Advanced Machine Learning Lecture 7

Approximate Inference

19.11.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

	Recap: Binary Variables - Bernoulli distribution - Probability distribution over $x \in\{0,1\}$: $\begin{aligned} \operatorname{Bern}(x \mid \mu) & =\mu^{x}(1-\mu)^{1-x} \\ \mathbb{E}[x] & =\mu \\ \operatorname{var}[x] & =\mu(1-\mu) \end{aligned}$
	- Binomial distribution , Generalization for m outcomes out of N trials $\begin{aligned} \operatorname{Bin}(m \mid N, \mu) & =\binom{N}{m} \mu^{m}(1-\mu)^{N-m} \\ \mathbb{E}[m] & \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m \mid N, \mu)=N \mu \\ \operatorname{var}[m] & \equiv \sum_{m=0}^{N}(m-\mathbb{E}[m])^{2} \operatorname{Bin}(m \mid N, \mu)=N \mu(1-\mu) \end{aligned}$

Recap: Binary Variables

- Bernoulli distribution

$$
\begin{aligned}
\operatorname{Bern}(x \mid \mu) & =\mu^{x}(1-\mu)^{1-x} \\
\mathbb{E}[x] & =\mu \\
\operatorname{var}[x] & =\mu(1-\mu)
\end{aligned}
$$

Binomial distribution
Generalization for m outcomes out of N trials

$$
\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}
$$

$$
\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m \mid N, \mu)=N \mu
$$

$$
\operatorname{var}[m] \equiv \sum_{m=0}^{N}\left(m-\underset{\substack{\text { B. Leibe }}}{\mathbb{E}[m])^{2} \operatorname{Bin}(m \mid N, \mu)=N \mu(1-\mu)}\right.
$$ B. Leibe

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
- Regularization (Ridge, Lasso)

Gaussian Processes

- Learning with Latent Variables
, Probability Distributions
- Approximate Inference
- Mixture Models
, EM and Generalizations
- Deep Learning
, Neural Networks
, CNNs, RNNs, RBMs, etc.

RNIIHAACHE

Recap: The Beta Distribution

- Beta distribution
- Distribution over $\mu \in[0,1]$:

$$
\begin{aligned}
\operatorname{Beta}(\mu \mid a, b) & =\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1} \\
\mathbb{E}[\mu] & =\frac{a}{a+b} \\
\operatorname{var}[\mu] & =\frac{a b}{(a+b)^{2}(a+b+1)}
\end{aligned}
$$

where $\Gamma(x)$ is the gamma function, a continuous generalization of the factorial. $(\Gamma(x+1)=x!$ iff x is an integer $)$.

- Properties
, The Beta distribution generalizes the Binomial to arbitrary values of a and b, while keeping the same functional form.
, It is therefore a conjugate prior for the Bernoulli and Binomial. B. Leibe

Recap: Multinomial Variables

- Multinomial variables
- Variables that can take one of K possible distinct states
- Convenient: 1 -of- K coding scheme: $\mathbf{x}=(0,0,1,0,0,0)^{\mathrm{T}}$
- Generalization of the Bernoulli distribution

Distribution of \mathbf{x} with K outcomes

$$
p(\mathbf{x} \mid \boldsymbol{\mu})=\prod_{k=1}^{K} \mu_{k}^{x_{k}}
$$

with the constraints

$$
\forall k: \mu_{k} \geqslant 0 \quad \text { and } \quad \sum_{k=1}^{K} \mu_{k}=1
$$

Recap: Multinomial Variables

- Multinomial Distribution
- Variables using 1-of- K coding scheme: $\mathbf{x}=(0,0,1,0,0,0)^{\mathrm{T}}$

Joint distribution over m_{1}, \ldots, m_{K} conditioned on μ and N
$\operatorname{Mult}\left(m_{1}, m_{2}, \ldots, m_{K} \mid \boldsymbol{\mu}, N\right)=\binom{N}{m_{1} m_{2} \ldots m_{K}} \prod_{k=1}^{K} \mu_{k}^{m_{k}}$

$$
\begin{aligned}
\mathbb{E}\left[m_{k}\right] & =N \mu_{k} \\
\operatorname{var}\left[m_{k}\right] & =N \mu_{k}\left(1-\mu_{k}\right)
\end{aligned}
$$

$$
\operatorname{cov}\left[m_{j} m_{k}\right]=-N \mu_{j} \mu_{k}
$$

with the constraints

$$
\forall k: \mu_{k} \geqslant 0 \quad \text { and } \quad \sum_{k=1}^{K} \mu_{k}=1
$$

Recap: The Dirichlet Distribution

- Dirichlet Distribution
, Multivariate generalization of the Beta distribution

$$
\begin{aligned}
\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha}) & =\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1} \quad \text { with } \quad \alpha_{0}=\sum_{k=1}^{K} \alpha_{k} \\
\mathbb{E}\left[\mu_{k}\right] & =\frac{\alpha_{k}}{\alpha_{0}} \\
\operatorname{var}\left[\mu_{k}\right] & =\frac{\alpha_{k}\left(\alpha_{0}-\alpha_{k}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)} \\
\operatorname{cov}\left[\mu_{j} \mu_{k}\right] & =-\frac{\alpha_{j} \alpha_{k}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}
\end{aligned}
$$

- Properties
- Conjugate prior for the Multinomial.
, The Dirichlet distribution over K variables is confined to a $K-1$ dimensional simplex.

Recap: The Gaussian Distribution

- One-dimensional case
- Mean μ
, Variance σ^{2}
$\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$

- Multi-dimensional case
- Mean μ
, Covariance Σ

$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$

Recap: Bayes' Theorem for Gaussian Variables

- Marginal and Conditional Gaussians
- Suppose we are given a Gaussian prior $p(\mathbf{x})$ and a Gaussian conditional distribution $p(\mathbf{y} \mid \mathbf{x})$ (a linear Gaussian model)

$$
\begin{aligned}
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{\Lambda}^{-1}\right) \\
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right)
\end{aligned}
$$

, From this, we can compute

$$
\begin{aligned}
p(\mathbf{y}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}\right) \\
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}\left(\mathbf{x} \mid \mathbf{\Sigma}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\}, \mathbf{\Sigma}\right)
\end{aligned}
$$

where

$$
\boldsymbol{\Sigma}=\left(\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right)^{-1}
$$

\Rightarrow Closed-form solution for (Gaussian) marginal and posterior.

ML for the Gaussian

- Setting the derivative to zero

$$
\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)=0
$$

Solve to obtain

$$
\boldsymbol{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

- And similarly, but a bit more involved

$$
\boldsymbol{\Sigma}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathrm{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathrm{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}}
$$

ML for the Gaussian

- Comparison with true results
, Under the true distribution, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{\mu}_{\mathrm{ML}}\right] & =\boldsymbol{\mu} \\
\mathbb{E}\left[\boldsymbol{\Sigma}_{\mathrm{ML}}\right] & =\frac{N-1}{N} \boldsymbol{\Sigma}
\end{aligned}
$$

\Rightarrow The ML estimate for the covariance is biased and underestimates the true covariance!

Therefore define the following unbiased estimator

$$
\tilde{\boldsymbol{\Sigma}}=\frac{1}{N-1} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}} .
$$

Bayesian Inference for the Gaussian

- Let's begin with a simple example
, Consider a single Gaussian random variable x.
, Assume σ^{2} is known and the task is to infer the mean μ.
- Given i.i.d. data $\mathbf{X}=\left(x_{1}, \ldots, x_{N}\right)^{T}$, the likelihood function for μ is given by

$$
p(\mathbf{X} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}
$$

- The likelihood function has a Gaussian shape as a function of μ. \Rightarrow The conjugate prior for this case is again a Gaussian.

$$
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right)
$$

$$
\frac{1}{\sigma_{N}^{2}}=\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}
$$

Bayesian Inference for the Gaussian

- Combined with a Gaussian prior over μ

$$
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right)
$$

, This results in the posterior

$$
p(\mu \mid \mathbf{x}) \propto p(\mathbf{x} \mid \mu) p(\mu)
$$

- Completing the square over μ, we can derive that

$$
p(\mu \mid \mathbf{x})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right)
$$

$$
\begin{gathered}
\text { where } \\
\mu_{N}=\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{\mathrm{ML}}, \quad \quad \mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
\end{gathered}
$$

Visualization of the Results

- Bayes estimate:

$$
\begin{aligned}
\mu_{N} & =\frac{\sigma^{2} \mu_{0}+N \sigma_{0}^{2} \mu_{\mathrm{ML}}}{\sigma^{2}+N \sigma_{0}^{2}} \\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}
\end{aligned}
$$

- Behavior for large N

$$
\begin{array}{c|cc}
& N=0 & N \rightarrow \infty \\
\hline \mu_{N} & \mu_{0} & \mu_{\mathrm{ML}} \\
\sigma_{N}^{2} & \sigma_{0}^{2} & 0
\end{array}
$$

- Gamma distribution

Product of a power of λ and the exponential of a linear function of λ.

$$
\operatorname{Gam}(\lambda \mid a, b)=\frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp (-b \lambda)
$$

- Properties
, Finite integral if $a>0$ and the distribution itself is finite if $a \geq 1$.

$$
\mathbb{E}[\lambda]=\frac{a}{b} \quad \operatorname{var}[\lambda]=\frac{a}{b^{2}}
$$

, Visualization

RWIIAACHE

Bayesian Inference for the Gaussian

- More complex case
- Now assume μ is known and the precision λ shall be inferred.
, The likelihood function for $\lambda=1 / \sigma^{2}$ is given by $p(\mathbf{X} \mid \lambda)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \lambda^{-1}\right) \propto \lambda^{N / 2} \exp \left\{-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}$.
, This has the shape of a Gamma function of λ.

Bayesian Inference for the Gaussian

- Bayesian estimation

Combine a Gamma prior $\operatorname{Gam}\left(\lambda \mid a_{0}, b_{0}\right)$ with the likelihood function to obtain

$$
p(\lambda \mid \mathbf{X}) \propto \lambda^{a_{0}-1} \lambda^{N / 2} \exp \left\{-b_{0} \lambda-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}
$$

We recognize this again as a Gamma function $\operatorname{Gam}\left(\lambda a_{N}, b_{N}\right)$ with

$$
\begin{aligned}
a_{N} & =a_{0}+\frac{N}{2} \\
b_{N} & =b_{0}+\frac{1}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}=b_{0}+\frac{N}{2} \sigma_{\mathrm{ML}}^{2}
\end{aligned}
$$

Bayesian Inference for the Gaussian

- Even more complex case
, Assume that both μ and λ are unknown
, The joint likelihood function is given by

$$
\begin{aligned}
& p(\mathbf{X} \mid \mu, \lambda)=\prod_{n=1}^{N}\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda}{2}\left(x_{n}-\mu\right)^{2}\right\} \\
& \quad \propto\left[\lambda^{1 / 2} \exp \left(-\frac{\lambda \mu^{2}}{2}\right)\right]^{N} \exp \left\{\lambda \mu \sum_{n=1}^{N} x_{n}-\frac{\lambda}{2} \sum_{n=1}^{N} x_{n}^{2}\right\}
\end{aligned}
$$

\Rightarrow Need a prior with the same functional dependence on μ and λ.

Bayesian Inference for the Gaussian

- Multivariate conjugate priors
> μ unknown, Λ known: $p(\mu)$ Gaussian.
- Λ unknown, μ known: $p(\Lambda)$ Wishart,
$\mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)=B|\boldsymbol{\Lambda}|^{(\nu-D-1) / 2} \exp \left(-\frac{1}{2} \operatorname{Tr}\left(\mathbf{W}^{-1} \boldsymbol{\Lambda}\right)\right)$.
, Λ and μ unknown: $\quad p(\mu, \Lambda)$ Gaussian-Wishart,

$$
p\left(\mu, \boldsymbol{\Lambda} \mid \mu_{0}, \beta, \mathbf{W}, \nu\right)=\mathcal{N}\left(\mu \| \mu_{0},(\beta \boldsymbol{\Lambda})^{-1}\right) \mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)
$$

Student's t-Distribution

- Gaussian estimation
- The conjugate prior for the precision of a Gaussian is a Gamma distribution.
, Suppose we have a univariate Gaussian $\mathcal{N}\left(x \mid \mu, \tau^{-1}\right)$ together with a Gamma prior $\operatorname{Gam}(\tau \mid a, b)$.
- By integrating out the precision, obtain the marginal distribution

$$
\begin{aligned}
p(x \mid \mu, a, b) & =\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu, \tau^{-1}\right) \operatorname{Gam}(\tau \mid a, b) \mathrm{d} \tau \\
& =\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu,(\eta \lambda)^{-1}\right) \operatorname{Gam}(\eta \mid \nu / 2, \nu / 2) \mathrm{d} \eta
\end{aligned}
$$

- This corresponds to an infinite mixture of Gaussians having the same mean, but different precision.

The Gaussian-Gamma Distribution

- Gaussian-Gamma distribution

$$
\begin{aligned}
& p(\mu, \lambda)=\mathcal{N}\left(\mu \mid \mu_{0},(\beta \lambda)^{-1}\right) \operatorname{Gam}(\lambda \mid a, b) \\
& \quad \propto \exp \{\underbrace{\left.-\frac{\beta \lambda}{2}\left(\mu-\mu_{0}\right)^{2}\right\}} \underbrace{\lambda^{a-1} \exp \{-b \lambda\}}
\end{aligned}
$$

- Quadratic in μ.
- Linear in λ.
- Visualization

Recap: Bayesian Inference for the Gaussian

- Multivariate conjugate priors
> μ unknown, Λ known: $p(\mu)$ Gaussian.
, Λ unknown, μ known: $p(\Lambda)$ Wishart,
$\mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)=B|\boldsymbol{\Lambda}|^{(\nu-D-1) / 2} \exp \left(-\frac{1}{2} \operatorname{Tr}\left(\mathbf{W}^{-1} \boldsymbol{\Lambda}\right)\right)$.
, Λ and μ unknown: $\quad p(\mu, \Lambda)$ Gaussian-Wishart,
$p\left(\mu, \boldsymbol{\Lambda} \mid \mu_{0}, \beta, \mathbf{W}, \nu\right)=\mathcal{N}\left(\mu \| \mu_{0},(\beta \boldsymbol{\Lambda})^{-1}\right) \mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)$

Student's t-Distribution

- Student's t-Distribution

We reparametrize the infinite mixture of Gaussians to get

$$
\operatorname{St}(x \mid \mu, \lambda, \nu)=\frac{\Gamma(\nu / 2+1 / 2)}{\Gamma(\nu / 2)}\left(\frac{\lambda}{\pi \nu}\right)^{1 / 2}\left[1+\frac{\lambda(x-\mu)^{2}}{\nu}\right]^{-\nu / 2-1 / 2}
$$

- Parameters

. "Precision"	$\lambda=a / b$
, "Degrees of freedom"	$\nu=2 a$.

Student's t-Distribution

- Robustness to outliers: Gaussian vs t-distribution.

\Rightarrow The t-distribution is much less sensitive to outliers, can be used for robust regression.
\Rightarrow Downside: ML solution for t-distribution requires EM algorithm.
Slide adanted from C. Bishon B. Leibe

Student's t-Distribution: Multivariate Case

- Multivariate case in D dimensions

$$
\begin{aligned}
\operatorname{St}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) & =\int_{0}^{\infty} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu},(\eta \boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}(\eta \mid \nu / 2, \nu / 2) \mathrm{d} \eta \\
& =\frac{\Gamma(D / 2+\nu / 2)}{\Gamma(\nu / 2)} \frac{|\boldsymbol{\Lambda}|^{1 / 2}}{(\pi \nu)^{D / 2}}\left[1+\frac{\Delta^{2}}{\nu}\right]^{-D / 2-\nu / 2}
\end{aligned}
$$

where $\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})$ is the Mahalanobis distance.

- Properties

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\boldsymbol{\mu}, & & \text { if } \nu>1 \\
\operatorname{cov}[\mathbf{x}] & =\frac{\nu}{(\nu-2)} \Lambda^{-1},, & & \text { if } \nu>2 \\
\operatorname{mode}[\mathbf{x}] & =\boldsymbol{\mu} & &
\end{aligned}
$$

Slide credit: C. Bishop

Approximate Inference

- Exact Bayesian inference is often intractable.

Often infeasible to evaluate the posterior distribution or to compute expectations w.r.t. the distribution.
E.g. because the dimensionality of the latent space is too high.

Or because the posterior distribution has a too complex form.

- Problems with continuous variables

Required integrations may not have closed-form solutions.
, Problems with discrete variables
Marginalization involves summing over all possible configurations of the hidden variables.
There may be exponentially many such states.
\Rightarrow We need to resort to approximation schemes.

Two Classes of Approximation Schemes

- Deterministic approximations (Variational methods)
- Based on analytical approximations to the posterior distribution
E.g. by assuming that it factorizes in a certain form

Or that it has a certain parametric form (e.g. a Gaussian).
\Rightarrow Can never generate exact results, but are often scalable to large applications.

- Stochastic approximations (Sampling methods)
, Given infinite computationally resources, they can generate exact results.
- Approximation arises from the use of a finite amount of processor time.
\Rightarrow Enable the use of Bayesian techniques across many domains.
\Rightarrow But: computationally demanding, often limited to small-scale problems.

```
Topics of This Lecture
- Approximate Inference
    Variational methods
    Sampling approaches
```

 - Sampling approaches
 - Sampling from a distribution
 , Ancestral Sampling
 , Rejection Sampling
 , Importance Sampling
 - Markov Chain Monte Carlo
Markov Chains
Metropolis Algorithm
Metropolis-Hastings Algorithm
Gibbs Sampling

Sampling Idea

- Objective:
, Evaluate expectation of a function $f(z)$ w.r.t. a probability distribution $p(\mathbf{z})$.

- Sampling idea

$$
\mathbb{E}[f]=\int f(\mathbf{z}) p(\mathbf{z}) d \mathbf{z}
$$

, Draw L independent samples $\mathbf{z}^{(l)}$ with $l=1, \ldots, L$ from $p(\mathbf{z})$.
, This allows the expectation to be approximated by a finite sum

$$
\hat{f}=\frac{1}{L} \sum_{l=1}^{L} f\left(\mathbf{z}^{l}\right)
$$

, As long as the samples $\mathbf{z}^{(l)}$ are drawn independently from $p(\mathbf{z})$,

$$
\mathbb{E}|\hat{f}|-|E| f \mid
$$

\Rightarrow Unbiased estimate, independent of the dimension of z !

Sampling - Challenges

- Problem 1: Samples might not be independent
\Rightarrow Effective sample size might be much smaller than apparent sample size.
- Problem 2:

, If $f(z)$ is small in regions where $p(z)$ is large and vice versa, the expectation may be dominated by regions of small probability.
\Rightarrow Large sample sizes necessary to achieve sufficient accuracy.

Sampling from a Gaussian

- Given: 1-dim. Gaussian pdf (probability density function) $p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)$ and the corresponding cumulative distribution:

$$
F_{\mu, \sigma^{2}}(x)=\int_{-\infty}^{x} p\left(x \mid \mu, \sigma^{2}\right) d x
$$

- To draw samples from a Gaussian, we can invert the cumulative distribution function:

$$
u \sim \operatorname{Uniform}(0,1) \Rightarrow F_{\mu, \sigma^{2}}^{-1}(u) \sim p\left(x \mid \mu, \sigma^{2}\right)
$$

$p\left(x \mid \mu, \sigma^{2}\right)$

Sampling from a pdf (Transformation method)

- In general, assume we are given the pdf $p(x)$ and the corresponding cumulative distribution:

$$
F(x)=\int_{-\infty}^{x} p(z) d z
$$

- To draw samples from this pdf, we can invert the cumulative distribution function:
$u \sim \operatorname{Uniform}(0,1) \Rightarrow F^{-1}(u) \sim p(x)$

RWIHAACRE
Example 1: Sampling from Exponential Distrib.

- Exponential Distribution
$p(y)=\lambda \exp (-\lambda y)$
where $0 \leq y<\infty$.

- Transformation sampling
, Indefinite Integral $\quad h(y)=1-\exp (-\lambda y)$
- Inverse function

$$
y=h(y)^{-1}=-\lambda^{-1} \ln (1-z)
$$

for a uniformly distributed input variable z.

Example 2: Sampling from Cauchy Distrib.

- Cauchy Distribution

$$
p(y)=\frac{1}{\pi} \frac{1}{1+y^{2}}
$$

- Transformation sampling
- Inverse of integral can be expressed as a tan function.

$$
y=h(y)^{-1}=\tan (z)
$$

for a uniformly distributed input variable z.

Note: Efficient Sampling from a Gaussian

- Problem with transformation method Integral over Gaussian cannot be expressed in analytical form.
Standard transformation approach is very inefficient.
- More efficient: Box-Muller Algorithm

, Generate pairs of uniformly distributed random numbers $z_{1}, z_{2} \in(-1,1)$.
- Discard each pair unless it satisfies $r^{2}=z_{1}^{2}+z_{2}^{2} \leq 1$.
- This leads to a uniform distribution of points inside the unit circle with $p\left(z_{1}, z_{2}\right)=1 / \pi$.
- Multivariate extension
- If \mathbf{z} is a vector valued random variable whose components are independent and Gaussian distributed with $\mathcal{N}(0,1)$,
Then $\mathbf{y}=\mu+\mathbf{L z}$ will have mean μ and covariance $\boldsymbol{\Sigma}$.
Where $\boldsymbol{\Sigma}=\mathbf{L} \mathbf{L}^{T}$ is the Cholesky decomposition of $\boldsymbol{\Sigma}$.

Logic Sampling

- Extension of Ancestral sampling
, Directed graph where some nodes are instantiated
with observed values.
- Use ancestral sampling, except
- When sample is obtained for an observed variable, if they agree then sample value is retained and proceed to next variable.
, If they don't agree, whole sample is discarded.
- Result
, Approach samples correctly from the posterior distribution.
- However, probability of accepting a sample decreases rapidly as the number of observed variables increases.
\Rightarrow Approach is rarely used in practice.

Discussion

- Transformation method

- Limited applicability, as we need to invert the indefinite integral of the required distribution $p(\mathrm{z})$.
- This will only be feasible for a limited number of simple distributions.
- More general
, Rejection Sampling
, Importance Sampling

Rejection Sampling

- Assumptions
, Sampling directly from $p(\mathbf{z})$ is difficult.
, But we can easily evaluate $p(\mathbf{z})$ (up to some normalization factor

$$
\left.Z_{p}\right): \quad p(\mathbf{z})=\frac{1}{Z_{p}} \tilde{p}(\mathbf{z})
$$

- Idea
, We need some simpler distribution $q(\mathbf{z})$ (called proposal distribution) from which we can draw samples.
, Choose a constant k such that: $\forall z: k q(z) \geq \tilde{p}(z)$
Slide credit: BerntSchiele

Rejection Sampling - Discussion

- Limitation: high-dimensional spaces
, For rejection sampling to be of practical value, we require that $k q(z)$ be close to the required distribution, so that the rate of rejection is minimal.
- Artificial example
, Assume that $p(\mathbf{z})$ is Gaussian with covariance matrix $\sigma_{p}^{2} I$
- Assume that $q(\mathbf{z})$ is Gaussian with covariance matrix $\sigma_{q}^{2} I$
- Obviously: $\sigma_{q}^{2} \geq \sigma_{p}^{2}$
, In D dimensions: $k=\left(\sigma_{q} / \sigma_{p}\right)^{D}$.
- Assume σ_{q} is just 1% larger than σ_{p}.
- $D=1000 \Rightarrow k=1.01^{1000} \geq 20,000$

And $p($ accept $) \cdot \frac{1}{20000}$

\Rightarrow Often impractical to find good proposal distributions for high dimensions!

RWIIAMACHE

Rejection Sampling

- Sampling procedure
, Generate a number z_{0} from $q(z)$.
, Generate a number u_{0} from the uniform distribution over $\left[0, k q\left(z_{0}\right)\right]$.
, If $u_{0}>\tilde{p}\left(z_{0}\right)$ reject sample, otherwise accept. Sample is rejected if it lies in the grey shaded area.
The remaining pairs (u_{0}, z_{0}) have uniform distribution under the curve $\tilde{p}(z)$.

- Discussion

, Original values of \mathbf{z} are generated from the distribution $q(\mathbf{z})$.
, Samples are accepted with probability $\tilde{p}(z) / k q(z)$

$$
p(\text { accept })=\int \frac{\tilde{p}(z)}{k q(z)} q(z) d z=\frac{1}{k} \int \tilde{p}(z) d z
$$

$\Rightarrow k$ should be as small as possible!
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishon 5

Example: Sampling from a Gamma Distrib.

- Gamma distribution

$$
\operatorname{Gam}(z \mid a, b)=\frac{1}{\Gamma(a)} b^{a} z^{a-1} \exp (-b z) \quad a>1
$$

- Rejection sampling approach
- For $a>1$, Gamma distribution has a bell-shaped form.
- Suitable proposal distribution is Cauchy (for which we can use the transformation method).

. Generalize Cauchy slightly to ensure

$$
\text { it is nowhere smaller than Gamma: } y=b \tan y+c \text { for uniform } y \text {. }
$$

, This gives random numbers distributed according to

$$
q(z)=\frac{k}{1+(z-c)^{2} / b^{2}} \quad \begin{array}{lc}
\begin{array}{l}
\text { with optimal } \\
\text { rejection rate for } \\
\text { B. Leibe }
\end{array} & c=a-1 \\
b^{2}=2 a-1
\end{array}
$$

Importance Sampling

- Approach

Approximate expectations directly (but does not enable to draw samples from $p(\mathbf{z})$ directly).
, Goal:

$$
\mathbb{E}[f]=\int f(\mathbf{z}) p(\mathbf{z}) d \mathbf{z}
$$

- Simplistic strategy: Grid sampling
, Discretize z-space into a uniform grid.
- Evaluate the integrand as a sum of the form

$$
\mathbb{E}[f] \simeq \sum_{l=1}^{L} f\left(\mathbf{z}^{(l)}\right) p\left(\mathbf{z}^{(l)}\right) d \mathbf{z}
$$

But: number of terms grows exponentially with number of dimensions!

Slide credit: Bernt Schiele

Importance Sampling

- Typical setting:
. $p(\mathbf{z})$ can only be evaluated up to an unknown normalization constant

$$
p(\mathbf{z})=\tilde{p}(\mathbf{z}) / Z_{p}
$$

, $q(\mathbf{z})$ can also be treated in a similar fashion.

$$
q(\mathbf{z})=\tilde{q}(\mathbf{z}) / Z_{q}
$$

, Then

$$
\begin{aligned}
\mathbb{E}[f] & =\int f(\mathbf{z}) p(\mathbf{z}) d \mathbf{z}=\frac{Z_{q}}{Z_{p}} \int f(\mathbf{z}) \frac{\tilde{p}(\mathbf{z})}{\tilde{q}(\mathbf{z})} q(\mathbf{z}) d \mathbf{z} \\
& \simeq \frac{Z_{q}}{Z_{p}} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_{l} f\left(\mathbf{z}^{(l)}\right)
\end{aligned}
$$

, with: $\quad \tilde{r}_{l}=\frac{\tilde{p}\left(\mathbf{z}^{(l)}\right)}{\tilde{q}\left(\mathbf{z}^{(l)}\right)}$
ide credit: BerntSchiele

Importance Sampling - Discussion

- Observations
- Success of importance sampling depends crucially on how well the sampling distribution $q(z)$ matches the desired distribution $p(\mathbf{z})$.
, Often, $p(\mathbf{z}) f(\mathbf{z})$ is strongly varying and has a significant proportion of its mass concentrated over small regions of z -space.
\Rightarrow Weights r_{l} may be dominated by a few weights having large values.
- Practical issue: if none of the samples falls in the regions where $p(\mathbf{z}) f(\mathbf{z})$ is large...

The results may be arbitrary in error.
And there will be no diagnostic indication (no large variance in r_{l})!
, Key requirement for sampling distribution $q(\mathbf{z})$:
Should not be small or zero in regions where $p(\mathbf{z})$ is significant!

Topics of This Lecture

- Approximate Inference

Variational methods
Sampling approaches

- Sampling approaches

Sampling from a distribution
Ancestral Sampling
Rejection Sampling
Importance Sampling

- Markov Chain Monte Carlo
- Markov Chains
- Metropolis Algorithm
, Metropolis-Hastings Algorithm
, Gibbs Sampling

RUIITMACHE
UNIVERSTT

Importance Sampling

- Ratio of normalization constants can be evaluated

$$
\frac{Z_{p}}{Z_{q}}=\frac{1}{Z_{q}} \int \tilde{p}(\mathbf{z}) d \mathbf{z}=\int \frac{\tilde{p}\left(\mathbf{z}^{(l)}\right)}{\tilde{q}\left(\mathbf{z}^{(l)}\right)} q(\mathbf{z}) d \mathbf{z} \simeq \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_{l}
$$

- and therefore

$$
\mathbb{E}[f] \simeq \sum_{l=1}^{L} w_{l} f\left(\mathbf{z}^{(l)}\right)
$$

- with

$$
w_{l}=\frac{\tilde{r}_{l}}{\sum_{m} \tilde{r}_{m}}=\frac{\frac{\tilde{p}\left(\mathbf{z}^{(l)}\right)}{\tilde{q}\left(\mathbf{z}^{(l)}\right)}}{\sum_{m} \frac{\tilde{p}\left(\mathbf{z}^{(m)}\right)}{\tilde{q}\left(\mathbf{z}^{(m)}\right)}}
$$

$$
\begin{array}{ll}
\text { Slide_credit: Bernt_Schiele_ } & \text { B. Leibe } \\
\hline
\end{array}
$$

RWIIHAACHE

References and Further Reading

- Sampling methods for approximate inference are described in detail in Chapter 11 of Bishop's book.

- Another good introduction to Monte Carlo methods can be found in Chapter 29 of MacKay's book (also available online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

