Advanced Machine Learning Lecture 6

Probability Distributions
16.11.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Recap: GPs with Noise-free Observations

- Assume our observations are noise-free:

$$
\left\{\left(\mathbf{x}_{n}, f_{n}\right) \mid n=1, \ldots, N\right\}
$$

- Joint distribution of the training outputs f and test outputs f_{*} according to the prior:

$$
\left[\begin{array}{c}
\mathbf{f} \\
\mathbf{f}_{\star}
\end{array}\right] \sim \mathcal{N}\left(\mathbf{0},\left[\begin{array}{cc}
K(X, X) & K\left(X, X_{\star}\right) \\
K\left(X_{\star}, X\right) & K\left(X_{\star}, X_{\star}\right)
\end{array}\right]\right)
$$

- Calculation of posterior corresponds to conditioning the joint Gaussian prior distribution on the observations:

$$
\mathbf{f}_{\star}\left|X_{\star}, X, \mathbf{f} \sim \mathcal{N}\left(\overline{\mathbf{f}}_{\star}, \operatorname{cov}\left[\mathbf{f}_{\star}\right]\right) \quad \overline{\mathbf{f}}_{\star}=\mathbb{E}\left[\mathbf{f}_{\star} \mid X, X_{\star}, \mathbf{f}\right]\right|
$$

, with:

$$
\begin{aligned}
\overline{\mathbf{f}_{\star}} & =K\left(X_{\star}, X\right) K(X, X)^{-1} \mathbf{f} \\
\operatorname{cov}\left[\mathbf{f}_{\star}\right] & =K\left(X_{\star}, X_{\star}\right)-K\left(X_{\star}, X\right) K(X, X)^{-1} K\left(X, X_{\star}\right)
\end{aligned}
$$

Slide adapted from Bernt Schiele
B. Leibe

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
, Regularization (Ridge, Lasso)
, Gaussian Processes
- Learning with Latent Variables

Learning with Latent Variables
, Probability Distributions \& Mixture Models
, Approximate Inference
, EM and Generalizations

- Deep Learning
, Neural Networks
, CNNs, RNNs, RBMs, etc.

$$
f: \mathcal{X} \rightarrow \mathbb{R}
$$

Recap: Model Selection at Mid Level

- Posterior of parameters θ is again given by Bayes' rule

$$
\begin{aligned}
p\left(\theta \mid \mathbf{t}, X, \mathcal{H}_{i}\right) & =\frac{p\left(\mathbf{t} \mid X, \theta, \mathcal{H}_{i}\right) p\left(\theta \mid X, \mathcal{H}_{i}\right)}{p\left(\mathbf{t} \mid X, \mathcal{H}_{i}\right)} \\
& =\frac{p\left(\mathbf{t} \mid X, \theta, \mathcal{H}_{i}\right) p\left(\theta \mid \mathcal{H}_{i}\right)}{p\left(\mathbf{t} \mid X, \mathcal{H}_{i}\right)}
\end{aligned}
$$

- where
- The marginal likelihood of the previous level $p\left(\mathbf{t} \mid X, \theta, \mathcal{H}_{i}\right)$ plays the role of the likelihood of this level.
> $p\left(\theta \mid \mathcal{H}_{i}\right)$ is the hyperprior (prior of the hyperparameters)
, Denominator (normalizing constant) is given by:

$$
p\left(\mathbf{t} \mid X, \mathcal{H}_{i}\right)=\int p\left(\mathbf{t} \mid X, \theta, \mathcal{H}_{i}\right) p\left(\theta \mid \mathcal{H}_{i}\right) d \theta
$$

Recap: Model Selection at Top Level

- At the top level, we calculate the posterior of the model

$$
p\left(\mathcal{H}_{i} \mid \mathbf{t}, X\right)=\frac{p\left(\mathbf{t} \mid X, \mathcal{H}_{i}\right) p\left(\mathcal{H}_{i}\right)}{p(\mathbf{t} \mid X)}
$$

- where
- Again, the denominator of the previous level $p\left(\mathbf{t} \mid X, \mathcal{H}_{i}\right)$ plays the role of the likelihood.
> $p\left(\mathcal{H}_{i}\right)$ is the prior of the model structure.
, Denominator (normalizing constant) is given by:

$$
p(\mathbf{t} \mid X)=\sum_{i} p\left(\mathbf{t} \mid X, \mathcal{H}_{i}\right) p\left(\mathcal{H}_{i}\right)
$$

Recap: Bayesian Model Selection

- Discussion
- Marginal likelihood is main difference to non-Bayesian methods
- It automatically incorporates a trade-off between the model fit and the model complexity:

A simple model can only account for a limited range of possible sets of target values - if a simple model fits well, it obtains a high posterior.
A complex model can account for a large range of possible sets of target values - therefore, it can never attain a very high posterior.

Motivation

- Recall: Bayesian estimation

$$
p(x \mid X)=\int p(x \mid \theta) \frac{p(X \mid \theta) p(\theta)}{\int p\left(X \mid \theta^{\prime}\right) p\left(\theta^{\prime}\right) \mathrm{d} \theta^{\prime}} \mathrm{d} \theta
$$

, So far, we have only done this for Gaussian distributions, where the integrals could be solved analytically.
, Now, let's also examine other distributions...

Teaser: Conjugate Priors

- Problem: How to evaluate the integrals?

We will see that if likelihood and prior have the same functional form $c \cdot f(x)$, then the analysis will be greatly simplified and the integrals will be solvable in closed form.

$$
\begin{aligned}
p(X \mid \theta) p(\theta) & =\prod_{x_{n}} c_{1} f\left(x_{n}, \theta\right) c_{2} f(\theta, \alpha) \\
& =\prod_{x_{n}} c f\left(x_{n}, \theta, \alpha\right)
\end{aligned}
$$

- Such an algebraically convenient choice is called a conjugate prior. Whenever possible, we should use it.
, To do this, we need to know for each probability distribution what is its conjugate prior. \Rightarrow Topic of this lecture.
- What to do when we cannot use the conjugate prior? \Rightarrow Use approximate inference methods. Next lecture... B. Leibe

Topics of This Lecture

- Probability Distributions
- Bayesian Estimation Reloaded
- Binary Variables
- Bernoulli distribution
- Binomial distribution
, Beta distribution
- Multinomial Variables
, Multinomial distribution
Dirichlet distribution
- Continuous Variables

Gaussian distribution

- Gamma distribution
. Student's t distribution
- Exponential Family

Topics of This Lecture

- Probability Distributions

Bayesian Estimation Reloaded

- Binary Variables

Bernoulli distribution

- Binomial distribution
- Beta distribution
- Multinomial Variables

Multinomial distribution
Dirichlet distribution

- Continuous Variables

Gaussian distribution Gamma distribution Student's t distribution Exponential Family

The Binomial Distribution

- Now consider N coin flips
, Probability of landing m heads: $p(m$ heads $\mid N, \mu)$
- Binomial distribution

$$
\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}
$$

- Properties

$$
\begin{aligned}
\mathbb{E}[m] & \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m \mid N, \mu)=N \mu \\
\operatorname{var}[m] & \equiv \sum_{m=0}^{N}(m-\mathbb{E}[m])^{2} \operatorname{Bin}(m \mid N, \mu)=N \mu(1-\mu)
\end{aligned}
$$

- Note: Bernoulli is a special case of the Binomial for $n=1$.

Parameter Estimation: Maximum Likelihood

- Maximum Likelihood for Bernoulli
- Given a data set $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$ of observed values for x.
, Likelihood
$p(\mathcal{D} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right)=\prod_{n=1}^{N} \mu^{x_{n}}(1-\mu)^{1-x_{n}}$
$\log p(\mathcal{D} \mid \mu)=\sum_{n=1}^{N} \log p\left(x_{n} \mid \mu\right)=\sum_{n=1}^{N}\left\{x_{n} \log \mu+\left(1-x_{n}\right) \log (1-\mu)\right\}$
- Observation
- The log-likelihood depends on the observations x_{n} only through their sum.
$\Rightarrow \boldsymbol{\Sigma}_{n} x_{n}$ is a sufficient statistic for the Bernoulli distribution.

Binary Variables

- Example: Flipping a coin
, Binary random variable $x \in\{0,1\}$
, Outcome heads: $x=1$
- Outcome tails: $x=0$
- Denote probability of landing heads by parameter μ

$$
p(x=1 \mid \mu)=\mu
$$

- Bernoulli distribution
- Probability distribution over x :

$$
\begin{aligned}
\operatorname{Bern}(x \mid \mu) & =\mu^{x}(1-\mu)^{1-x} \\
\mathbb{E}[x] & =\mu \\
\operatorname{var}[x] & =\mu(1-\mu)
\end{aligned}
$$

RIIHAMCHE

Binomial Distribution: Visualization

ML for Bernoulli Distribution

- Maximum Likelihood estimate

$$
\mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n}=\frac{m}{N} \quad \text { for } m \text { heads }\left(x_{n}=1\right)
$$

- Discussion
- Consider a data set $\mathcal{D}=\{1,1,1\}$.

$$
\rightarrow \mu_{\mathrm{ML}}=\frac{3}{3}=1
$$

\Rightarrow Prediction: all future tosses will land head up!
\Rightarrow Overfitting to \mathcal{D} !

The Beta Distribution

- Beta distribution
, Distribution over $\mu \in[0,1]$:

$$
\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}
$$

, Where $\boldsymbol{\Gamma}(x)$ is the gamma function

$$
\Gamma(x) \equiv \int_{0}^{\infty} u^{x-1} e^{-u} \mathrm{~d} u
$$

for which $\Gamma(x+1)=x!$ iff x is an integer.
$\Rightarrow \boldsymbol{\Gamma}(x)$ is a continuous generalization of the factorial.

- The Beta distribution generalizes the Binomial to arbitrary values of a and b, while keeping the same functional form.
, It is therefore a conjugate prior for the Bernoulli and Binomial.

Bayesian Bernoulli: First Try

- Bayesian estimation

- We can improve the ML estimate by incorporating a prior for μ.
, How should such a prior look like?
- Consider the Bernoulli/Binomial form

$$
p(\mathcal{D} \mid \mu) \propto \prod_{n=1}^{N} \mu^{x_{n}}(1-\mu)^{1-x_{n}}
$$

If we choose a prior with the same functional form, then we will get a closed-form expression for the posterior; otherwise, a difficult numerical integration may be necessary.
Most general form here:

$$
p(\mu \mid a, b) \propto \mu^{a}(1-\mu)^{b}
$$

- This algebraically convenient choice is called a conjugate prior.

Bayesian Bernoulli

- Bayesian estimate

$p\left(\mu \mid a_{0}, b_{0}, \mathcal{D}\right) \propto p(\mathcal{D} \mid \mu) p\left(\mu \mid a_{0}, b_{0}\right)$

$$
\begin{aligned}
& =\left(\prod_{n=1}^{N} \mu^{x_{n}}(1-\mu)^{1-x_{n}}\right) \operatorname{Beta}\left(\mu \mid a_{0}, b_{0}\right) \\
& \propto \mu^{m+a_{0}-1}(1-\mu)^{(N-m)+b_{0}-1} \\
& \propto \operatorname{Beta}\left(\mu \mid a_{N}, b_{N}\right)
\end{aligned}
$$

, This is again a Beta distribution with the parameters

$$
a_{N}=a_{0}+m \quad b_{N}=b_{0}+(N-m)
$$

\Rightarrow We can interpret the hyperparameters a and b as an effective number of observations for $x=1$ and $x=0$, respectively.
, Note: a and b need not be integers!

Sequential Estimation

- Prior \cdot Likelihood = Posterior
, The posterior can act as a prior if we observe additional data.
, The number of effective observations increases accordingly.
- Example: Taking observations one at a time

$\operatorname{Beta}(\mu \mid a \stackrel{\mu}{=} 2, b=2)$
$\operatorname{Bin}(m=\stackrel{\mu}{1} \mid N=1, \mu) \quad \mathrm{B}$
$\operatorname{Beta}(\mu \mid a \stackrel{\mu}{=} 3, b=2)$
\Rightarrow This sequential approach to learning naturally arises when we take a Bayesian viewpoint.

Properties of the Posterior

- Behavior in the limit of infinite data
, As the size of the data set, N, increases

$$
\begin{aligned}
a_{N} & =a_{0}+m \rightarrow m \\
b_{N} & =b_{0}+N-m \rightarrow N-m \\
\mathbb{E}[\mu] & =\frac{a_{N}}{a_{N}+b_{N}} \rightarrow \frac{m}{N}=\mu_{\mathrm{ML}} \\
\operatorname{var}[\mu] & =\frac{a_{N} b_{N}}{\left(a_{N}+b_{N}\right)^{2}\left(a_{N}+b_{N}+1\right)} \rightarrow 0
\end{aligned}
$$

\Rightarrow As expected, the Bayesian result reduces to the ML result.
\qquad

Prediction under the Posterior

- Predict the outcome of the next trial
, "What is the probability that the next coin toss will land heads up?"
\Rightarrow Evaluate the predictive distribution of x given the observed data set \mathcal{D} :

$$
\begin{aligned}
p\left(x=1 \mid a_{0}, b_{0}, \mathcal{D}\right) & =\int_{0}^{1} p(x=1 \mid \mu) p\left(\mu \mid a_{0}, b_{0}, \mathcal{D}\right) \mathrm{d} \mu \\
& =\int_{0}^{1} \mu p\left(\mu \mid a_{0}, b_{0}, \mathcal{D}\right) \mathrm{d} \mu \\
& =\mathbb{E}\left[\mu \mid a_{0}, b_{0}, \mathcal{D}\right]=\frac{a_{N}}{a_{N}+b_{N}}
\end{aligned}
$$

- Simple interpretation: total fraction of observations that correspond to $x=1$.

Slide adanted from C Bishop
B. Leibe

Multinomial Variables

- Multinomial variables
, Variables that can take one of K possible distinct states
- Convenient: 1 -of- K coding scheme: $\mathbf{x}=(0,0,1,0,0,0)^{\mathrm{T}}$
- Generalization of the Bernoulli distribution

Distribution of \mathbf{x} with K outcomes

$$
p(\mathbf{x} \mid \boldsymbol{\mu})=\prod_{k=1}^{K} \mu_{k}^{x_{k}}
$$

with the constraints

$$
\forall k: \mu_{k} \geqslant 0 \quad \text { and } \quad \sum_{k=1}^{K} \mu_{k}=1
$$

Multinomial Variables

- Properties
- Distribution is normalized

$$
\sum_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\mu})=\sum_{k=1}^{K} \mu_{k}=1
$$

Topics of This Lecture

- Probability Distributions

Bayesian Estimation Reloaded

- Binary Variables

Bernoulli distribution
Binomial distribution
Beta distribution

- Multinomial Variables
- Multinomial distribution
. Dirichlet distribution
- Continuous Variables

Gaussian distribution
Gamma distribution
Student's t distribution
Exponential Family

ML Parameter Estimation

- Maximum Likelihood solution for μ
, Need to maximize

$$
\log p(\mathcal{D} \mid \mu)=\log \prod_{k=1}^{K} \mu_{k}^{m_{k}}=\sum_{k=1}^{K} m_{k} \log \mu_{k}
$$

Under the constraint $\sum_{k} \mu_{k}=1$

- Solution with Lagrange multiplier

$$
\arg \max _{\mu} \sum_{k=1}^{K} m_{k} \log \mu_{k}+\lambda\left(\sum_{k=1}^{K} \mu_{k}-1\right)
$$

- Setting the derivative to zero yields

$$
\mu_{k}=-m_{k} / \lambda \quad \mu_{k}^{\mathrm{ML}}=\frac{m_{k}}{N}
$$

The Multinomial Distribution

- Multinomial Distribution

Joint distribution over m_{1}, \ldots, m_{K} conditioned on μ and N
$\operatorname{Mult}\left(m_{1}, m_{2}, \ldots, m_{K} \mid \boldsymbol{\mu}, N\right)=\binom{N}{m_{1} m_{2} \ldots m_{K}} \prod_{k=1}^{K} \mu_{k}^{m_{k}}$
with the normalization coefficient

$$
\binom{N}{m_{1} m_{2} \ldots m_{K}}=\frac{N!}{m_{1}!m_{2}!\ldots m_{K}!}
$$

, Properties

$$
\begin{aligned}
\mathbb{E}\left[m_{k}\right] & =N \mu_{k} \\
\operatorname{var}\left[m_{k}\right] & =N \mu_{k}\left(1-\mu_{k}\right) \\
\operatorname{cov}\left[m_{j} m_{k}\right] & =-N \mu_{j} \mu_{k}
\end{aligned}
$$

Bayesian Multinomial

- Conjugate prior for the Multinomial

Introduce a family of prior distributions for the parameters $\left\{\mu_{k}\right\}$ of the Multinomial.

- The conjugate prior is given by

$$
p(\mu \mid \alpha) \propto \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1}
$$

with the constraints

$$
\forall k: 0 \leq \mu_{k} \leq 1 \quad \text { and } \quad \sum_{k=1}^{K} \mu_{k}=1
$$

R'NAMACHE
UNIVERSIT

The Dirichlet Distribution

- Dirichlet Distribution
- Multivariate generalization of the Beta distribution

$$
\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1} \quad \text { with } \quad \alpha_{0}=\sum_{k=1}^{K} \alpha_{k}
$$

- Properties
, The Dirichlet distribution over K variables is confined to a $K-1$ dimensional simplex.

Expectations:

$$
\begin{aligned}
\mathbb{E}\left[\mu_{k}\right] & =\frac{\alpha_{k}}{\alpha_{0}} \\
\operatorname{var}\left[\mu_{k}\right] & =\frac{\alpha_{k}\left(\alpha_{0}-\alpha_{k}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)} \\
\operatorname{cov}\left[\mu_{j} \mu_{k}\right] & =-\frac{\alpha_{j} \alpha_{k}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}
\end{aligned}
$$

Bayesian Multinomial

- Posterior distribution over the parameters $\left\{\mu_{k}\right\}$

$$
p(\boldsymbol{\mu} \mid \mathcal{D}, \boldsymbol{\alpha}) \propto p(\mathcal{D} \mid \boldsymbol{\mu}) p(\boldsymbol{\mu} \mid \boldsymbol{\alpha}) \propto \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}+m_{k}-1}
$$

- Comparison with the definition gives us the normalization factor

$$
\begin{aligned}
p(\boldsymbol{\mu} \mid \mathcal{D}, \boldsymbol{\alpha}) & =\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha}+\mathbf{m}) \\
& =\frac{\Gamma\left(\alpha_{0}+N\right)}{\Gamma\left(\alpha_{1}+m_{1}\right) \cdots \Gamma\left(\alpha_{K}+m_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}+m_{k}-1}
\end{aligned}
$$

\Rightarrow We can interpret the parameters α_{k} of the Dirichlet prior as an effective number of observations of $x_{k}=1$.

	The Gaussian Distribution - One-dimensional case - Mean μ , Variance σ^{2} $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$
	- Multi-dimensional case $\begin{aligned} & \text { - Mean } \boldsymbol{\mu} \\ & \text { - Covariance } \boldsymbol{\Sigma} \\ & \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}\|\boldsymbol{\Sigma}\|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \end{aligned}$

Gaussian Distribution - Properties

- Central Limit Theorem
, "The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows."
, In practice, the convergence to a Gaussian can be very rapid.
- This makes the Gaussian interesting for many applications.
- Example: N uniform $[0,1]$ random variables.

Slide adapted from C. BishoD
B. Leibe 40
.2000

Gaussian Distribution - Properties

- Properties

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\boldsymbol{\mu} \\
\mathbb{E}\left[\mathbf{x x}^{\mathrm{T}}\right] & =\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}+\mathbf{\Sigma} \\
\operatorname{cov}[\mathbf{x}] & =\mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{\mathrm{T}}\right]=\mathbf{\Sigma}
\end{aligned}
$$

- Limitations
- Distribution is intrinsically unimodal, i.e. it is unable to provide a good approximation to multimodal distributions.
\Rightarrow We will see how to fix that with mixture distributions later..

Maximum Likelihood for the Gaussian

- Maximum Likelihood

Given i.i.d. data $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)^{T}$, the log likelihood function is given by

$$
\begin{aligned}
\log p(\mathbf{X} \mid \mu, \boldsymbol{\Sigma})= & -\frac{N D}{2} \log (2 \pi)-\frac{N}{2} \log |\boldsymbol{\Sigma}| \\
& -\frac{1}{2} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\mu\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\mu\right)
\end{aligned}
$$

- Sufficient statistics
, The likelihood depends on the data set only through

$$
\sum_{n=1}^{N} \mathbf{x}_{n} \quad \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}}
$$

Those are the sufficient statistics for the Gaussian distribution.
\Rightarrow Closed-form solution for (Gaussian) marginal and posterior.

ML for the Gaussian

- Setting the derivative to zero

$$
\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)=0
$$

- Solve to obtain

$$
\boldsymbol{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

- And similarly, but a bit more involved

$$
\boldsymbol{\Sigma}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}}
$$

Bayesian Inference for the Gaussian

- Let's begin with a simple example
, Consider a single Gaussian random variable x.
, Assume σ^{2} is known and the task is to infer the mean μ.
- Given i.i.d. data $\mathbf{X}=\left(x_{1}, \ldots, x_{N}\right)^{T}$, the likelihood function for μ is given by

$$
p(\mathbf{X} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}
$$

, The likelihood function has a Gaussian shape as a function of μ.

$$
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right)
$$

$$
\Rightarrow \text { The conjugate prior for this case is again a Gaussian. }
$$

Slide adapted from C. Bishop
B. Leibe

Visualization of the Results

- Bayes estimate:

$$
\begin{aligned}
\mu_{N} & =\frac{\sigma^{2} \mu_{0}+N \sigma_{0}^{2} \mu_{\mathrm{ML}}}{\sigma^{2}+N \sigma_{0}^{2}} \\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}
\end{aligned}
$$

- Behavior for large N | | $N=0$ | $N \rightarrow \infty$ |
| :---: | :---: | :---: |
| μ_{N} | μ_{0} | μ_{ML} |
| σ_{N}^{2} | σ_{0}^{2} | 0 |

ML for the Gaussian

- Comparison with true results
- Under the true distribution, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{\mu}_{\mathrm{ML}}\right] & =\boldsymbol{\mu} \\
\mathbb{E}\left[\boldsymbol{\Sigma}_{\mathrm{ML}}\right] & =\frac{N-1}{N} \boldsymbol{\Sigma}
\end{aligned}
$$

\Rightarrow The ML estimate for the covariance is biased and underestimates the true covariance!

- Therefore define the following unbiased estimator

$$
\widetilde{\boldsymbol{\Sigma}}=\frac{1}{N-1} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}}
$$

Bayesian Inference for the Gaussian

- Combined with a Gaussian prior over μ

$$
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right)
$$

, This results in the posterior

$$
p(\mu \mid \mathbf{x}) \propto p(\mathbf{x} \mid \mu) p(\mu)
$$

- Completing the square over μ, we can derive that

$$
p(\mu \mid \mathbf{x})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right)
$$

$$
\begin{aligned}
& \text { where } \\
& \begin{array}{l}
\mu_{N}=\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{\mathrm{ML}}, \quad \mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\frac{1}{\sigma_{N}^{2}}=\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}} . \\
\text { danted fromC. Bishoo }
\end{array}
\end{aligned}
$$

RWITAACHE

Bayesian Inference for the Gaussian

- More complex case
- Now assume μ is known and the precision λ shall be inferred.
- The likelihood function for $\lambda=1 / \sigma^{2}$ is given by

$$
p(\mathbf{X} \mid \lambda)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \lambda^{-1}\right) \propto \lambda^{N / 2} \exp \left\{-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}
$$

, This has the shape of a Gamma function of λ.

The Gamma Distribution

- Gamma distribution
- Product of a power of λ and the exponential of a linear function of λ.

$$
\operatorname{Gam}(\lambda \mid a, b)=\frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp (-b \lambda)
$$

- Properties
- Finite integral if $a>0$ and the distribution itself is finite if $a \geq 1$.
. Moments
$\mathbb{E}[\lambda]=\frac{a}{b} \quad \operatorname{var}[\lambda]=\frac{a}{b^{2}}$

Bayesian Inference for the Gaussian

- Bayesian estimation
- Combine a Gamma prior $\operatorname{Gam}\left(\lambda \mid a_{0}, b_{0}\right)$ with the likelihood function to obtain

$$
p(\lambda \mid \mathbf{X}) \propto \lambda^{a_{0}-1} \lambda^{N / 2} \exp \left\{-b_{0} \lambda-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}
$$

, We recognize this again as a Gamma function $\operatorname{Gam}\left(\lambda a_{N}, b_{N}\right)$ with

$$
\begin{aligned}
a_{N} & =a_{0}+\frac{N}{2} \\
b_{N} & =b_{0}+\frac{1}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}=b_{0}+\frac{N}{2} \sigma_{\mathrm{ML}}^{2}
\end{aligned}
$$

Bayesian Inference for the Gaussian

- Even more complex case
- Assume that both μ and λ are unknown
- The joint likelihood function is given by

$$
\begin{aligned}
& p(\mathbf{X} \mid \mu, \lambda)=\prod_{n=1}^{N}\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda}{2}\left(x_{n}-\mu\right)^{2}\right\} \\
& \quad \propto\left[\lambda^{1 / 2} \exp \left(-\frac{\lambda \mu^{2}}{2}\right)\right]^{N} \exp \left\{\lambda \mu \sum_{n=1}^{N} x_{n}-\frac{\lambda}{2} \sum_{n=1}^{N} x_{n}^{2}\right\} .
\end{aligned}
$$

$$
\text { - Linear in } \lambda \text {. }
$$

\Rightarrow Need a prior with the same functional dependence on μ and λ.

Bayesian Inference for the Gaussian

- Multivariate conjugate priors
> μ unknown, Λ known: $\quad p(\mu)$ Gaussian.
, Λ unknown, μ known: $p(\Lambda)$ Wishart,
$\mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)=B|\boldsymbol{\Lambda}|^{(\nu-D-1) / 2} \exp \left(-\frac{1}{2} \operatorname{Tr}\left(\mathbf{W}^{-1} \boldsymbol{\Lambda}\right)\right)$
, Λ and μ unknown: $\quad p(\mu, \Lambda)$ Gaussian-Wishart,
$p\left(\mu, \boldsymbol{\Lambda} \mid \mu_{0}, \beta, \mathbf{W}, \nu\right)=\mathcal{N}\left(\mu \| \mu_{0},(\beta \boldsymbol{\Lambda})^{-1}\right) \mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)$

The Gaussian-Gamma Distribution

- Gaussian-Gamma distribution

$$
\begin{aligned}
& p(\mu, \lambda)=\mathcal{N}\left(\mu \mid \mu_{0},(\beta \lambda)^{-1}\right) \operatorname{Gam}(\lambda \mid a, b) \\
& \quad \propto \exp \left\{-\frac{\beta \lambda}{2}\left(\mu-\mu_{0}\right)^{2}\right\}
\end{aligned} \underbrace{\lambda^{a-1} \exp \{-b \lambda\}}
$$

- Quadratic in μ.
- Linear in λ.
- Visualization

Student's t-Distribution

- Gaussian estimation
, The conjugate prior for the precision of a Gaussian is a Gamma distribution.
, Suppose we have a univariate Gaussian $\mathcal{N}\left(x \mid \mu, \tau^{-1}\right)$ together with a Gamma prior $\operatorname{Gam}(\tau \mid a, b)$.
. By integrating out the precision, obtain the marginal distribution

$$
\begin{aligned}
p(x \mid \mu, a, b) & =\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu, \tau^{-1}\right) \operatorname{Gam}(\tau \mid a, b) \mathrm{d} \tau \\
& =\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu,(\eta \lambda)^{-1}\right) \operatorname{Gam}(\eta \mid \nu / 2, \nu / 2) \mathrm{d} \eta
\end{aligned}
$$

This corresponds to an infinite mixture of Gaussians having the same mean, but different precision.

Student's t-Distribution

- Student's t-Distribution
, We reparametrize the infinite mixture of Gaussians to get $\operatorname{St}(x \mid \mu, \lambda, \nu)=\frac{\Gamma(\nu / 2+1 / 2)}{\Gamma(\nu / 2)}\left(\frac{\lambda}{\pi \nu}\right)^{1 / 2}\left[1+\frac{\lambda(x-\mu)^{2}}{\nu}\right]^{-\nu / 2-1 / 2}$
- Parameters
, "Precision" $\lambda=a / b$
, "Degrees of freedom" $\quad \nu=2 a$.

Student's t-Distribution

- Robustness to outliers: Gaussian vs t-distribution.

\Rightarrow The t-distribution is much less sensitive to outliers, can be used for robust regression.
\Rightarrow Downside: ML solution for t-distribution requires EM algorithm.
Slide adapted from C. Bishop
B. Leibe

References and Further Reading

- Probability distributions and their properties are described in Chapter 2 of Bishop's book.

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006	

