv Zk) —
N 0 X 9 8Hj
8_E — _Z 8ll'<l'jp( n‘ J) Z_l(xn—uj)./\/(xnmk,ﬁk)
al"’] n=1 Zk:l p(Xn‘ek)

- —i(zwxn—u-) penlf) )

Z?:l p(Xn|0k)

_ _1ZXn—H' T3 n|fjs < Lo

e We thus obtain N = (%)
o anl Y (Xn)Xn “responSIbll.lty” of
= H N component j for x,

TS i(xn)

B. Leibe
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Recap: ML for Mixtures of Gaussians

e But...
N :
p; = Zn:1@\x‘ 7Tj Xn J)

T S

e |l.e. there is no direct analytical solution!
OF

(‘9u3
> Complex gradient function (non-linear mutual dependencies)
> Optimization of one Gaussian depends on all other Gaussians!

~ It is possible to apply iterative numerical optimization here,
but the EM algorithm provides a simpler alternative.

_f(7Tl7u’17217"'77TM7u’M72M)
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Recap: EM Algorithm

e Expectation-Maximization (EM) Algorithm

~ E-Step: softly assign samples to mixture components
WJN(Xn“‘ja Ej)

N
Zk:l 7"'k:-/\/‘(xnhjlka Zk)

> M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assighments
N

Nj < ) 7;(xn) = soft number of samples labeled ;

Vi (Xn) < Vj=1,....K, n=1,...,N

Te)
-
.
Q
]
=
=
(@)]
=
% n=1
G) A
- new , Vi
= J N
S N
S A~ New 1
= i < = 8% (Xn)xn
3 ¥, &
o J n 1
G
SNNEew - new ~new\T
3 3 E (%) (X — 5 ) (%0 — £457)
< J n=1 28
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Recap: EM Algorithm - An Example

2 L

2 L
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L=5 o .':’é;-:;
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B. Leibe
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Image source: C.M. Bishop, 2006




Recap: EM - Caveats

e When implementing EM, we need to take care to avoid
singularities in the estimation!
~  Mixture components may collapse on single data points.
. E.g. consider the case X, = ¢;1 (this also holds in general)

> Assume component ; is exactly centered on data point x,. This
data point will then contribute a term in the likelihood function

1 s .
N Xn|Xn, o71) = |
( | J ) \/%O’j p(z) |

- For o, — 0, this term goes to infinity!

= Need to introduce regularization
> Enforce minimum width for the Gaussians
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Application: Image Segmentation

(a) input image (b) user input (c) inferred segmentation

e User assisted image segmentation
> User marks two regions for foreground and background.
~ Learn a MoG model for the color values in each region.
> Use those models to classify all other pixels.

= Simple segmentation procedure
(building block for more complex applications)
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e Collect training samples
for skin/non-skin pixels.

e Estimate MoG to
represent the skin/
non-skin densities

Skin Color Model, Gray Axis Marginal

Elug,
ol

skin

Mon-Skin Color Model, Gray Axis Marginal

non-skin

Fed,

Classify skin color pixels in novel images

M. Jones and J. Rehg, Statistical Color Models with Application to Skin

Detection, IJCV 2002.

32
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Outlook for Today

e Criticism
> This is all very nice, but in the ML lecture, the EM algorithm
miraculously fell out of the air.

> Why do we actually solve it this way?

e This lecture

> We will take a more general view on EM
- Different interpretation in terms of latent variables
- Detailed derivation
» This will allow us to derive EM algorithms also for other cases.

> In particular, we will use it for estimating mixtures of Bernoulli
distributions in the next lecture.
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Topics of This Lecture

e An alternative view of EM
> Latent variables
> General EM
> Mixtures of Gaussians revisited
> Mixtures of Bernoulli distributions
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RWNTH
Gaussian Mixtures as Latent Variable Model

e Mixture of Gaussians
> Can be written as linear superposition of Gaussians in the form

p(x) = Z TN (x|, i)

e Let’s write this in a different form...

> Introduce a K-dimensional binary random variable z with
a 1-of-K coding, i.e., z;, = 1 and all other elements are zero.

z

> Define the joint distribution over x and z as
p(x,z) = p(x|z)p(z)

» This corresponds to the following graphical model:
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RWNTH
Gaussian Mixtures as Latent Variable Models

e Marginal distribution over z
- Specified in terms of the mixing coefficients m,, such that

plz =1) =my
where 0: 7; - 1 and Z’ﬂ'j = 1.
» Since z uses a 1-of-K representation, we can also write this as
K
ik
k=1
> Similarly, we can write for the conditional distribution

X‘Z HN X‘”’kazk)
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RWNTH
Gaussian Mixtures as Latent Variable Models

e Marginal distribution of x
> Summing the joint distribution over all possible states of z

K
— Zp(x y/ Zp p(x|z) = Z TN (x|, k)
Z k=1

e What have we gained by this?
> The resulting formula looks still the same after all...

= We have represented the marginal distribution in terms of
latent variables z.

- Since p(x) = 2, p(x, z), there is a corresponding latent
variable z , for each data point x,..

- We are now able to work with the joint distribution p(x, z)
instead of the marginal distribution p(x).
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= This will lead to significant simplifications...
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RWNTH
Gaussian Mixtures as Latent Variable Models

e Conditional probability of z given x:
- Use again the “responsibility” notation v,(z,)

z2) =p(z, = 1]x) = p(zr = )p(x|z = 1)
1) =l = 1) = PR
ﬂ-kN(X|p’k7 Ek)
> TN (%, 25)

- We can view 7, as the prior probability of z;, = 1 and (z,) as
the corresponding posterior once we have observed x.
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RWNTH
Sidenote: Sampling from a Gaussian Mixture

e MoG Sampling
> We can use ancestral sampling to generate random samples from

a Gaussian mixture model. z

1. Generate a value z from the marginal distribution p(z).
2. Generate a value X from the conditional distribution p(x|z).

X

Samples from the Samples from the Evaluating the
joint p(x, z) marginal p(x) responsibilities y(z,,,)

1 L

0.5 0.5¢
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Alternative View of EM

e Complementary view of the EM algorithm
> The goal of EM is to find ML solutions for models having latent

variables.
> Notation
- Set of all data X = [x,,..., x5
- Set of all latent variables Z —= [Z17' -->ZN]T
- Set of all model parameters 0

> Log-likelihood function
log p(X|6) = log {ZP(X, ZH)}
Z

» Key observation: summation inside logarithm = difficult.
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Alternative View of EM

e Now, suppose we were told for each observation in X
the corresponding value of the latent variable Z...

> Call {X,Z} the complete data set and le,

0.5

0

refer to the actual observed data X as incomplete.

0.5

0

0 0.5 1

» The likelihood for the complete data set now takes the form
log p(X, Z|6)

= Straightforward to marginalize...
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Alternative View of EM

e In practice, however,...

~ We are not given the complete data set {X,Z}, but only the
incomplete data X.

» Our knowledge of the latent variable values in Z is given only by
the posterior distribution P(Z|X, 8),

» Since we cannot use the complete-data log-likelihood, we
consider instead its expected value under the posterior
distribution of the latent variable:

Q(0,6°%) =) " p(Z|X,6°¢)logp(X, Z|6)
Z

~ This corresponds to the E-step of the EM algorithm.

> In the subsequent M-step, we then maximize the expectation to
obtain the revised parameter set 6%V,

0" = arg mgax Q(8, BOId)

B. Leibe
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General EM Algorithm

e Algorithm
1. Choose an initial setting for the parameters

2. E-step: Evaluate p(Z|X,901d)

Gold

Bl'leW

3. M-step: Evaluate
0"V = arg mgx Q(0, 9°1d)

given by

where
Q(6,6°%) = > "p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let 9°'9 «— 9™V and return to step 2.
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Remark: MAP-EM

e Modification for MAP

> The EM algorithm can be adapted to find MAP solutions for
models for which a prior p(0) is defined over the parameters.

> Only changes needed:

2. E-step: Evaluate p(Z|X,0°7)

3. M-step: Evaluate 6"°" given by

6" = arg max Q(0,6°)+1og p(8)

= Suitable choices for the prior will remove the ML singularities!
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Gaussian Mixtures Revisited

e Applying the latent variable view of EM
» Goal is to maximize the log-likelihood using the observed data X

log p(X|0) = log {ZP(X, ZB)} ]

~ Corresponding graphical model: H

» Suppose we are additionally given the values 7))
of the latent variables Z.

~ The corresponding graphical model for the
complete data now looks like this:
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Image source: C.M. Bishop, 2006
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Gaussian Mixtures Revisited

e Maximize the likelihood
» For the complete-data set {X,Z}, the likelihood has the form

N K
p(X,Zlp By m) = [ [] 7V (ol g Zi) =
n=1k=1

~ Taking the logarithm, we obtain

N K
logp(Xa Z|ﬂ'7 277‘-) — Z Zznk: {logﬂ-k + logN(Xn‘H’ka Ekﬁ)}
n=1k=1
~- Compared to the incomplete-data case, the order of the sum
and logarithm has been interchanged.
= Much simpler solution to the ML problem.

> Maximization w.r.t. a mean or covariance is exactly as for a
single Gaussian, except that it involves only the subset of data
points that are “assigned” to that component.
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Gaussian Mixtures Revisited

e Maximization w.r.t. mixing coefficients
- More complex, since the 7, are coupled by the summation

constraint K
E Ty = 1
j=1

» Solve with a Lagrange multiplier

K
log p(X, Z|p, X, 7) + A (Z T — 1)

k=1

> Solution (after a longer derivation):
N

1
Tk — N Z:l “nk
= The complete-data log-likelihood can be maximized trivially in
closed form.
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Gaussian Mixtures Revisited

e |In practice, we don’t have values for the latent variables

» Consider the expectation w.r.t. the posterior distribution of the
latent variables instead.

» The posterior distribution takes the form
N K

p(ZI1X, 1, Zym) o || 1] [V (g Z)] 7
n=1 k=1
and factorizes over n, so that the {z_} are independent under
the posterior.

Expected value of indicator variable z , under the posterior.
2z 2k [TeN (X |1y, Ze)] ™
> N (g, 25)] 7
Nl )
S TN (aly, B5)
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Gaussian Mixtures Revisited

e Continuing the estimation

> The complete-data log-likelihood is therefore
N K

Ezflogp(X, Z|p, 2, m)] = Y Y vznk {log m, + log N (x| gy, Tie) }
n=1 k=1

= This is precisely the EM algorithm for Gaussian mixtures as
derived before.
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References and Further Reading

e More information about EM and MoG estimation is

available in Chapter 9 of Bishop’s book (recommendable
to read). = ey

X PATTERN RECOGNITION E
g axo MACHINE LEARNING [

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

o Additional information
> Original EM paper: = e
- A.P. Dempster, N.M. Laird, D.B. Rubin, ,,Maximum-Likelihood from

incomplete data via EM algorithm”, In Journal Royal Statistical
Society, Series B. Vol 39, 1977

> EM tutorial:

- J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models“, TR-97-021, ICSI, U.C. Berkeley, CA,USA
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