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Recap: Binary Variables

¢ Bernoulli distribution
» Probability distribution over z € {0,1}:

Bern(x|p) = p'(1— )
Elz] = u
varlz] = p(l—p)

¢ Binomial distribution
. Generalization for m outcomes out of N trials "

N .
Bin(m|N, u) = ( ),u’"(l — N
m

Tt 10.01.25)

N
E[m] = Z mBin(m|N,u) = Nu
m=0
N

var[m] = Z (m — E[m])” Bin(m|N, ) = Np(1 - p)
m=0
lide adaoted from C. Bishon B. Leibe

Recap: Multinomial Variables

¢ Multinomial variables
» Variables that can take one of K possible distinct states
. Convenient: 1-of-K coding scheme: x = (0,0,1,0,0,0)"

¢ Generalization of the Bernoulli distribution
» Distribution of x with K outcomes

K
plxlp) = [ i
k=1
with the constraints

K
Vhk:pe 20 and thk:l

k=1

Slide adapted from C, Bishop B. Leibe
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This Lecture: Advanced Machine Learning

fiX SR

ag

* Regression Approaches
» Linear Regression ®
» Regularization (Ridge, Lasso) WA\
» Gaussian Processes

¢ Learning with Latent Variables
» Probability Distributions "
» Approximate Inference
» Mixture Models
» EM and Generalizations

¢ Deep Learning
» Neural Networks
» CNNs, RNNs, RBMs, etc.

B. Leibe

Recap: The Beta Distribution

« Beta distribution I I
» Distribution over p € [0,1]: e

Tla+b) . _
Beta(j|a,b) = l“((a)l'(irl)#“ 1 —p)h!
a
Elun =
ls a+b
ar| _ @ | /
varp] = @i e b 1./

» where I'(z) is the gamma function, a continuous generalization
of the factorial. (I'(z + 1) = z! iff x is an integer).

¢ Properties
» The Beta distribution generalizes the Binomial to arbitrary
values of a and b, while keeping the same functional form.
» It is therefore a conjugate prior for the Bernoulli and Binomial.

B. Leibe
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Recap: Multinomial Variables

¢ Multinomial Distribution
. Variables using 1-of-K coding scheme: x = (0,0,1,0,0,0)"
» Joint distribution over m,,...,m, conditioned on y and N

. K
N
Mult(my, ma, ... mg [, N) = I
ult(my, ma Jg|p. N) (mnng...m;\') Etu_
E[mi] = Npg
varimg] = Npg(l — p)
covimymg] = —Njjpy

with the constraints

K
Vhk:pe 20 and thk:l

k=1

ide adapted from C__Rishop LA
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Slide adapted from C._Bishop

Recap: The Dirichlet Distribution

¢ Dirichlet Distribution
» Multivariate generalization of the Beta distribution

RWTHAACHE

K K
l
Dir(ielar) = g "‘m e with  ao=3 ok
«) k=1 k=1
ak
E = =X
[12#] o ‘
(o0 — ar) L
varfp] = W
;o
cov[p;pu] —W

¢ Properties
» Conjugate prior for the Multinomial.
» The Dirichlet distribution over K variables
is confined to a K-1 dimensional simplex.
B. Leibe

Image source: C, Bishop, 200

lide adapted from C, Bishop

Recap: Bayes’ Theorem for Gaussian Variables

¢ Marginal and Conditional Gaussians
» Suppose we are given a Gaussian prior p(x) and a Gaussian
conditional distribution p(y|x) (a linear Gaussian model)
p(x) = N(x[p. A7)
plylx) = N (y/[Ax+b, L")
» From this, we can compute
ly) N(y|Ap+b, L7+ AAT'AT)
p(xly) = NE{ATL(y - b) + Ap}, %)

where
2= (A+A'LA)!

= Closed-form solution for (Gaussian) marginal and posterior.

B. Leibe
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slide credit: C_Rishop

ML for the Gaussian

¢ Setting the derivative to zero

Zz —p)=0

dilanp 3)

~ Solve to obtain

1 N
3 x

Foyr = N
Y n=1

» And similarly, but a bit more involved
N

1
¥ 2%

n=1

EmL =

— ppr) (X — HML)T-

B. Leibe
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Recap: The Gaussian Distribution

¢ One-dimensional case

Nzlp,o?)

» Mean
. Variance o2 /
1 (z—p)?
2y _
Nelpo?) = e {1

RWTHAACHE

¢ Multi-dimensional case
> Mean p

A

» Covariance &

N ®) = o { g ™= - )}

B. Leibe Image source; C.M, Bishop,

<

Maximum Likelihood for the Gaussian

¢ Maximum Likelihood

» Given i.i.d. data X = (x,,..
given by

xy)7, the log likelihood function is
ND N
logp(X|p, E) = ——log(QTr) -= log |

N
Z %= ) BT (% — )

|o|>—-

o Sufficient statistics
» The likelihood depends on the data set only through

E Xn § ang;

n=1

» Those are the suff1c1ent statistics for the Gaussian distribution.

ide adapted from C. Bishon B. Leibe
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ide adapted from C_Bishop

ML for the Gaussian

e Comparison with true results
» Under the true distribution, we obtain
Elprr] =

N1
E[Zme]

3.
N

= The ML estimate for the covariance is biased and
underestimates the true covariance!

» Therefore define the following unbiased estimator
N

-1
Db s DI

n=1

— Hyp) (%n — l-h-IL)T-

B. Leibe
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Bayesian Inference for the Gaussian

¢ Let’s begin with a simple example
» Consider a single Gaussian random variable x.
» Assume o? is known and the task is to infer the mean x.

» Given i.i.d. data X = (z,,...,z )7, the likelihood function for  is
given by

N N
1 1 -~ .
p(Xp) = H planlp) = (27‘_02),\;;2 exp {_2? L(i!'n. - }!)2} .

n=1 n=1

» The likelihood function has a Gaussian shape as a function of ..
= The conjugate prior for this case is again a Gaussian.

plp) =N (ulpo. of) -

Slide adapted from C. Bishop B. Leibe

Visualization of the Results

¢ Bayes estimate:

02;10 + Naﬁ,uML

N = : :
# a? + No?
1 1 n N
2T 2T 5
9N % 7 p(ulX)
* Behavior for large N N =10
‘ N=0 N-—-x
HN Ho ML =g
o a3 0 7
N=0 (
0
-1 0 1
Mo =0 "
Slide adapted from Bernt Schiele B. Leibe Image source: C.M, Bishop, 200¢

The Gamma Distribution

Gamma distribution

» Product of a power of )\ and the exponential of a linear function
of .

Gam(A|a,b) = r(la)b“/\“’lcxp( bA)

Properties
~ Finite integral if a>0 and the distribution itself is finite if a>1.

2] [
» Moments KAl = - var[A = —
. ! b l b2
» Visualization

a~01 a1 a4
b=0.1 b=1 b=6

0 A
Slide adapted from C_Bishop

0 = e
0 1 29
Image source: C.M, Bishop, 200d

“

A
B. Leibe
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Bayesian Inference for the Gaussian

¢ Combined with a Gaussian prior over p
p(p) =N (ulpo, o3) -
» This results in the posterior

plpfx) oc p(x|u)p(p).

» Completing the square over i, we can derive that

— N 2
plux) = N (ulpw, o)
where . ., .
o N Nag , " 1 .
LN = o — — ML, ML = — Z;;
/ No2 + (,2'( No2? + oz" N n
0 0 n=1
1 1 N
xR
18
ide adapted from C, Bishop B. Leibe

Bayesian Inference for the Gaussian

¢ More complex case
» Now assume p is known and the precision \ shall be inferred.

» The likelihood function for A = 1/0 is given by

N N
- /2 Ao 2
p(X|A) = H N{@n |, A1) oc AN/2 exp{ 0 2 (2 j.!-)‘} .
n=1

n=1

» This has the shape of a Gamma function of \.

ide adapted from C. Bishon B. Leibe
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RWTH/ACHEN
Bayesian Inference for the Gaussian

* Bayesian estimation

» Combine a Gamma prior Gam(A|ag, ) with the likelihood
function to obtain

N
LN/ A .
p(/\‘x) ~ \m—1yN/2 exp { by A 3 Z(:E” “)3}

n=1

- We recognize this again as a Gamma function Gam(A . by)

with B
N
ay = ap+ 5}
1Y N
by = boty >l —1)* =ho + EU.%IL'

n=1

ide adapted from C__Rishop LA
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Bayesian Inference for the Gaussian

+ Even more complex case
» Assume that both y and \ are unknown
» The joint likelihood function is given by
N

AN V2 A ‘
e A) = H (ﬂ) exp{ 5(3:” r“)z}

n=1

. AL2 A A i A i 2
X exp - exp { A In 3 Ty, .

n=l1 n=1

pX

= Need a prior with the same functional dependence on p and .

Slide adapted from C. Bishop B. Leibe
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Bayesian Inference for the Gaussian

¢ Multivariate conjugate priors

» punknown, A known: p(u) Gaussian.

» A unknown, p known: p(A) Wishart,

W(AIW, ) = BJA|V P12 oy (—%Tr(W‘IA)) )

» A and p unknown: p(,A) Gaussian-Wishart,

(i Alpg, 8, W.v) = N (pl|gg, (BA) 1) WAIW )

B. Leibe

lide adapted from C, Bishop

Student’s t-Distribution

¢ Gaussian estimation

» The conjugate prior for the precision of a Gaussian is a Gamma
distribution.

Suppose we have a univariate Gaussian M(z |y, 1) together
with a Gamma prior Gam(7|a,b).

By integrating out the precision, obtain the marginal distribution

v

v

ple|p, ab) / N(z|p, 77 )Gam(T|a, b)dr
Jo

= / N (z|w. (nA)~1) Gam(n|v /2, v/2)dn
J0

v

This corresponds to an infinite mixture of Gaussians having the
same mean, but different precision.

Slide adapted from C, Bishop B. Leibe
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The Gaussian-Gamma Distribution
¢ Gaussian-Gamma distribution

Pl A) = N (o, (BA) 1 )Gam(Aa, b)

BA .
o exp {—"T(_u- - ,ug}z} A% Texp {—bA}

 Quadratic in p.
« Linear in A.

¢ Visualization

de adapted from C,_Bishop B. Leibe

"
Image source: CM, Bishop,

RWTH CHE
Recap: Bayesian Inference for the Gaussian

¢ Multivariate conjugate priors

» punknown, A known: p(u) Gaussian.

» A unknown, g known: p(A) Wishart,

W(AIW,v) = BIA|V P12 oy (—%Tr(W‘IA)) )

» A and g unknown: p(p,A) Gaussian-Wishart,

(i Alpg, 8, W.v) = N (pl|gg, (BA) 1) WAIW )

ide adapted from C. Bishon B. Leibe
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Student’s t-Distribution

e Student’s t-Distribution
» We reparametrize the infinite mixture of Gaussians to get

T(v/2+1/2)f A 1/2 A — )2 —vf2-1/2
St(x|p, A v) = %(5) [1+ (a ,/ i) ]

¢ Parameters
» “Precision”
» “Degrees of freedom”

ide adapted from C__Rishop LA
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Student’s t-Distribution: Visualization

0.5

Longer-tailed
distribution!

= More robust

to outliers...
¢ Behavior
| v=1 Vv —
St(x|p, A, v) ‘ Cauchy  N(z|u,A71)
29
Slide adapted from C. Bishop B. Leibe Jmage source: M, Bishop, 200

Student’s t-Distribution: Multivariate Case

¢ Multivariate case in D dimensions
00
St(x/p.Av) = f N (x|p, (pA)~") Gam(nlv/2, v/2) dn
0
I(D/2+v/2) |A —Dr2-vi2
T(v/2)

where A? = (x — ;) "A(x — p) is the Mahalanobis distance.

1/2 A2
(mr)D/2 { v

¢ Properties
ifr>1

A7 ife=2

B[x] = g2,

cov[x| = (vi2)

mode[x] = p

lide credit: C_Bishop B. Leibe
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RWTH/ACHEN
Approximate Inference

¢ Exact Bayesian inference is often intractable.
» Often infeasible to evaluate the posterior distribution or to
compute expectations w.r.t. the distribution.
- E.g. because the dimensionality of the latent space is too high.
- Or because the posterior distribution has a too complex form.

» Problems with continuous variables
- Required integrations may not have closed-form solutions.

» Problems with discrete variables

- Marginalization involves summing over all possible configurations of
the hidden variables.

- There may be exponentially many such states.

= We need to resort to approximation schemes.

B. Leibe
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Student’s t-Distribution

¢ Robustness to outliers: Gaussian vs t-distribution.

0s

04

03

01

5 [ 5 10 5 0 s 10

= The t-distribution is much less sensitive to outliers, can be used
for robust regression.

= Downside: ML solution for t-distribution requires EM algorithm.

de adapted from C. Bishop B. Leibe Image source: CM, Bishoo,

Topics of This Lecture

¢ Approximate Inference
» Variational methods
» Sampling approaches

¢ Sampling approaches
» Sampling from a distribution
» Ancestral Sampling
» Rejection Sampling
» Importance Sampling

¢ Markov Chain Monte Carlo
» Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
» Gibbs Sampling

B. Leibe
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RWTH ACHET
Two Classes of Approximation Schemes

¢ Deterministic approximations (Variational methods)
» Based on analytical approximations to the posterior distribution
- E.g. by assuming that it factorizes in a certain form
- Or that it has a certain parametric form (e.g. a Gaussian).

= Can never generate exact results, but are often scalable to large
applications.

¢ Stochastic approximations (Sampling methods)

» Given infinite computationally resources, they can generate
exact results.

~ Approximation arises from the use of a finite amount of
processor time.

= Enable the use of Bayesian techniques across many domains.
= But: computationally demanding, often limited to small-scale
problems.

B. Leibe
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Topics of This Lecture

¢ Sampling approaches
» Sampling from a distribution
» Ancestral Sampling
» Rejection Sampling
» Importance Sampling

B. Leibe

RWTH CHE
Sampling - Challenges

e Problem 1: Samples might not be independent

= Effective sample size might be much smaller than apparent
sample size.

e Problem 2:

» If f(z) is small in regions where p(z) is large and vice versa, the
expectation may be dominated by regions of small probability.
= Large sample sizes necessary to achieve sufficient accuracy.

" 37
B. Leibe

Image source; CM, Bishop, 200¢
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Sampling from a Gaussian

¢ Given: 1-dim. Gaussian pdf (probability density function)
p(x|u,0%) and the corresponding cumulative distribution:

F@) = [ plelio®)da

¢ To draw samples from a Gaussian, we can invert the
cumulative distribution function:

u ~ Uniform(0,1) = F}:;Q(u) ~ p(x|p, %)

A ' ’/'\.‘
\
dooe
9 " oy \
P(Il/l, 7 ) i /f \ Fu,vz (x)
| / \
. / \
—_— ~ . \“-,_
39
Slide credit: Bernt Schiele B. Leibe
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Sampling Idea

¢ Objective:
. Evaluate expectation of a function f(z) "
w.r.t. a probability distribution p(z).

lf] = [ (e
e Sampling idea

» Draw L independent samples z() with [ = 1,...,L from p(z).
» This allows the expectation to be approximated by a finite sum

1L
P !
f= I Z f(z)
=1
» As long as the samples z() are drawn independently from p(z),

then [ f] —12]7]

= Unbiased estimate, independent of the dimension of z!

Slide adapted from Bernt Schiele B. Leibe Image source: CM, Bishoo,

Parametric Density Model

e Example:
» A simple multivariate (d-dimensional) Gaussian model

p(x|p, X) = Wexp {*%(x -p)'E (x - M)}

» This is a “generative” model
in the sense that we can generate “
samples x according to the ﬁ; °
distribution. [P A

ide adated from Bernt Schiele B. Leibe

RWTH/ T
Sampling from a pdf (Transformation method)

¢ In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:
T

F(z) 3 p(z)dz

¢ To draw samples from this pdf, we can invert the
cumulative distribution function:

u ~ Uniform(0,1) = F~1(u) ~ p(x)

40
Image source: C.M, Bishop, 200

ide credit: Bernt Schiele B. Leibe
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Example 1: Sampling from Exponential Distrib.

¢ Exponential Distribution > e

—_e1
A=15

ply) =Aexp(=Ay) 2]

where 0 < y < co.

¢ Transformation sampling
» Indefinite Integral hy)=1—exp(—Ay)
» Inverse function

y=h(y) ' =-A"n(l-2)

for a uniformly distributed input variable z.

B. Leibe

Image source: Wikipedi

RWTH CHE
Note: Efficient Sampling from a Gaussian

¢ Problem with transformation method
» Integral over Gaussian cannot be expressed
in analytical form.
Standard transformation approach is very
inefficient.

A

—1 z1

¢ More efficient: Box-Muller Algorithm
» Generate pairs of uniformly distributed random numbers

2,7, € (-11).

Discard each pair unless it satisfies r* = =27 + 25 < 1.

This leads to a uniform distribution of points inside the unit

circle with p(z,,z,) = /.

v

v

43

B. Leibe Image source; CM, Bishop, 200¢
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Box-Muller Algorithm (cont’d)

¢ Multivariate extension
» If z is a vector valued random variable whose components are
independent and Gaussian distributed with A{0,1),
» Then y = p + Lz will have mean p and covariance X.
» Where X = LL” is the Cholesky decomposition of 3.

45
B. Leibe

Advanced Machine Learning Winter’12

Advanced Machine Learning Winter’12

RWTH/CET
Example 2: Sampling from Cauchy Distrib.

¢ Cauchy Distribution o4
1 1 iy
71+ 12 03

ply) =

¢ Transformation sampling
» Inverse of integral can be expressed as a tan function.

y=h(y)"" = tan(2)

for a uniformly distributed input variable z.

B. Leibe Image source: Wikipedi

Box-Muller Algorithm (cont’d)

¢ Box-Muller Algorithm (cont’d)
» For each pair z,,z, evaluate

—2lnr2\ ' —2n 2\ 2
h=x 2 2 =23 P

» Then the joint distribution of y, and y, is given by

Oz, 22)
A1, y2)

1 5, 1 2,
exp(—y /Q)j| [ — exp(—y: /Q)j|
| (st [z o2
= y, and y, are independent and each has a Gaussian distribution

with mean p and variance o2.
- If y ~ N(0,1), then oy + p ~ N(,02).

B. Leibe

plz1,22)

Y1, y2)

44
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RWTH/ACHEN
Ancestral Sampling

¢ Generalization of this idea to directed graphical models.
» Joint probability factorize§ into conditional probabilities:

K R
p(x) = [ plaxlpay) 9 g’)
ITvteslen. K

¢ Ancestral sampling =0 e
» Assume the variables are ordered such that there are no links
from any node to a lower-numbered node.
» Start with lowest-numbered node and draw a sample from its
distribution. &1~ p(z1)

» Cycle through each of the nodes in order and draw samples from
the conditional distribution (where the parent variable is set to
its sampled value).

& ~ p(zn|pa,,)

46
Image source: C.M, Bishop, 200

B. Leibe




Logic Sampling

¢ Extension of Ancestral sampling

-~ Directed graph where some nodes are instantiated
with observed values.

¢ Use ancestral sampling, except

» When sample is obtained for an observed variable, if they agree
then sample value is retained and proceed to next variable.

» If they don’t agree, whole sample is discarded.

¢ Result
» Approach samples correctly from the posterior distribution.

» However, probability of accepting a sample decreases rapidly as
the number of observed variables increases.

= Approach is rarely used in practice.

Advanced Machine Learning Winter’12

47
B. Leibe

Rejection Sampling

¢ Assumptions
» Sampling directly from p(z) is difficult.
» But we can easily evaluate p(z) (up to some normalization factor
Z,): 1.
p(@) = -(2)
P
¢ |dea
» We need some simpler distribution ¢(z) (called proposal
distribution) from which we can draw samples.
- Choose a constant k such that: Vz : kq(z) > p(z)
kq(z)

Advanced Machine Learning Winter’12

- " 49
lide credit: Bernt Schiele B. Leibe

Image source; CM, Bishop, 200¢

Rejection Sampling - Discussion

¢ Limitation: high-dimensional spaces
» For rejection sampling to be of practical value, we require that
kq(z) be close to the required distribution, so that the rate of
rejection is minimal.
¢ Artificial example
» Assume that p(z) is Gaussian with covariance matrix Ugl
» Assume that ¢(z) is Gaussian with covariance matrix 021
» Obviously: 02 > O’g %
» In D dimensions: k = (d,/0,)".
- Assume o is just 1% larger than o,. 2
- D=1000= k = 1.011900 > 20,000
- And p(accept) -
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20000 J
= Often impractical to find good proposal distributions for high
dimensions! 51
Slide credit: Bernt Schiele B. Leibe Image source: CM, Bishoo, 200d
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Discussion

¢ Transformation method

~ Limited applicability, as we need to invert the indefinite integral
of the required distribution p(z).

» This will only be feasible for a limited number of simple
distributions.

¢ More general
» Rejection Sampling
» Importance Sampling

48
Slide adapted from Bernt Schiele B. Leibe

Rejection Sampling

e Sampling procedure
~ Generate a number z, from ¢(z).
» Generate a number u, from the
uniform distribution over [0,kq(z,)].

- If uy > p(z) reject sample, otherwise accept
- Sample is rejected if it lies in the grey shaded area.
- The remaining pairs (u,,z,) have uniform distribution under the
curve p(z).
¢ Discussion
» Original values of z are generated from the distribution ¢(z).
» Samples are accepted with probability ﬁ(z)/kq(z)
p(z) 1 / .
z)dz = — 2)dz
kq(z)ﬂ ) E #(z)
= k should be as small as possible!

placcept) =

50

Image source; C,M, Bishop,

ide credit: Bernt Schiele B. Leibe
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RWTH/ACHEN
Example: Sampling from a Gamma Distrib.

e Gamma distribution

1
Gam(z|a,b) = —b"2" " exp(—bz)

a)
¢ Rejection sampling approach
» For a>1, Gamma distribution has a 0l
bell-shaped form. plz)
» Suitable proposal distribution is 008
Cauchy (for which we can use
the transformation method). B
» Generalize Cauchy slightly to ensure
it is nowhere smaller than Gamma: y =btany + ¢ for uniform y.

ax>1

05

0 10 20 30]

» This gives random numbers distributed according to

glz) = k with optimal c =a-—1
14+ (2—¢)?/b® rejectionratefor 32 — 9, 1
52

B. Leibe lmage source: CM, Bishop, 2009
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Importance Sampling

¢ Approach

~ Approximate expectations directly

Soot By [ fatae
¢ Simplistic strategy: Grid sampling
» Discretize z-space into a uniform grid.
» Evaluate the integrand as a sum of the form
L

E[f] =Y f(z)p(z")dz
1=1

» But: number of terms grows exponentially wit|
dimensions!

Slide credit: Bernt Schiele B. Leibe

(but does not enable to draw samples from p(z) directly).

h number of

Importance Sampling

¢ Typical setting:

» p(z) can only be evaluated up to an unknown normalization

Importance Sampling - Discussion

¢ Observations

» Success of importance sampling depends crucially on how well
the sampling distribution ¢(z) matches the desi

p(z).

- Often, p(z) f(z) is strongly varying and has a significant propor-

tion of its mass concentrated over small region
= Weights r; may be dominated by a few weights
values.
» Practical issue: if none of the samples falls in tl
p(z) f(z) is large...
- The results may be arbitrary in error.

- And there will be no diagnostic indication (no large variance in r)!

» Key requirement for sampling distribution ¢(z):
- Should not be small or zero in regions where p(z) is significant!

Slide credit: Bernt Schiele LA

constant p(2) =5(2)/Z,
» ¢(z) can also be treated in a similar fashion.
q(z) = 4(2)/Z,
» Then P 5(2)
- plz
E[f =/ ZPZEI:_—U[ ——q(z)dz
) = [ Swtada = 22 [ 1)l
Zalnm. . )
~ Z1 =)
L pa")
> with: 7 = (j(z(l))
lide credit: Bernt Schiele B. Leibe %5
RWTH ACHET

ired distribution

s of z-space.
having large

he regions where

Advanced Machine Learning Winter’12

Advanced Machine Learning Winter’12

Importance Sampling

¢ Idea

» Use a proposal distribution ¢(z) from which it is easy to draw

samples.

» Express expectations in the form of a finite sum over samples

{z"} drawn from ¢(z

Elf] = [ f@w

pz
Z e

z)dz = /f[z]

)

» with importance weights
p(z®)

"7 =)
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q(z)

Slide credit: Bernt Schiele B. Leibe

Importance Sampling

« Ratio of normalization constants can be evaluated

Z, 1

- p(z)dz = /

Pz (l)
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¢ and therefore

L
E[f] ~ Y wi@")
1=1
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Topics of This Lecture

¢ Markov Chain Monte Carlo
» Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
» Gibbs Sampling

B. Leibe
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References and Further Reading

¢ Sampling methods for approximate inference are
described in detail in Chapter 11 of Bishop’s book.

oavt sy Christopher M. Bishop
Pattern Recognition and Machine Learning
‘;’.".."ﬂ‘.',";.“;“u....;':n E Springer, 2006
MR David MacKay
A4 at Information Theory, Inference, and Learning Algorithms -

Cambridge University Press, 2003

¢ Another good introduction to Monte Carlo methods can
be found in Chapter 29 of MacKay’s book (also available
online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
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