
1 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
5

 

Advanced Machine Learning 

Lecture 6 

Probability Distributions 
 

16.11.2015 

Bastian Leibe 
 

RWTH Aachen 

http://www.vision.rwth-aachen.de/ 

 

leibe@vision.rwth-aachen.de 

 

 

 TexPoint fonts used in EMF.  

Read the TexPoint manual before you delete this box.: 
AAAAAAAAAAAAAAAAAAAAAAAAAAAA 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
5

 

This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Probability Distributions & Mixture Models 

 Approximate Inference 

 EM and Generalizations 
 

• Deep Learning 

 Neural Networks 

 CNNs, RNNs, RBMs, etc. 
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Recap: GPs with Noise-free Observations 

• Assume our observations are noise-free: 

 
 Joint distribution of the training outputs f and test outputs f* 

according to the prior: 

 

 

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations: 

 
 

 with: 
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Recap: GPs with Noisy Observations 

• Joint distribution of the observed values and the test 

locations under the prior: 

 

 

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations: 

 

 with: 

 

 

 
 This is the key result that defines Gaussian process regression! 

– Predictive distribution is Gaussian whose mean and variance depend 

on test points X* and on the kernel k(x,x’), evaluated on X. 
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Recap: Bayesian Model Selection for GPs 

• Goal 

 Determine/learn different parameters of Gaussian Processes 
 

• Hierarchy of parameters 

 Lowest level 

– w – e.g. parameters of a linear model. 

 Mid-level (hyperparameters) 

–  µ – e.g. controlling prior distribution of w. 

 Top level 

– Typically discrete set of model structures Hi. 
 

• Approach 

 Inference takes place one level at a time. 
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Recap: Model Selection at Lowest Level 

• Posterior of the parameters w is given by Bayes’ rule 

 

 

 

 

• with 

 p(t|X,w,Hi)  likelihood and 

 p(w|µ,Hi)  prior parameters w, 

 Denominator (normalizing constant) is independent of the 

parameters and is called marginal likelihood. 
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Recap: Model Selection at Mid Level 

• Posterior of parameters µ is again given by Bayes’ rule 

 

 

 

 

• where 

 The marginal likelihood of the previous level p(t|X,µ,Hi)  

plays the role of the likelihood of this level. 

 p(µ|Hi) is the hyperprior (prior of the hyperparameters) 

 Denominator (normalizing constant) is given by: 
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Recap: Model Selection at Top Level 

• At the top level, we calculate the posterior of the model 

 

 

 

 

• where 

 Again, the denominator of the previous level p(t|X,Hi)  

plays the role of the likelihood. 

 p(Hi) is the prior of the model structure. 

 Denominator (normalizing constant) is given by: 
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Recap: Bayesian Model Selection 

• Discussion 

 Marginal likelihood is main difference to non-Bayesian methods 

 It automatically incorporates a trade-off 

between the model fit and the model 

complexity: 

– A simple model can only account 

for a limited range of possible 

sets of target values – if a simple 

model fits well, it obtains a high 

posterior. 

– A complex model can account for 

a large range of possible sets of 

target values – therefore, it can 

never attain a very high posterior. 
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Topics of This Lecture 

• Probability Distributions 
 Bayesian Estimation Reloaded 

 

• Binary Variables 
 Bernoulli distribution 

 Binomial distribution 

 Beta distribution 
 

• Multinomial Variables 
 Multinomial distribution 

 Dirichlet distribution 
 

• Continuous Variables 
 Gaussian distribution 

 Gamma distribution 

 Student’s t distribution 

 Exponential Family 
11 
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Motivation 

• Recall: Bayesian estimation 

 

 
 

 So far, we have only done this for Gaussian distributions, where 

the integrals could be solved analytically. 

 Now, let’s also examine other distributions… 
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Teaser: Conjugate Priors 

• Problem: How to evaluate the integrals? 

 We will see that if likelihood and prior have the same functional 

form c¢f(x), then the analysis will be greatly simplified and the 

integrals will be solvable in closed form. 

 

 

 

 
 

 Such an algebraically convenient choice is called a conjugate 

prior. Whenever possible, we should use it. 
 

 To do this, we need to know for each probability distribution 

what is its conjugate prior.  Topic of this lecture. 
 

• What to do when we cannot use the conjugate prior? 

 Use approximate inference methods. Next lecture… 
13 
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Topics of This Lecture 

• Probability Distributions 
 Bayesian Estimation Reloaded 

 

• Binary Variables 
 Bernoulli distribution 

 Binomial distribution 

 Beta distribution 
 

• Multinomial Variables 
 Multinomial distribution 

 Dirichlet distribution 
 

• Continuous Variables 
 Gaussian distribution 

 Gamma distribution 

 Student’s t distribution 

 Exponential Family 
14 

B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
2

 

• Example: Flipping a coin 

 Binary random variable x 2 {0,1} 

 Outcome heads: x = 1 

 Outcome tails:   x = 0 
 

 Denote probability of landing heads by parameter ¹  

 
 

• Bernoulli distribution 

 Probability distribution over x: 

Binary Variables 
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The Binomial Distribution 

• Now consider N coin flips 

 Probability of landing m heads:  

 
 

• Binomial distribution 

 

 
 

 Properties 

 

 

 

 

 

 Note: Bernoulli is a special case of the Binomial for n = 1. 
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Binomial Distribution: Visualization 

 

17 
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Parameter Estimation: Maximum Likelihood 

• Maximum Likelihood for Bernoulli 

 Given a data set                                 of observed values for x. 
 

 Likelihood 

 

 

 

 

 
 

• Observation 

 The log-likelihood depends on the observations xn only through 

their sum. 

 §n xn is a sufficient statistic for the Bernoulli distribution. 
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ML for Bernoulli Distribution 

 

 

 

 

 

 

 

 

 
 

• ML estimate: 
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ML for Bernoulli Distribution 

• Maximum Likelihood estimate 

 

 

 

 

• Discussion 

 Consider a data set D = {1,1,1}. 
 

 Prediction: all future tosses will land head up! 
 

 Overfitting to D! 
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Bayesian Bernoulli: First Try 

• Bayesian estimation 

 We can improve the ML estimate by incorporating a prior for ¹. 

 How should such a prior look like? 

 

 Consider the Bernoulli/Binomial form 

 

 

 

 If we choose a prior with the same functional form, then we will 

get a closed-form expression for the posterior; otherwise, a 

difficult numerical integration may be necessary. 

 Most general form here: 

 
 

 This algebraically convenient choice is called a conjugate prior. 
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The Beta Distribution 

• Beta distribution 
 Distribution over ¹ 2 [0,1]: 

 

 

 

 Where ¡(x) is the gamma function 

 

 
 

 for which                          iff x is an integer. 

 ¡(x) is a continuous generalization of the factorial. 
 

 The Beta distribution generalizes the Binomial to arbitrary 

values of a and b, while keeping the same functional form. 

 It is therefore a conjugate prior for the Bernoulli and Binomial. 
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Beta Distribution 

• Properties 

 In general, the Beta distribution is a suitable model for the 

random behavior of percentages and proportions. 
 

 Mean and variance 

 

 

 

 
 

 The parameters a and b are often called hyperparameters, 

because they control the distribution of the parameter ¹. 
 

 General observation: if a distribution has K parameters, then 

the conjugate prior typically has K+1 hyperparameters. 
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Beta Distribution: Visualization 
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Bayesian Bernoulli 

• Bayesian estimate 

 

 

 

 

 

 

 

 This is again a Beta distribution with the parameters 

 
 

 We can interpret the hyperparameters a and b as an effective 

number of observations for x = 1 and x = 0, respectively. 

 Note: a and b need not be integers! 
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Sequential Estimation 

• Prior ¢ Likelihood = Posterior 

 The posterior can act as a prior if we observe additional data. 

 The number of effective observations increases accordingly. 

 

• Example: Taking observations one at a time 

 

 

 

 

 
 

 This sequential approach to learning naturally arises when we 

take a Bayesian viewpoint. 
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• Behavior in the limit of infinite data 

 As the size of the data set, N, increases 

 

 

 

 

 

 

 

 

 As expected, the Bayesian result reduces to the ML result. 

Properties of the Posterior 
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Prediction under the Posterior 

• Predict the outcome of the next trial 

 “What is the probability that the next coin toss will land heads 

up?” 

 Evaluate the predictive distribution of x given the observed 

data set D: 

 

 

 

 

 

 

 

 Simple interpretation: total fraction of observations that 

correspond to x = 1. 
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Topics of This Lecture 

• Probability Distributions 
 Bayesian Estimation Reloaded 

 

• Binary Variables 
 Bernoulli distribution 

 Binomial distribution 

 Beta distribution 
 

• Multinomial Variables 
 Multinomial distribution 

 Dirichlet distribution 
 

• Continuous Variables 
 Gaussian distribution 

 Gamma distribution 

 Student’s t distribution 

 Exponential Family 
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Multinomial Variables 

• Multinomial variables 

 Variables that can take one of K possible distinct states 

 Convenient: 1-of-K coding scheme:  

 

• Generalization of the Bernoulli distribution 

 Distribution of x with K outcomes 

 

 

 
 

 with the constraints 
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Multinomial Variables 

• Properties 

 Distribution is normalized 

 

 

 Expectation 

 

 

 

 Likelihood given a data set D = {x1,…,xN}: 

 

 

 

where mk is the number of cases for which xn has output k. 
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• Maximum Likelihood solution for ¹ 

 Need to maximize 

 

 
 

Under the constraint 
 

• Solution with Lagrange multiplier 

 

 
 

 Setting the derivative to zero yields 

ML Parameter Estimation 
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The Multinomial Distribution 

• Multinomial Distribution 
 Joint distribution over m1,…,mK conditioned on ¹ and N 

 

 

 

with the normalization coefficient 

 

 

 

 Properties 
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Bayesian Multinomial 

• Conjugate prior for the Multinomial 

 Introduce a family of prior distributions for the parameters {¹k} 

of the Multinomial. 

 The conjugate prior is given by 

 

 

 

with the constraints 
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The Dirichlet Distribution 

• Dirichlet Distribution 

 Multivariate generalization of the Beta distribution 

 

 

 

• Properties 

 The Dirichlet distribution over K variables 

is confined to a K-1 dimensional simplex. 
 

 Expectations: 

35 
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Dirichlet Distribution: Visualization 

 

36 
B. Leibe Image source: C. Bishop, 2006 Slide credit: C. Bishop 
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Bayesian Multinomial 

• Posterior distribution over the parameters {¹k}  

 

 
 

 Comparison with the definition gives us the normalization factor 

 

 

 

 

 

 We can interpret the parameters ®k of the Dirichlet prior as an 

effective number of observations of xk = 1. 
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Topics of This Lecture 

• Probability Distributions 
 Bayesian Estimation Reloaded 

 

• Binary Variables 
 Bernoulli distribution 

 Binomial distribution 

 Beta distribution 
 

• Multinomial Variables 
 Multinomial distribution 

 Dirichlet distribution 
 

• Continuous Variables 
 Gaussian distribution 

 Gamma distribution 

 Student’s t distribution 

 Exponential Family 
38 
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• One-dimensional case 

 Mean ¹ 

 Variance ¾2 

 

 

 

 

• Multi-dimensional case 

 Mean ¹ 

 Covariance § 

 

The Gaussian Distribution 

39 
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Gaussian Distribution – Properties 

• Central Limit Theorem 
 “The distribution of the sum of N i.i.d. random variables 

becomes increasingly Gaussian as N grows.” 

 In practice, the convergence to a Gaussian can be very rapid. 

 This makes the Gaussian interesting for many applications. 

 

• Example: N uniform [0,1] random variables. 
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Gaussian Distribution – Properties 

• Properties 

 

 

 

 

 

 

• Limitations 

 Distribution is intrinsically unimodal, i.e. it is unable to provide 

a good approximation to multimodal distributions. 

 We will see how to fix that with mixture distributions later… 

41 
B. Leibe 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
2

 

Bayes’ Theorem for Gaussian Variables 

• Marginal and Conditional Gaussians 

 Suppose we are given a Gaussian prior p(x) and a Gaussian 

conditional distribution p(y|x) (a linear Gaussian model) 

 

 

 

 From this, we can compute  

 

 

 

where 

 
 

 Closed-form solution for (Gaussian) marginal and posterior. 
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Maximum Likelihood for the Gaussian 

• Maximum Likelihood 

 Given i.i.d. data X = (x1,…,xN)T, the log likelihood function is 

given by 

 

 

 

 

 
 

• Sufficient statistics 

 The likelihood depends on the data set only through 

 

 
 

 Those are the sufficient statistics for the Gaussian distribution. 

 43 
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ML for the Gaussian 

• Setting the derivative to zero 

 

 

 

 Solve to obtain 

 

 

 

 And similarly, but a bit more involved 
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ML for the Gaussian 

• Comparison with true results 

 Under the true distribution, we obtain 

 

 

 

 

 The ML estimate for the covariance is biased and         

 underestimates the true covariance! 
 

 Therefore define the following unbiased estimator 
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Bayesian Inference for the Gaussian 

• Let’s begin with a simple example 

 Consider a single Gaussian random variable x. 

 Assume ¾2 is known and the task is to infer the mean ¹.  

 Given i.i.d. data X = (x1,…,xN)T, the likelihood function for ¹ is 

given by 

 

 

 
 

 The likelihood function has a Gaussian shape as a function of ¹. 

 The conjugate prior for this case is again a Gaussian. 
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Bayesian Inference for the Gaussian 

• Combined with a Gaussian prior over ¹  

 
 

 This results in the posterior 

 

 
 

 Completing the square over ¹, we can derive that 

 
 

 where 

 

47 
B. Leibe Slide adapted from C. Bishop 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
2

 

Visualization of the Results 

• Bayes estimate: 

 

 

 

 
 

• Behavior for large N 
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Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006 
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Bayesian Inference for the Gaussian 

• More complex case 

 Now assume ¹ is known and the precision ¸ shall be inferred. 
 

 The likelihood function for  ¸  = 1/¾2 is given by 

 

 

 
 

 This has the shape of a Gamma function of ¸. 
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The Gamma Distribution 

• Gamma distribution 

 Product of a power of ¸ and the exponential of a linear function 

of ¸. 

 

 

• Properties 

 Finite integral if a>0 and the distribution itself is finite if a¸1. 
 

 Moments 
 

 Visualization 
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Bayesian Inference for the Gaussian 

• Bayesian estimation 

 Combine a Gamma prior                         with the likelihood 

function to obtain 

 

 

 

 

 We recognize this again as a Gamma function                           

with 
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Bayesian Inference for the Gaussian 

• Even more complex case 

 Assume that both ¹ and ¸ are unknown 

 The joint likelihood function is given by 

 

 

 

 

 

 

 

 Need a prior with the same functional dependence on ¹ and ¸. 
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The Gaussian-Gamma Distribution 

• Gaussian-Gamma distribution 

 

 

 

 

 

 

• Visualization 
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• Quadratic in ¹. 

• Linear in ¸. 

• Gamma distribution over ¸. 

• Independent of ¹.  

Image source: C.M. Bishop, 2006 Slide adapted from C. Bishop 
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Bayesian Inference for the Gaussian 

• Multivariate conjugate priors 

 ¹ unknown, ¤ known:  p(¹) Gaussian. 

 

 ¤ unknown, ¹ known:  p(¤) Wishart, 

 

 

 

 ¤ and ¹ unknown:  p(¹,¤) Gaussian-Wishart, 
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Student’s t-Distribution 

• Gaussian estimation 

 The conjugate prior for the precision of a Gaussian is a Gamma 

distribution. 

 Suppose we have a univariate Gaussian N(x|¹,¿ -1) together 

with a Gamma prior Gam(¿|a,b). 

 By integrating out the precision, obtain the marginal distribution 

 

 

 

 

 

 This corresponds to an infinite mixture of Gaussians having the 

same mean, but different precision. 
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Student’s t-Distribution 

56 
B. Leibe Slide adapted from C. Bishop 

• Student’s t-Distribution 

 We reparametrize the infinite mixture of Gaussians to get 

 

 

 

 
 

• Parameters 

 “Precision” 

 “Degrees of freedom” 
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Student’s t-Distribution: Visualization 

 

 

 

 

 

 

 

 

 

• Behavior 
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Longer-tailed 

distribution! 

 More robust 

to outliers… 
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Student’s t-Distribution 

• Robustness to outliers: Gaussian vs t-distribution. 

 

 

 

 

 

 

 

 
 

 The t-distribution is much less sensitive to outliers, can be used 

for robust regression. 

 Downside: ML solution for t-distribution requires EM algorithm. 
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Student’s t-Distribution: Multivariate Case 

• Multivariate case in D dimensions 

 

 

 

 

 

where                                           is the Mahalanobis distance.  

 

• Properties 
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References and Further Reading 

• Probability distributions and their properties are 

described in Chapter 2 of Bishop’s book. 
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