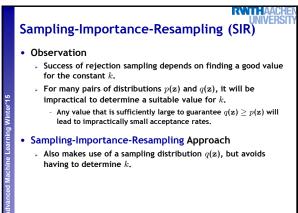
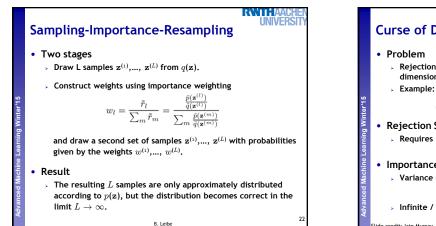


- Should not be small or zero in regions where $p(\mathbf{z})$ is significant!

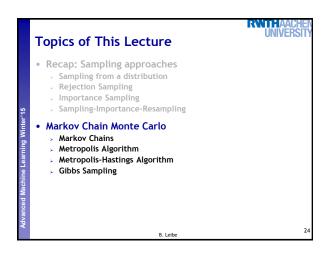


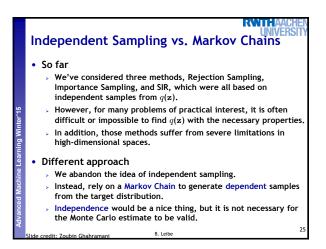
B. Leib

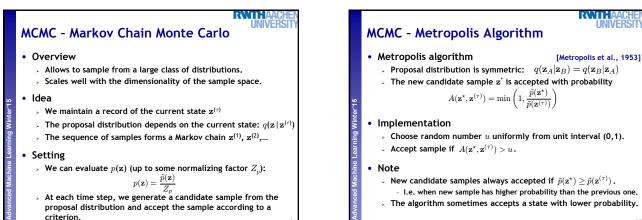
RANTHA



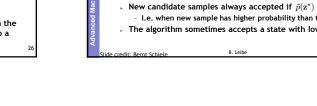
Curse of Dimensionality • Problem • Rejection & Importance Sampling both scale badly with high dimensionality. • Example: $p(z) \sim \mathcal{N}(0, I), \quad q(z) \sim \mathcal{N}(0, \sigma^2 I)$ • Rejection Sampling • Requires $\sigma \ge 1$. Fraction of proposals accepted: σ^{-D} . • Importance Sampling • Variance of importance weights: $\left(\frac{\sigma^2}{2-1/\sigma^2}\right)^{D/2} - 1$ • Infinite / undefined variance if $\sigma \le 1/\sqrt{2}$ Slide credit: Jain Murray

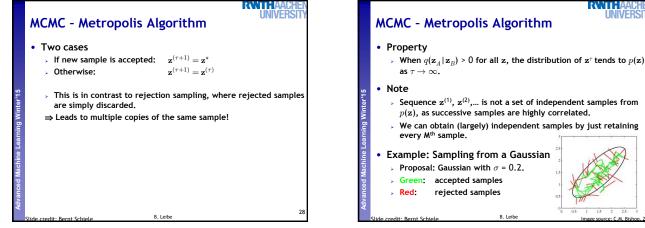


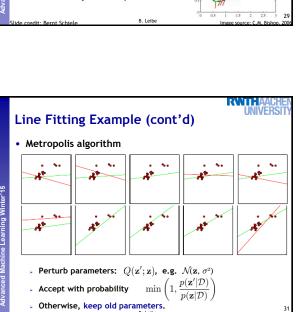


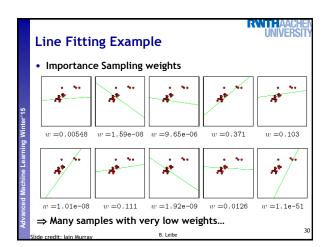


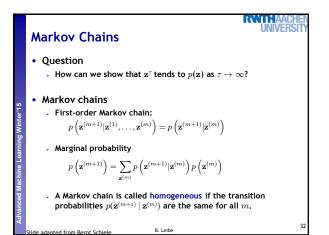
B. Leibe

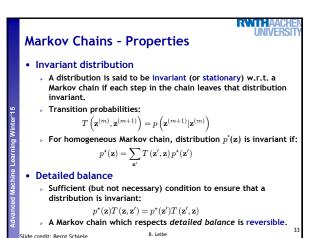












Detailed Balance

Detailed balance means
If we pick a state from the target distribution p(z) and make a transition under T to another state, it is just as likely that we will pick z_A and go from z_A to z_B than that we will pick z_B and go from z_A.

RWTH/

It can easily be seen that a transition probability that satisfies detailed balance w.r.t. a particular distribution will leave that distribution invariant, because

$$\sum_{\mathbf{z}'} p^{\star}(\mathbf{z}') T(\mathbf{z}', \mathbf{z}) = \sum_{\mathbf{z}'} p^{\star}(\mathbf{z}) T(\mathbf{z}, \mathbf{z}')$$
$$= p^{\star}(\mathbf{z}) \sum_{\mathbf{z}'} p(\mathbf{z}'|\mathbf{z}) = p^{\star}(\mathbf{z})$$

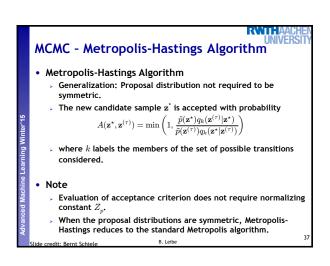
B. Leibe

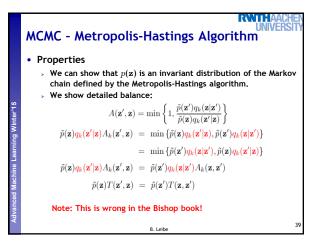
Ergodicity in Markov Chains
Ergodicity in Markov Chains
Qur goal is to use Markov chains to sample from a given distribution.
We can achieve this if we set up a Markov chain such that the desired distribution is invariant.
However, must also require that for m →∞, the distribution p(z^(m)) converges to the required invariant distribution p*(z) irrespective of the choice of initial distribution p(z⁽⁰⁾).
This property is called ergodicity and the invariant distribution is called the equilibrium distribution.
It can be shown that this is the case for a homogeneous Markov chain, subject only to weak restrictions on the invariant distribution and the transition probabilities.

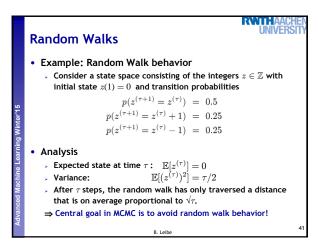
B. Leibe

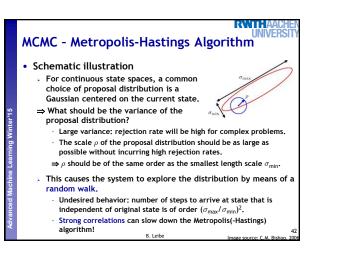
Mixture Transition Distributions • Mixture distributions • In practice, we often construct the transition probabilities from a set of 'base' transitions $B_1,...,B_K$. • This can be achieved through a mixture distribution $T(\mathbf{z}', \mathbf{z}) = \sum_{k=1}^{K} \alpha_k B_k(\mathbf{z}', \mathbf{z})$ with mixing coefficients $\alpha_k \ge 0$ and $\sum_k \alpha_k = 1$. • Properties • If the distribution is invariant w.r.t. each of the base transitions, then it will also be invariant w.r.t. T(\mathbf{z}', \mathbf{z}). • If each of the base transitions satisfies detailed balance, then the mixture transition T will also satisfy detailed balance. • Common example: each base transition changes only a subset of

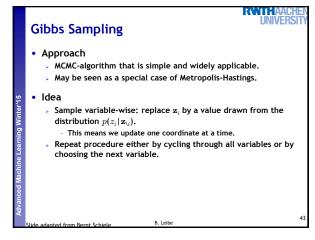
 Common example: each base transition changes only a subset of variables.
B. Leibe

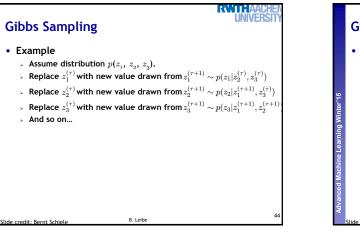


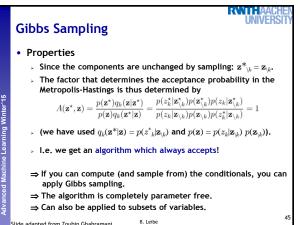


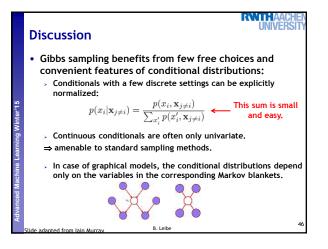


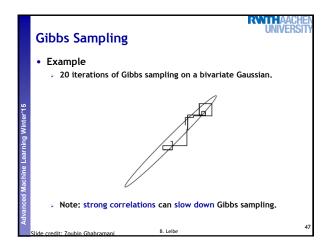


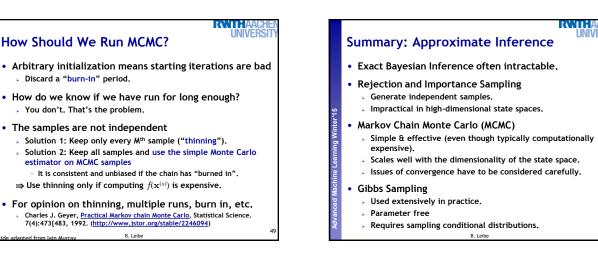


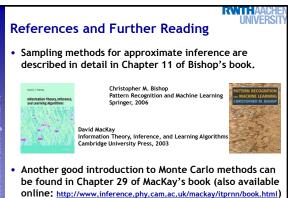












B. Leibe