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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Probability Distributions 

 Approximate Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Neural Networks 

 CNNs, RNNs, RBMs, etc. 
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• Bernoulli distribution 

 Probability distribution over x 2 {0,1}: 

 

 

 
 

• Binomial distribution 

 Generalization for m outcomes out of N trials 

Recap: Binary Variables 
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Recap: The Beta Distribution 

• Beta distribution 
 Distribution over ¹ 2 [0,1]: 

 

 

 

 

 

 

 where ¡(x) is the gamma function, a continuous generalization 

of the factorial. (                        iff x is an integer). 
 

• Properties 

 The Beta distribution generalizes the Binomial to arbitrary 

values of a and b, while keeping the same functional form. 

 It is therefore a conjugate prior for the Bernoulli and Binomial. 
5 
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Recap: Multinomial Variables 

• Multinomial variables 

 Variables that can take one of K possible distinct states 

 Convenient: 1-of-K coding scheme:  

 

• Generalization of the Bernoulli distribution 

 Distribution of x with K outcomes 

 

 

 
 

 with the constraints 
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Recap: Multinomial Variables 

• Multinomial Distribution 

 Variables using 1-of-K coding scheme:  

 Joint distribution over m1,…,mK conditioned on ¹ and N 

 

 

 

 

 

 
 

 with the constraints 
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Recap: The Dirichlet Distribution 

• Dirichlet Distribution 

 Multivariate generalization of the Beta distribution 

 

 

 

 

 

 

 
 

• Properties 

 Conjugate prior for the Multinomial. 

 The Dirichlet distribution over K variables 

is confined to a K-1 dimensional simplex. 
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• One-dimensional case 

 Mean ¹ 

 Variance ¾2 

 

 

 

 

• Multi-dimensional case 

 Mean ¹ 

 Covariance § 

 

Recap: The Gaussian Distribution 
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Recap: Bayes’ Theorem for Gaussian Variables 

• Marginal and Conditional Gaussians 

 Suppose we are given a Gaussian prior p(x) and a Gaussian 

conditional distribution p(y|x) (a linear Gaussian model) 

 

 

 

 From this, we can compute  

 

 

 

where 

 
 

 Closed-form solution for (Gaussian) marginal and posterior. 
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Maximum Likelihood for the Gaussian 

• Maximum Likelihood 

 Given i.i.d. data X = (x1,…,xN)T, the log likelihood function is 

given by 

 

 

 

 

 
 

• Sufficient statistics 

 The likelihood depends on the data set only through 

 

 
 

 Those are the sufficient statistics for the Gaussian distribution. 
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ML for the Gaussian 

• Setting the derivative to zero 

 

 

 

 Solve to obtain 

 

 

 

 And similarly, but a bit more involved 

15 
B. Leibe Slide credit: C. Bishop 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
2

 

ML for the Gaussian 

• Comparison with true results 

 Under the true distribution, we obtain 

 

 

 

 

 The ML estimate for the covariance is biased and         

 underestimates the true covariance! 
 

 Therefore define the following unbiased estimator 
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Bayesian Inference for the Gaussian 

• Let’s begin with a simple example 

 Consider a single Gaussian random variable x. 

 Assume ¾2 is known and the task is to infer the mean ¹.  

 Given i.i.d. data X = (x1,…,xN)T, the likelihood function for ¹ is 

given by 

 

 

 
 

 The likelihood function has a Gaussian shape as a function of ¹. 

 The conjugate prior for this case is again a Gaussian. 
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Bayesian Inference for the Gaussian 

• Combined with a Gaussian prior over ¹  

 
 

 This results in the posterior 

 

 
 

 Completing the square over ¹, we can derive that 

 
 

 where 
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Visualization of the Results 

• Bayes estimate: 

 

 

 

 
 

• Behavior for large N 
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Bayesian Inference for the Gaussian 

• More complex case 

 Now assume ¹ is known and the precision ¸ shall be inferred. 
 

 The likelihood function for  ¸  = 1/¾2 is given by 

 

 

 
 

 This has the shape of a Gamma function of ¸. 
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The Gamma Distribution 

• Gamma distribution 

 Product of a power of ¸ and the exponential of a linear function 

of ¸. 

 

 

• Properties 

 Finite integral if a>0 and the distribution itself is finite if a¸1. 
 

 Moments 
 

 Visualization 
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Bayesian Inference for the Gaussian 

• Bayesian estimation 

 Combine a Gamma prior                         with the likelihood 

function to obtain 

 

 

 

 

 We recognize this again as a Gamma function                           

with 
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Bayesian Inference for the Gaussian 

• Even more complex case 

 Assume that both ¹ and ¸ are unknown 

 The joint likelihood function is given by 

 

 

 

 

 

 

 

 Need a prior with the same functional dependence on ¹ and ¸. 
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The Gaussian-Gamma Distribution 

• Gaussian-Gamma distribution 

 

 

 

 

 

 

• Visualization 
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• Quadratic in ¹. 

• Linear in ¸. 

• Gamma distribution over ¸. 

• Independent of ¹.  

Image source: C.M. Bishop, 2006 Slide adapted from C. Bishop 
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Bayesian Inference for the Gaussian 

• Multivariate conjugate priors 

 ¹ unknown, ¤ known:  p(¹) Gaussian. 

 

 ¤ unknown, ¹ known:  p(¤) Wishart, 

 

 

 

 ¤ and ¹ unknown:  p(¹,¤) Gaussian-Wishart, 
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Recap: Bayesian Inference for the Gaussian 

• Multivariate conjugate priors 

 ¹ unknown, ¤ known:  p(¹) Gaussian. 

 

 ¤ unknown, ¹ known:  p(¤) Wishart, 

 

 

 

 ¤ and ¹ unknown:  p(¹,¤) Gaussian-Wishart, 
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Student’s t-Distribution 

• Gaussian estimation 

 The conjugate prior for the precision of a Gaussian is a Gamma 

distribution. 

 Suppose we have a univariate Gaussian N(x|¹,¿ -1) together 

with a Gamma prior Gam(¿|a,b). 

 By integrating out the precision, obtain the marginal distribution 

 

 

 

 

 

 This corresponds to an infinite mixture of Gaussians having the 

same mean, but different precision. 
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Student’s t-Distribution 

28 
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• Student’s t-Distribution 

 We reparametrize the infinite mixture of Gaussians to get 

 

 

 

 
 

• Parameters 

 “Precision” 

 “Degrees of freedom” 
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Student’s t-Distribution: Visualization 

 

 

 

 

 

 

 

 

 

• Behavior 
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Longer-tailed 

distribution! 

 More robust 

to outliers… 
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Student’s t-Distribution 

• Robustness to outliers: Gaussian vs t-distribution. 

 

 

 

 

 

 

 

 
 

 The t-distribution is much less sensitive to outliers, can be used 

for robust regression. 

 Downside: ML solution for t-distribution requires EM algorithm. 
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Student’s t-Distribution: Multivariate Case 

• Multivariate case in D dimensions 

 

 

 

 

 

where                                           is the Mahalanobis distance.  

 

• Properties 
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Topics of This Lecture 

• Approximate Inference 

 Variational methods 

 Sampling approaches 
 

 

• Sampling approaches 
 Sampling from a distribution 

 Ancestral Sampling 

 Rejection Sampling 

 Importance Sampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 
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Approximate Inference 

• Exact Bayesian inference is often intractable. 

 Often infeasible to evaluate the posterior distribution or to 

compute expectations w.r.t. the distribution. 

– E.g. because the dimensionality of the latent space is too high. 

– Or because the posterior distribution has a too complex form. 
 

 Problems with continuous variables 

– Required integrations may not have closed-form solutions. 
 

 Problems with discrete variables 

– Marginalization involves summing over all possible configurations of 

the hidden variables. 

– There may be exponentially many such states. 
 

 We need to resort to approximation schemes. 
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Two Classes of Approximation Schemes 

• Deterministic approximations (Variational methods) 

 Based on analytical approximations to the posterior distribution 

– E.g. by assuming that it factorizes in a certain form 

– Or that it has a certain parametric form (e.g. a Gaussian). 

 Can never generate exact results, but are often scalable to large 

applications. 
 

• Stochastic approximations (Sampling methods) 

 Given infinite computationally resources, they can generate 

exact results. 

 Approximation arises from the use of a finite amount of 

processor time. 

 Enable the use of Bayesian techniques across many domains. 

 But: computationally demanding, often limited to small-scale 

problems. 
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Topics of This Lecture 

• Approximate Inference 

 Variational methods 

 Sampling approaches 
 

 

• Sampling approaches 
 Sampling from a distribution 

 Ancestral Sampling 

 Rejection Sampling 

 Importance Sampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 
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Sampling Idea 

• Objective:  

 Evaluate expectation of a function f(z)  

w.r.t. a probability distribution p(z). 

 

 

• Sampling idea 

 Draw L independent samples z(l) with l = 1,…,L from p(z). 

 This allows the expectation to be approximated by a finite sum 

 

 
 

 As long as the samples z(l) are drawn independently from p(z), 

then 
 

 Unbiased estimate, independent of the dimension of z! 
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Image source: C.M. Bishop, 2006 
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Sampling – Challenges 

• Problem 1: Samples might not be independent 

 Effective sample size might be much smaller than apparent 

sample size. 

 

 

 

 

 

• Problem 2:  

 If f(z) is small in regions where p(z) is large and vice versa, the 

expectation may be dominated by regions of small probability. 

 Large sample sizes necessary to achieve sufficient accuracy. 
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Parametric Density Model 

• Example:  

 A simple multivariate (d-dimensional) Gaussian model 

 

 

 

 

 This is a “generative” model 

in the sense that we can generate 

samples x according to the  

distribution. 
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Sampling from a Gaussian 

• Given: 1-dim. Gaussian pdf (probability density function) 
p(x|¹,¾2) and the corresponding cumulative distribution: 

 

 

• To draw samples from a Gaussian, we can invert the 

cumulative distribution function: 
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F¹;¾2(x) =

Z x

¡1
p(xj¹; ¾2)dx

u » Uniform(0; 1)) F¡1
¹;¾2

(u) » p(xj¹;¾2)

F¹;¾2(x)p(xj¹; ¾2)

Slide credit: Bernt Schiele 
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Sampling from a pdf (Transformation method) 

• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution: 

 

 

• To draw samples from this pdf, we can invert the 

cumulative distribution function: 
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F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Example 1: Sampling from Exponential Distrib. 

• Exponential Distribution 

 

 

where 0 · y < 1. 

 

 

• Transformation sampling 

 Indefinite Integral 
 

 Inverse function 

 
 

 for a uniformly distributed input variable z. 
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Example 2: Sampling from Cauchy Distrib. 

• Cauchy Distribution 

 

 

 

 

 

 

• Transformation sampling 

 Inverse of integral can be expressed as a tan function. 

 

 

 for a uniformly distributed input variable z. 

 

42 
B. Leibe Image source: Wikipedia 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
2

 

Note: Efficient Sampling from a Gaussian 

• Problem with transformation method 

 Integral over Gaussian cannot be expressed 

in analytical form. 

 Standard transformation approach is very 

inefficient. 

 

• More efficient: Box-Muller Algorithm 

 Generate pairs of uniformly distributed random numbers  

z1,z2 2 (-1,1). 

 Discard each pair unless it satisfies                             .  

 This leads to a uniform distribution of points inside the unit 

circle with p(z1,z2) = 1/¼. 
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Box-Muller Algorithm (cont’d) 

• Box-Muller Algorithm (cont’d) 

 For each pair z1,z2  evaluate 

 

 

 
 

 Then the joint distribution of y1 and y2 is given by  

 

 

 

 

 

 y1 and y2 are independent and each has a Gaussian distribution  

with mean ¹ and variance ¾2. 

 If y ~ N(0,1), then ¾y + ¹ ~ N(¹,¾2). 
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Box-Muller Algorithm (cont’d) 

• Multivariate extension 

 If z is a vector valued random variable whose components are 

independent and Gaussian distributed with N(0,1), 

 Then y = ¹ + Lz will have mean ¹ and covariance §. 

 Where § = LLT is the Cholesky decomposition of §. 
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Ancestral Sampling 

• Generalization of this idea to directed graphical models. 

 Joint probability factorizes into conditional probabilities: 

 

 
 

• Ancestral sampling 

 Assume the variables are ordered such that there are no links 

from any node to a lower-numbered node. 

 Start with lowest-numbered node and draw a sample from its 

distribution. 
 

 Cycle through each of the nodes in order and draw samples from 

the conditional distribution (where the parent variable is set to 

its sampled value). 
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x̂1 » p(x1)

x̂n » p(xnjpan)

Image source: C.M. Bishop, 2006 
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Logic Sampling 

• Extension of Ancestral sampling 

 Directed graph where some nodes are instantiated  

with observed values. 

 

• Use ancestral sampling, except 

 When sample is obtained for an observed variable, if they agree 

then sample value is retained and proceed to next variable. 

 If they don’t agree, whole sample is discarded. 
 

• Result 

 Approach samples correctly from the posterior distribution. 

 However, probability of accepting a sample decreases rapidly as 

the number of observed variables increases. 

 Approach is rarely used in practice. 
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Discussion 

• Transformation method 

 Limited applicability, as we need to invert the indefinite integral 

of the required distribution p(z). 

 This will only be feasible for a limited number of simple 

distributions. 

 

• More general 

 Rejection Sampling 

 Importance Sampling 
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Rejection Sampling 

• Assumptions 

 Sampling directly from p(z) is difficult. 

 But we can easily evaluate p(z) (up to some normalization factor 

Zp): 

 

• Idea 

 We need some simpler distribution q(z) (called proposal 

distribution) from which we can draw samples. 

 Choose a constant k such that:  
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p(z) =
1

Zp

~p(z)

8z : kq(z) ¸ ~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Rejection Sampling 

• Sampling procedure 

 Generate a number z0 from q(z). 

 Generate a number u0 from the 

uniform distribution over [0,kq(z0)]. 

 If                    reject sample, otherwise accept. 

– Sample is rejected if it lies in the grey shaded area. 

– The remaining pairs (u0,z0) have uniform distribution under the 

curve         . 
 

• Discussion 

 Original values of z are generated from the distribution q(z). 

 Samples are accepted with probability 

 

 

 k should be as small as possible! 
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u0 > ~p(z0)

~p(z)

~p(z)=kq(z)

Image source: C.M. Bishop, 2006 
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p(accept) ·
1

20000

Rejection Sampling – Discussion 

• Limitation: high-dimensional spaces 

 For rejection sampling to be of practical value, we require that 

kq(z) be close to the required distribution, so that the rate of 

rejection is minimal. 
 

• Artificial example 

 Assume that p(z) is Gaussian with covariance matrix  

 Assume that q(z) is Gaussian with covariance matrix  

 Obviously:  

 In D dimensions: k = (¾q/¾p)
D. 

– Assume ¾q is just 1% larger than ¾p. 

– D = 1000  k = 1.011000 ¸ 20,000 

– And 
 

 Often impractical to find good proposal distributions for high 

dimensions! 
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¾2pI

¾2qI

¾2q ¸ ¾2p

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Example: Sampling from a Gamma Distrib. 

• Gamma distribution 

 

 
 

• Rejection sampling approach 

 For a>1, Gamma distribution has a  

bell-shaped form. 

 Suitable proposal distribution is 

Cauchy (for which we can use 

the transformation method). 

 Generalize Cauchy slightly to ensure  

it is nowhere smaller than Gamma: y = b tan y + c for uniform y. 

 This gives random numbers distributed according to  

52 
B. Leibe Image source: C.M. Bishop, 2006 

with optimal 

rejection rate for 
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Importance Sampling 

• Approach 

 Approximate expectations directly 

(but does not enable to draw samples from p(z) directly). 

 Goal: 

 

• Simplistic strategy: Grid sampling 

 Discretize z-space into a uniform grid. 

 Evaluate the integrand as a sum of the form 

 

 
 

 But: number of terms grows exponentially with number of 

dimensions! 
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Importance Sampling 

• Idea 

 Use a proposal distribution q(z) from which it is easy to draw 

samples. 

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z). 

 

 

 

 

 

 

 with importance weights 
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rl =
p(z(l))

q(z(l))
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Importance Sampling 

• Typical setting: 

 p(z) can only be evaluated up to an unknown normalization 

constant 
 

 q(z) can also be treated in a similar fashion. 

 
 

 Then 

 

 

 

 

 
 with: 
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p(z) = ~p(z)=Zp

q(z) = ~q(z)=Zq

~rl =
~p(z(l))

~q(z(l))
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Importance Sampling 

• Ratio of normalization constants can be evaluated 

 

 
 

• and therefore 

 

 

 

• with 
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Z
~p(z)dz =
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l=1

~rl

wl =
~rlP
m ~rm

=

~p(z(l))

~q(z(l))P
m
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~q(z(m))

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
2

 

Importance Sampling – Discussion 

• Observations 

 Success of importance sampling depends crucially on how well 

the sampling distribution q(z) matches the desired distribution 

p(z). 

 Often, p(z)f(z) is strongly varying and has a significant propor-

tion of its mass concentrated over small regions of z-space. 

 Weights rl may be dominated by a few weights having large 

values. 
 

 Practical issue: if none of the samples falls in the regions where 

p(z)f(z) is large… 

– The results may be arbitrary in error. 

– And there will be no diagnostic indication (no large variance in rl)! 
 

 Key requirement for sampling distribution q(z): 

– Should not be small or zero in regions where p(z) is significant! 
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Topics of This Lecture 

• Approximate Inference 

 Variational methods 

 Sampling approaches 
 

 

• Sampling approaches 
 Sampling from a distribution 

 Ancestral Sampling 

 Rejection Sampling 

 Importance Sampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 
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References and Further Reading 

• Sampling methods for approximate inference are 

described in detail in Chapter 11 of Bishop’s book. 

 

 

 

 

 

 
 

• Another good introduction to Monte Carlo methods can 

be found in Chapter 29 of MacKay’s book (also available 

online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html) 
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