o~
i
]
2
i=
=]
=
3
£
3
=
@
=
£
o
S
H
3
o
<
o
2

Advanced Machine Learning Winter’15

Advanced Machine Learning Winter’15

RWTHAACHE

Advanced Machine Learning
Lecture 6

Probability Distributions

16.11.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

TRWTH/ T
Recap: GPs with Noise-free Observations

¢ Assume our observations are noise-free:

v

Joint distribution of the training outputs f and test outputs f.

according to the prior:
f ~~lo K(X,X) KX, X,)
f, K(X,, X)) K(X.,X,)
Calculation of posterior corresponds to conditioning the joint
Gaussian prior distribution on the observations:

£[X,, X, ~ N(f., cov]f.)])

v

f. = BEX,X..1]
» with:
f, K(X,. X)K(X.X)~'f
cov[f,] = K(X,,X,) - K(X,, X)K(X,X)"'K(X,X,)

lide adaoted from Bernt Schiele B. Leibe

RWTH/ACHEN
Recap: Bayesian Model Selection for GPs

¢ Goal
» Determine/learn different parameters of Gaussian Processes

¢ Hierarchy of parameters
> Lowest level
— W - e.g. parameters of a linear model.
» Mid-level (hyperparameters)
- 0 - e.g. controlling prior distribution of w.
» Top level
- Typically discrete set of model structures #,.

¢ Approach
» Inference takes place one level at a time.

Slide credit: Bernt Schiele LA
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This Lecture: Advanced Machine Learning

 Regression Approaches f X = R
» Linear Regression T ,' -

Vi 4
» Regularization (Ridge, Lasso) 19294 \ \ o Sl

» Gaussian Processes

¢ Learning with Latent Variables
» Probability Distributions & Mixture Models
» Approximate Inference
» EM and Generalizations

¢ Deep Learning
» Neural Networks
» CNNs, RNNs, RBMs, etc.

B. Leibe

RWTH CHE
Recap: GPs with Noisy Observations

¢ Joint distribution of the observed values and the test
locations under the prior:
t } N (0 [K(X. X)+oll  K(X,X,) D
f, AT K(XLX) KX, X))
» Calculation of posterior corresponds to conditioning the joint
Gaussian prior distribution on the observations:

fX Xt~ N(fcov[fl]) £, = E[f|X, X, 1]

> with:
£, = K(X.X)(K(X,X)+e2T) 't
covlf,] = K(X,, X,)—-K(X.,X) (K(X, X)+o? f)71 K(X,X.)
= This is the key result that defines Gaussian process regression!
- Predictive distribution is Gaussian whose mean and variance depend

on test points X. and on the kernel k(x,x’), evaluated on X.
5

ide adated from Bernt Schiele B. Leibe
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RWTH ACHET
Recap: Model Selection at Lowest Level

¢ Posterior of the parameters w is given by Bayes’ rule
p(t| X, w, 0, H;)p(wl|d, X, H;)

t, X.0,H;) =
P(w] M) P(UX,0,Hy)
_ pbX, W, Hi)p(wl6, 1)
p(t|X,6,H;)
e with
» p(t|X,w,H;) likelihood and

> p(wl6,H,;) prior parameters w,
» Denominator (normalizing constant) is independent of the
parameters and is called marginal likelihood.

p(t| X, 8, H;) = [p(t\X,w.H;)p(wW.’H;}dw

ide credit: Bernt Schiele B. Leibe
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RWTH/CET
Recap: Model Selection at Mid Level

* Posterior of parameters 6 is again given by Bayes’ rule

p(t| X, 0. H;)p(0) X, H;)
p(t| X, H;)
p(t|X, 6, H)p(6H;)
p(t|X, H,)

p(Alt, X, M)

¢ where

» The marginal likelihood of the previous level p(t|X,0,7;)
plays the role of the likelihood of this level.

» p(@1#H,;) is the hyperprior (prior of the hyperparameters)
» Denominator (normalizing constant) is given by:

p(t| X, H) = /p(t|X. B, M, )p(8|H;)de

Slide credit: Bernt Schiele B. Leibe

RWTH CHE
Recap: Bayesian Model Selection

¢ Discussion
» Marginal likelihood is main difference to non-Bayesian methods

» It automatically incorporates a trade-off
between the model fit and the model
complexity:

- A simple model can only account 5 [ smple
for a limited range of possible fi
sets of target values - if a simple
model fits well, it obtains a high
posterior.

A complex model can account for
a large range of possible sets of
target values - therefore, it can
never attain a very high posterior.

marginal likelihood, piylX,H)

all possible da{a sets

10
Image source: Rasmussen & Williams, 2004

lide credit: Bernt Schiele B. Leibe
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Motivation

¢ Recall: Bayesian estimation
p(X1]0)p(6)

(z| X

0= [ #et)

» So far, we have only done this for Gaussian distributions, where
the integrals could be solved analytically.

» Now, let’s also examine other distributions...
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RWTH/CET
Recap: Model Selection at Top Level

« At the top level, we calculate the posterior of the model

P, Hi)p(Hi)

. ._X' e
p(Hilt, X) ()

¢ where

» Again, the denominator of the previous level p(t| X, ;)
plays the role of the likelihood.

» p(H,;) is the prior of the model structure.
» Denominator (normalizing constant) is given by:

p(t|X) = X}J(t X, Hi)p(Hy)

Slide credit: Bernt Schiele B. Leibe

Topics of This Lecture

¢ Probability Distributions
» Bayesian Estimation Reloaded

e Binary Variables
» Bernoulli distribution
» Binomial distribution
» Beta distribution

¢ Multinomial Variables
» Multinomial distribution
» Dirichlet distribution

e Continuous Variables
» Gaussian distribution
» Gamma distribution
» Student’s t distribution
» Exponential Family

B. Leibe

~
s
T
2
=
H
=)
=
=
E
3
3
o
£
=
S
8
=
T
9
S
§
%

Teaser: Conjugate Priors

¢ Problem: How to evaluate the integrals?

» We will see that if likelihood and prior have the same functional
form c- f(z), then the analysis will be greatly simplified and the
integrals will be solvable in closed form.

p(X[0)p(#) = []erf(@n,0)eaf(8,a)

T

= H cf(zn, 6, a)

P

» Such an algebraically convenient choice is called a conjugate
prior. Whenever possible, we should use it.

» To do this, we need to know for each probability distribution
what is its conjugate prior. = Topic of this lecture.
* What to do when we cannot use the conjugate prior?

= Use approximate inference methods. Next lecture...
B. Leibe
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Topics of This Lecture

¢ Binary Variables
» Bernoulli distribution
» Binomial distribution
~ Beta distribution

B. Leibe

« Binomial distribution

Bin(m|N, u) = (\) (1 — ) N—m
m
» Properties N
E[m] = Z mBin(m|N,p) = Np

m=0

N )
var[m] = Z (m— ]E[m])z Bin(m|N, p) = Nu(1 — p)
m=0

» Note: Bernoulli is a special case of the Binomial for n = 1.

B. Leibe

RWTH CHE
The Binomial Distribution
* Now consider N coin flips
» Probability of landing m heads: (i heads| N, ji)

lide adapted from C, Bishop

RWTHAACHEN
Parameter Estimation: Maximum Likelihood
¢ Maximum Likelihood for Bernoulli
- Given adataset D = {x,...,xy} of observed values for .

» Likelihood

N N
p(Dlp) = HI)’nl.” T e =yt

nl n=1

Zluw i) = Z {wnlog i + (1 = a,) log(1 — 1)}

n=1 n=1

log p(D| )

¢ Observation

» The log-likelihood depends on the observations z,, only through
their sum.

= X, z, is a sufficient statistic for the Bernoulli distribution.

B. Leibe

Slide adapted from C_Bishop

Advanced Machine Learning Winter’12
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Binary Variables

¢ Example: Flipping a coin
» Binary random variable = € {0,1}
» Outcome heads: z =1

» Outcome tails: =0

» Denote probability of landing heads by parameter p
ple=1p) =p

¢ Bernoulli distribution
» Probability distribution over z:

Bern(alu) = p(1—p)'™
Elz] = p
varlz] = p(l—x)

de adapted from C,_Bishop B. Leibe

Binomial Distribution: Visualization

0.2

Bin(re|10,0.25)
0.1

B. Leibe

ide credit: C_Bishop

RWTHACHEN

Image source; C, Bishop, 200¢
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ML for Bernoulli Distribution

N
logp(D|p) = Z z,logp+ (1 2,)log(1— )}

!
V. log p(D|p) = %J,,*l_‘“%(l =0
N N
(1—p) L:r.,, = p L(l — )
n=1 n=1
N N N
n=1 n=1 n=1
1
o ML estimate: ML = FZ‘TH

n=1L

B. Leibe




ML for Bernoulli Distribution Bayesian Bernoulli: First Try

¢ Maximum Likelihood estimate ¢ Bayesian estimation

~ We can improve the ML estimate by incorporating a prior for y.

1 N ™m
ML= 55 Z Tn = for m heads (z, = 1) » How should such a prior look like?
n=1

E E » Consider the Bernoulli/Binomial form

£ ¢ Discussion E o 1-x

i 3 gw p(D\,u) x HF‘J”(I ) —Tn

£ » Consider a data set D = {1,1,1}. — L = 3 =1 = n—=1

:,"i’ = Prediction: all future tosses will land head up! L:? ~ If we choose a prior with the same functional form, then we will

2 2 get a closed-form expression for the posterior; otherwise, a

s = Overfitting to D! < difficult numerical integration may be necessary.

2 2 » Most general form here:

° °

pllab) o (1~ p)?

I g

§ 5 » This algebraically convenient choice is called a conjugate prior.
Slide adapted from C. Bishop B. Leibe © B. Leibe s

RWTH CHE RWTH CHE

The Beta Distribution Beta Distribution

* Beta distribution
» Distribution over p € [0,1]:
LCla+b) .

¢ Properties

» In general, the Beta distribution is a suitable model for the
random behavior of percentages and proportions.

Beta(y|a,b) = ————%pu" 11— p)b!
['(a)l'(b) » Mean and variance
! a
- Where T'(z) is the gamma function Ely] = atb
T(z) = - "l du rar 07&.
(2) ./(} var(y] (a+b)Pla+b+1)

for which T'{z + 1) = 2! iff z is an integer.

()i . lizati £ the f ial » The parameters a and b are often called hyperparameters,

= I'(z) Is a continuous generalization of the factorial. because they control the distribution of the parameter 1.

» The Beta distribution generalizes the Binomial to arbitrary
values of a and b, while keeping the same functional form.

» It is therefore a conjugate prior for the Bernoulli and Binomial.

B. Leibe

» General observation: if a distribution has K parameters, then
the conjugate prior typically has K+1 hyperparameters.

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12

22

B. Leibe

Beta Distribution: Visualization Bayesian Bernoulli

3 3
a=01 a=1

¢ Bayesian estimate

b=01 b=1

plplac, bo, D) o< p(D|p)p(plao, bo)

N
(H (1 — ,u)l_m") Betal(p|ao, bo)

>

¢ ! 1 ¢
2 T n=1
Q Q
2 2 N X
= = x 'um +aa I(l o ”_)[,'\ m)+bp—1
s uo 0s " [ 05 " 1 s
2 ; ; ; ¥ 2 ox Beta(plan,by)
£ a=2 a=8§ £
K B b 8 » This is again a Beta distribution with the parameters
2 2 2 _‘é’ ay=ap+m by =by+ (N —m)
=
[ o
2 , ' s = We can interpret the hyperparameters a and b as an effective
'§ g number of observations for z =1 and = = 0, respectively.
c < s
5 s » Note: a and b need not be integers!
0 05 1 0 0.5 1
3 . p y 2 ‘ »
Slide credit: C. Bichon B. Leibe Image source: C, Bishon, 2004 ide adapted from C. Bishon B. Leibe
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Advanced Machine Learning Winter’12

Sequential Estimation

¢ Prior - Likelihood = Posterior
» The posterior can act as a prior if we observe additional data.
» The number of effective observations increases accordingly.

¢ Example: Taking observations one at a time

“| prior “| likelihood function ~| posterior

0 0 0
[ 0.5 1 [ 0.5 1 0 05 1

Beta(ula = 2.b=2) Bin{m = 1|N = 1,4) Beta(ula = 3.b=2)

= This sequential approach to learning naturally arises when we
take a Bayesian viewpoint.

26
B. Leibe Image source: C, Bishop, 200

Prediction under the Posterior

¢ Predict the outcome of the next trial
» “What is the probability that the next coin toss will land heads
up?”
= Evaluate the predictive distribution of z given the observed
data set D:

1
plae = 1ap. bo, D) = [ pla = 1p)p(plag, bo, D) dp
J0

1
= / pp(plao, bo, D) di
JO
= Elulao, by, D] = N
ay — by

» Simple interpretation: total fraction of observations that
correspond to = = 1.

lide adaoted from C. Bishon B. Leibe

Multinomial Variables

¢ Multinomial variables
» Variables that can take one of K possible distinct states
. Convenient: 1-of-K coding scheme: x = (0,0,1,0,0,0)"

¢ Generalization of the Bernoulli distribution
» Distribution of x with K outcomes

K
plxlp) = [ i
k=1

with the constraints

K
Vhk:pe 20 and thk:l

k=1

Slide adapted from C, Bishop B. Leibe
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RWTH//CHEN
Properties of the Posterior
¢ Behavior in the limit of infinite data
> As the size of the data set, NV, increases
ay = ag+m-—m
by = bh+N-m—=N-m
an m _
AT
varjy] = anby —0

(an +bn)*(an + by +1)

= As expected, the Bayesian result reduces to the ML result.

de adapted from C,_Bishop B. Leibe
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RWTH CHE
Topics of This Lecture
¢ Multinomial Variables
» Multinomial distribution
» Dirichlet distribution
B. Leibe -
RWTH ACHET

Multinomial Variables

¢ Properties
» Distribution is normalized K

Soplxlp) =3 =1
x k=1

» Expectation
Elxlp] =Y plxlp)x = (p1.....ux)" = p
x

» Likelihood given a data set D = {x,,....xy}:
N K K (x ) K
. nTnk .
p(@l) = [T [T = ] =L wi
n=1 k=1 k=1 k=1

where m,, is the number of cases for which x, has output k.

ide adapted from C__Rishop LA
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Advanced Machine Learning Winter’12

ML Parameter Estimation

¢ Maximum Likelihood solution for p
» Need to maximize

log p(D|p) =

K
H e Z my log pup
k=1

Under the constraint >, st = 1

¢ Solution with Lagrange multiplier
K K
arg max Zm;‘. log pi + A (Z e 1)
LAt k=1
» Setting the derivative to zero yields

M
= —mi/A gt =

Slide adapted from C. Bishop B. Leibe

Bayesian Multinomial

¢ Conjugate prior for the Multinomial

» Introduce a family of prior distributions for the parameters {1}
of the Multinomial.

» The conjugate prior is given by
K
plule) oc TT pg!
k=1
with the constraints

K
Z#k =1

k=1

Vhk:0 <, <1 and

B. Leibe

RWTHAACHER
Dirichlet Distribution: Visualization

o = 107!

oy = 107 ay = 107

36
Image source: C, Bishop, 200

Slide credit: CRishop LA
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The Multinomial Distribution

¢ Multinomial Distribution

» Joint distribution over m,,...,m; conditioned on y and N

. K
N my
Hy
manme g )

Mult(my, ma, ..., mg|pw, N) =

with the normalization coefficient

N
mima...

» Properties

N

m;{) mylms! . omg!

Elmg] = Nk
varfmg] = Npg(l — pg)
covlmyme] = —Npjuk

ide adapted from C, Bishop B. Leibe

The Dirichlet Distribution

¢ Dirichlet Distribution
» Multivariate generalization of the Beta distribution

F(nn) X
-1 :
) ---T(ax) ) H.“ with g — E g

2

Dir(p|ex) =

¢ Properties
» The Dirichlet distribution over K variables
is confined to a K-1 dimensional simplex.

» Expectations: ]E[llk] = A £
Qo
ar(ag —ag) 4,
var R —
Iy v vy
Qj Qg
itk = e+ D)
ide adapted from C, Bishop B. Leibe Image source: C. Bishop. Zzﬂg
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ide adapted from C__Rishop LA

RWTH ACHET
Bayesian Multinomial
¢ Posterior distribution over the parameters {,}
K
p(pe|D, ) x p(Dlp)pipa|ex) o T gttt
k=1
» Comparison with the definition gives us the normalization factor

p(p|P.a) = Dir(p|e+ m)

_ r("‘ﬂ + N) H e i1
Tl +my) - Dl +mi)

= We can interpret the parameters o, of the Dirichlet prior as an
effective number of observations of z; = 1.
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Topics of This Lecture

¢ Continuous Variables
» Gaussian distribution
» Gamma distribution
» Student’s t distribution
» Exponential Family

B. Leibe

TWTHACHE
Gaussian Distribution - Properties

¢ Central Limit Theorem

» “The distribution of the sum of N i.i.d. random variables
becomes increasingly Gaussian as N grows.”

» In practice, the convergence to a Gaussian can be very rapid.
» This makes the Gaussian interesting for many applications.

e Example: N uniform [0,1] random variables.

0 0.5 1

40

lide adapted from C, Bishop B. Leibe Image source: C.M, Bishop, 200¢
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RWTH/ACHEN
Bayes’ Theorem for Gaussian Variables

¢ Marginal and Conditional Gaussians

» Suppose we are given a Gaussian prior p(x) and a Gaussian
conditional distribution p(y|x) (a linear Gaussian model)

P = N(xpA)

plylx) = N(y/Ax+b L")
» From this, we can compute
ply) = N(y|Ap+b, L'+ AA"AI)
p(xly) = N(x[E{ATL(y —b)+Ap}, %)

where
N=(A+A"LA)!

= Closed-form solution for (Gaussian) marginal and posterior.

Slide adapted from C, Bishop B. Leibe

42
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The Gaussian Distribution

¢ One-dimensional case
» Mean
» Variance o2

Nzlp,o?)

N(zlp, o%) =

1 (e—p)?
e S
¢ Multi-dimensional case A\

> Mean p i \

N ®) = o { g ™= - )}

B. Leibe

» Covariance &

Image source: CM, Bishop,

TWTHACHE
Gaussian Distribution - Properties

¢ Properties
Elx] = p

Exx']=pp’ +%
cov[x|] = E [(x — E[x])(x — [E,ix])TJ =¥

¢ Limitations

» Distribution is intrinsically unimodal, i.e. it is unable to provide
a good approximation to multimodal distributions.

= We will see how to fix that with mixture distributions later...

4

B. Leibe
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RWTHAACHER
Maximum Likelihood for the Gaussian

¢ Maximum Likelihood

» Given i.i.d. data X = (x,,...,xy)’, the log likelihood function is
given by

N N
logp(X|p, X) = —TDlog(Qﬁ) - Elog |
1 N )
5 2 (%~ W) )
n=l

o Sufficient statistics

» The likelihood depends on the data set only through
N

n=1

N
T
D Xuy

n=1

» Those are the sufficient statistics for the Gaussian distribution.

ide adapted from C__Rishop LA
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Advanced Machine Learning Winter’12

ML for the Gaussian
¢ Setting the derivative to zero

Zz —p)=0

dilanp 3)

» Solve to obtain
1 N
P = 3y Z K-
n=1

» And similarly, but a bit more involved

N
1 d
EmL = N ;(xn — o) (% — )"

44
Slide credit: C. Bishop B. Leibe

RWTH/ACHEN
Bayesian Inference for the Gaussian

¢ Let’s begin with a simple example
» Consider a single Gaussian random variable z.
» Assume ¢? is known and the task is to infer the mean .

» Given i.i.d. data X = (z,...
given by

,zy)", the likelihood function for  is

1 — )
W . P{*z?l,(-fm') }

n=1

p(Xp) =

H planl) =

n=1

» The likelihood function has a Gaussian shape as a function of ..
= The conjugate prior for this case is again a Gaussian.

p(p) =N (ulpo, of) -

46

lide adaoted from C. Bishon B. Leibe

RWTH/ACHET
Visualization of the Results
¢ Bayes estimate:
o o?uy + Nodpr
HN o? + N’oé
1 1 n N
T 2T =3 5
% % 9 p(plX)
* Behavior for large N f=vo
N=0 N-—oo
N Ho HML Ne=2
a3 (Ig 0
! 7N\
N=0 / \
ol
0
-1 0 1
fo =0
48
Slide adapted from Bernt Schiele B. Leibe Image source: CM, Bishoo, 200d
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ML for the Gaussian

¢ Comparison with true results
> Under the true distribution, we obtain
Elprr] =

N1
E[Zme]

5.
N

= The ML estimate for the covariance is biased and
underestimates the true covariance!

» Therefore define the following unbiased estimator
N

-1
Db s DI

n=1

— Hyp) (%n — l-h-IL)T-

45

de adapted from C,_Bishop B. Leibe

RWTH/ACHEN
Bayesian Inference for the Gaussian

¢ Combined with a Gaussian prior over y
plp) =N (ulpo. o3) -
» This results in the posterior
plpfx) o p(x|p)p(p).

» Completing the square over p, we can derive that
plpx) =N (p

o)
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ide adapted from C__Rishop LA

a2 n N 06) 1

LN 5 Mo F = MML IML = — Z a

/ No2 + Pl NoZ + =L i N n
0 0 n=1

1 1 N
a3 ap a2
’ 47
ide adapted from C. Bishop 8. Leibe

Bayesian Inference for the Gaussian

¢ More complex case
» Now assume y is known and the precision ) shall be inferred.

» The likelihood function for A = 1/0? is given by
) N
)*x/\\'jexp{ 52{ T, }

» This has the shape of a Gamma function of A.

N
p(X|A) = [ AV (aalp A~

n=1

49
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The Gamma Distribution Bayesian Inference for the Gaussian

Gamma distribution
» Product of a power of \ and the exponential of a linear function

¢ Bayesian estimation
» Combine a Gamma prior Gam(A|ag, ) with the likelihood

of \. function to obtain
1 N
Gam(A|a, b) = ——b*A%" ! exp(—bA Ay ;
" (Ala,b) a) p(—bA) o POVX) ¢ A= IAN2 ey d Ez(m” )
] . g n=1
§ ¢ Properties 5
=) » Finite integral if >0 and the distribution itself is finite if a>1. o . . . )
£ a a £ » We recognize this again as a Gamma function Gam(A ay. by)
H > Moments LA =+ var[A = — s ith
° b b2 g witl N
o » Visualization @ ay = ap+ 5
= 2 2 2 K
g a =01 a=1 a4 g 1 N '\-'
= b=0.1 b=1 b=6 = . L1 . 2 . J_ 2
I 1\ 1 E by = b 2 Z(.‘ln 1) =hy 5 oL
e g n=1
3 S
2 ) 3 1 2 o P! 2 o PR 2 2 51
Slide adapted from C. Bishop B. Leibe Image source: C,M, Bishop, 200 de adapted from C. Bishop B. Leibe

RWTH/ACHEN
Bayesian Inference for the Gaussian

RWTHACHE
The Gaussian-Gamma Distribution

¢ Even more complex case
» Assume that both ;i and A are unknown

* Gaussian-Gamma distribution
P, N) = N (sl to, (BN) ") Gam(Ala, b)

» The joint likelihood function is given by BA i
X exp {—'?(_u - [Lg)g} A%V exp {—bA}

N

A 1/2
“"\):H(%) Pxp{ /5\(1 u)z}

n=1

> AN N
x |A exp - exp § Au Zz,,

n=1

pX

» Quadratic in p.
« Linear in \.

Visualization

= Need a prior with the same functional dependence on p and .

Advanced Machine Learning Winter’12
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lide adaoted from C. Bishon B. Leibe ide adapted from C. Bishon B. Leibe Image source: CM, Bishoo,

RWTHACHEN

Bayesian Inference for the Gaussian Student’s t-Distribution

¢ Multivariate conjugate priors
» punknown, A known: p() Gaussian.

¢ Gaussian estimation

The conjugate prior for the precision of a Gaussian is a Gamma
distribution.

Suppose we have a univariate Gaussian N{z | u,7 ) together
with a Gamma prior Gam(7|a,b).
By integrating out the precision, obtain the marginal distribution

v

v

» A unknown, g known: p(A) Wishart,
W(AIW, 1) = BJA|V P12 exp (%n(w*m) )

v

L, b
» A and p unknown: p(p,A) Gaussian-Wishart, p(z|p, a.b)

plps Al 8, W, v) = N (g, (BA) ) W(AIW, v)

/. N(a|p, 7 1) Gam(r|a, b)dr

Jo

= / N (z|w, (nA)~1) Gam(n|v /2, v/2)dn
Jo

This corresponds to an infinite mixture of Gaussians having the
same mean, but different precision.
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Student’s t-Distribution

¢ Student’s t-Distribution
» We reparametrize the infinite mixture of Gaussians to get

T A 1/2 M — )2 —v/2-1/2
St(alp A, ) = %(;) [1+ Mot ]

e Parameters

» “Precision” A=afb
» “Degrees of freedom” v ="12a
56
ide adapted from C. Bishop B. Leibe

RWTHACHE
Student’s t-Distribution

¢ Robustness to outliers: Gaussian vs t-distribution.

05 05

-5 0 5 10

= The t-distribution is much less sensitive to outliers, can be used
for robust regression.
= Downside: ML solution for t-distribution requires EM algorithm.
58

ide adapted from C. Bishon B. Leibe Jmage source; M, Bishop, 200
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References and Further Reading

¢ Probability distributions and their properties are
described in Chapter 2 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

B. Leibe
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Student’s t-Distribution: Visualization

0.5
0.4 v=10 Longer-tailed
v=01 distribution!
0.3
0.2
= More robust
0.1 / to outliers...
0
=8 0 5
¢ Behavior
| v=1 Vv —

St(x|p, A, v) ‘ Cauchy  N(z|u,A71)

ide adapted from C, Bishop B. Leibe

Image source: CM, Bishop,

Elx] = p, fv=1
cov[x| = (Vi2)A’1, ifr>2
mode[x] = p
ide credit: C. Bishop 8. Leibe 59
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Student’s t-Distribution: Multivariate Case

¢ Multivariate case in D dimensions
00
Sl Av) = [ Nl () Gamal/2,0/2) dy
0

-D/2—uf2

T(D/2+v/2) |A'2 {1 a2
T(v/2)  (m)P/2

where A? = (x — ;1) "A(x — p) is the Mahalanobis distance.

v

¢ Properties
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