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Topics of This Lecture Recap: Kernel Ridge Regression
¢ Kernels ¢ Dual definition
- Recap: Ke.rnel trick . Instead of working with w, substitute w = ®’a into J(w) and
» Constructing kernels write the result using the kernel matrix K = ®®7:
¢ Gaussian Processes J(a) = lal KKa - alKt + ltrt + iaI*Ka
E » Recap: Definition % 2 2 2
£ . Prediction with noise-free observations £ . Solving for a, we obtain
2 ~ Prediction with noisy observations H 1
g . GP Regression g a = (K+Aly)™'t
3 - Influence of hyperparameters ¥l « Prediction for a new input x:
._g * Learning Gaussian Processes _g » Writing k(x) for the vector with elements k,(x) = k(x;,,x)
S » Bayesian Model Selection S o " " .
= » Model selection for Gaussian Processes = y(x) =w'd(x) =a’ Po(x) = k(x)" (K + ALy) "'t
@ @
E e Applications E = The dual formulation allows the solution to be entirely
2 \ b} expressed in terms of the kernel function k(x,x’).
B. Leibe B. Leibe
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Recap: Properties of Kernels Recap: The “Kernel Trick”

¢ Theorem

» Let k: X x X — R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping ¢ : X — H such
that

Any algorithm that uses data only in the form
of inner products can be kernelized.

k(z.2'") = ((o(z), o2"))n
¢ How to kernelize an algorithm

» Write the algorithm only in terms of inner products.
» Replace all inner products by kernel function evaluations.

~ where (., .),, is the inner product in H.

¢ Translation
» Take any set X’ and any function k: X' x X — R.
= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space #.
» Caveat: working in { is not a guarantee for better performance.

» If k is a positive definite kernel, then we can use k to learn a
classifier for the elements in A1
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¢ Note A good choice of & and model selection are important!
» X can be any set, e.g. X = "all videos on YouTube" or X = "all
permutations of {1, . . ., k}", or X = "the internet”.

Slide credit: Christoph Lampert ide credit: Christonh L ampert B. Leibe
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How to Check if a Function is a Kernel Constructing Kernels

¢ Problem:
» Checking if a given k£ : X' x X — R fulfills the conditions for a
kernel is difficult:
» We need to prove or disprove

1. We can construct kernels from scratch:
» Forany ¢ : X — R™, k(z, 2') = (¢(z), #(z"))g,, is a kernel.
Example: ¢(z) = ("# of red pixels in image z", green,blue ).

o~ i o~
T I » Any norm |.|| : V— R~ that fulfills the parallelogram equation
£ > tik(zi, )t > 0 £ 2 2 — 9|12 + 2||yll2
£ P E e+ yll* + [l = yl* = 2ll* + 2|y
o foranysetz,,...,z, € Xandany t € R" for any n € N. 23 induces a kernel by polarization:
= £ ) . .
5 k(@ y) = (le+y]* + [|=]* - ) -
- - o
7| » Workaround: ® Example: X = time series with bounded values, | z/|* = Z o
§ » It is easy to construct functions k that are positive definite '§ =1
= kernels. =
3 3
o o
8 §
> >
3 7 3 8
Slide credit: Christoph lampert B. Leibe Slide credit: Christoph | ampert B. Leibe
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Constructing Kernels (2) Constructing Kernels (3)
1. We can construct kernels from scratch: 2. We can construct kernels from other kernels:
» If d: X x X— Ris conditionally positive definite, i.e. > If kis a kernel and o > 0, then o k and k + « are kernels.
"
Z tid(zs,2;)t; > 0 forany t € R" with X, ¢, = o, » if k,, k,are kernels, then k, + k,and k, - k,are kernels.
S~ » if k is a kernel, then exp(k) is a kernel.
g =t <
g forz,,...,x, € X forany n € N, then g E les for k Is .
H k(x, @) = exp(—d(z, &) is a positive kernel. ] * Examples for kernels for ' = R
2 2 ~ Any linear combination X ak; with a; > 0,
§ Example: d(z, z') = ||z —2'|]* . § . Polynomial kernels k(z, 2') = (1 + (z, z'))™, m >0
Té k(z.a') = exp{—|z — ||, } 'é . Gaussian a.k.a. RBF
: : e — /|
é 'E% k(x,z") = exp{ T
E ?g with o > 0.
2 _ 9 2 ) 10
lide credit: Christoph | ampert B. Leibe ide credit: Christoph L ampert. B. Leibe
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Constructing Kernels (4) Topics of This Lecture
2. We can construct kernels from other kernels:
» If kis a kernel and o > 0, then o k and k + « are kernels.
» if k,, k,are kernels, then k, + k,and k, - k,are kernels.
» if k is a kernel, then exp(k) is a kernel. * Gaussian Processes
» Recap: Definition
» Prediction with noise-free observations
» Prediction with noisy observations
» GP Regression
» Influence of hyperparameters

¢ Examples for”kernels for other X:

- k(h,h) = Zmin(h,—. h}) for n-bin histograms h, k'

i=1
> k(p, p) = exp(-KL(p, p’)) with KL the symmetrized KL-
divergence between positive probability distributions.

» k(s, s") = exp(-D(s, §)) for strings s, s’ and D = edit distance

¢ Not an example: tanh (a(z, ") + b) is not positive
definite!

Slide credit: Christoph Lampert LA
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Recap: Gaussian Process Recap: Gaussian Process

¢ Gaussian distribution
» Probability distribution over scalars / vectors.

¢ A Gaussian Process is completely defined by
» Mean function m(x) and

m(x) = E[f(x)]

» Covariance function k(x,x’)

k(x,x') = B[(f(x) = m(x)(f(x) = m(x))]

¢ Gaussian Process (generalization of Gaussian distrib.)
» Describes properties of functions.
» Function: Think of a function as a long vector where each entry
specifies the function value f(x;) at a particular point x;.
» Issue: How to deal with infinite number of points?
- If you ask only for properties of the function at a finite number of
points...
- Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

» We write the Gaussian Process (GP)
f(x) ~ GP(m(x), k(x,x))
¢ Definition

» A Gaussian Process (GP) is a collection of random variables any
finite number of which has a joint Gaussian distribution.

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12

Slide credit: Bernt Schiele B. Leibe Slide adapted from Bernt Schiele B. Leibe
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Recap: GPs Define Prior over Functions Topics of This Lecture
¢ Distribution over functions:
» Specification of covariance function implies distribution over
functions.
» l.e. we can draw samples from the distribution of functions o Gaussian Processes
o evaluated at a (finite) number of points. o Recap: Definition
£ £ . Prediction with noise-free observations
H ~ Procedure = . Prediction with noisy observations
g - We choose a number of input points X, 2 . GP Regression
E - We write the corresponding covariance ' § » Influence of hyperparameters
B 2 3 icqe - £l
- matrix (e.g. using SE) element-wise: 2 /\\ -
3 - h - X \ ]
é - Then we generate a random Gaussian ~ -' \V \\/ -2‘3
= vector with this covariance matrix: ) =
3 o
2 f*NN(OvK(XMX*)) - 0 2
g input, x . g
b} Example of 3 functions b}
. sampled 16 )
lide credit: Berpt Schiele B. Leibe Image source: Rasmussen & Williams, 2004 B. Leibe
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Prediction with Noise-free Observations Prediction with Noise-free Observations

¢ Assume our observations are noise-free:
{(xp, fu) | n=1,...,N}
¢ Joint distribution of the training outputs f and test
outputs f. according to the prior:

[ f ]~N’(07[K(X7X) K(X7X*)}>

¢ Calculation of posterior: simple in GP framework

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

£,1X,, X, f ~ N(£,, cov[f.]) f, = E[f|X, X,,f]

f, K(X,,X) K(X,,X,) . with:

> K(.X, X.) contains covariances for all pairs of training and test f = K(X,, X)K(X, X)—lf
points. covlf,] = K(X,,X.)—- K(X,, X)K(X, X)“K(_X.X,)
¢ To get the posterior (after including the observations)
» We need to restrict the above prior to contain only those
functions which agree with the observed values.
» Think of generating functions from the prior and rejecting those
that disagree with the observations (obviously prohibitive).

» This uses the general property of Gaussians that

M| s Yoo Zab N Happ = Bo + Zap T (% — pay)
’ oo Dy Sap = Baa — Zab T Sha
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Slide credit: Bernt Schiele B. Leibe ide credit: Rernt Schiele B. Leibe
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Prediction with Noise-free Observations Topics of This Lecture
¢ Example:
Prior Posterior using 5
noise-free observations o Gaussian Processes
E o " g > Recap: Definition
_‘E o3 e / g » Prediction with noise-free observations
i 1y N - + gw » Prediction with noisy observations
£ % A\ f s % £ » GP Regression
= 0. 7 \/ 2 g S » Influence of hyperparameters
S R /X 3 \ g
@ -1 -1 @
£ £
] S
= —2| 72\,+ &
3 -5 0 5 5 0 € ]
2 input, x input, x g
S S
2 " 2
slide credit: Bernt Schiele B. Leibe Jmage source: Rasmussen & Williams, 2004 B. Leibe -
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Prediction with Noisy Observations Prediction with Noisy Observations

¢ Typically, we assume noise in the observations
t=flx)+e e~N(0,02)
¢ The prior on the noisy observations becomes
COV[Yp, gl = k(Xp, Xg)+050,,
» Written in compact form:
covly] = K(X,X)+e.1

¢ Calculation of posterior:

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

X, Xt~ N, cov[f]) £ = E[f]X,X,,t]

> with:

£ = KX X) (KX, X)o7t
covif,] = K(X., X.)— K(X., X) (K(X,X)+o*) " K(X, X,)

¢ Joint distribution of the observed values and the test
locations under the prior is then:
PR 2 -
[ t ] ~N (0_ [A(‘X' X)+onl KX, X,) ] ) = This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.

£, K(X.,X) K(X.X.)

Advanced Machine Learning Winter’12
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’ 24 ; 25
Slide credit: Bernt Schiele B. Leibe ide credit: Bernt Schiele B. Leibe
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Gaussian Process Regression Gaussian Process Regression
e Example d
: :
g 2
2 ’ £
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Slide credit: Bernt Schiele B. Leibe ide credit: Rernt Schiele B. Leibe
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Discussion

e Keyresult: f,|X,, X, t~N(f,cov[f,]) with
K(X,, X) (K(X, X)+o1) "¢

K(X., X)) — K(X,, X) (K(X, X)+020) " K(X, X.)

f,
covlf,]

¢ Observations
» The mean can be written in linear form

N
Fe) = ki X)E(XX) +00d] o= anklx,x,).
«

n=1
- This form is commonly encountered in the kernel literature (—»SVM)

» The variance is the difference between two terms

Vix.) = k(x.,x.) — k(x,, X)[K(X, X) + 021 k(X x.)
N

Prior variance Explanation of data X

Slide adapted from Carl B. Leibe
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Computational Complexity

¢ Complexity of GP model
» Training effort: O(IN3) through matrix inversion
» Test effort: O(IN?) through vector-matrix multiplication

e Complexity of basis function model
» Training effort: O(M?3)
. Test effort: O(M?)

¢ Discussion
> If the number of basis functions ) is smaller than the number of
data points NN, then the basis function model is more efficient.
» However, advantage of GP viewpoint is that we can consider
covariance functions that can only be expressed by an infinite
number of basis functions.

» Still, exact GP methods become infeasible for large training sets,,
B. Leibe
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Slide credit: Bernt Schiele LA
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Influence of Hyperparameters

¢ Most covariance functions have some free parameters.

» Example:
9
. 2 (Xp - X,’.)' 9
ky(xy. x,) = opexp { ECW A + 05,05
- Parameters: (I,0;.0,)
- Signal variance: of
- Range of neighbor influence (called “length scale”): |
- Observation noise: 7y,

Advanced Machine Learning Winter’12
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Computational Complexity

« Computational complexity

» Central operation in using GPs involves inverting a matrix of size
NxN (the kernel matrix K(X,X)):

£ o= K(X., X)|(K(X, X)+20)

covlf] = K(X., X.) = K(X., X)|(K(X, X)+02D) 7 |K(X, X.)

= Effort in O(N3) for N data points!

» Compare this with the basis function model (—Lecture 3)
1 . .
plfalx.. X, t) ~ N (“r—zgﬁ(xJI S ()t o(x.)! S’lr,-')(xk))

S = %II:(X)Q(X)TJJ‘- !

Zip

n

= Effort in O(M3) for M basis functions.

B. Leibe

GP Regression Algorithm

¢ Very simple algorithm!

input: X (inputs), y (targets). k (covariance function), o2 (noise level),

X. (test input)

. L = cholesky(K + o21)

a:=L \(L\y) -
i Fo= k_oi W } predictive mean eq. (2.25)
/= L\k
6 VI o2 b %) — v T } predictive variance eq. (2.26)
(" = k(X.,X.) — v
log p(y|X) == —é_viry — >, log Ly — 7 log eq. (2.30)

8 return: f. (mean), V[f.] (variance), log p(y|X) (log marginal likelihood)
» Based on the following equations (Matrix inv. & Cholesky fact.)
foo= K (K+ain't
cov[f.] = k(x,.x.) — K (K + 02Dk,
1.+ 5 o\ — 1 2 N
logp(t|X) = —Etj (K +ﬂ,”,[] 't gl(\}{‘h’+ai[| - ?Ing'lrr

B. Leibe

Image source: Rasmussen & Williams, 2004
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Influence of Hyperparameters

(XPQ_.;:U]? } + G'fdm

« Examples for different settings of the length scale

ky(xp %) = U?’ exp {

(Lop.ou) = (o parameters set by optimizing

the marginal likelihood)

= (0.3,1.08,0.00005) =(1,1,0.1) = (3.0,1.16,0.89)

2 E E

1 ?ﬂfﬂ'wl . 1 f/{‘\\ l} 1 (_+
AR N AR g

-ilf Yy \*w‘ I‘ "‘ﬂ. dalf W ! /*,/‘P( R //
g 1 at "\;" i = 1
: V ] |3

& o 5 -5 o 5 -5 o
it x npat x ngut, x
34

ide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williame, 2009
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Topics of This Lecture Learning Kernel Parameters

¢ Can we determine the length scale and noise levels from
training data?

¢ Learning Gaussian Processes
» Bayesian Model Selection
> Model selection for Gaussian Processes

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12

B. Leibe

Slide credit: Bernt Schiele B. Leibe
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Bayesian Model Selection Model Selection at Lowest Level

¢ Goal
» Determine/learn different parameters of Gaussian Processes

¢ Posterior of the parameters w is given by Bayes’ rule

plwlt, X.0.H;) — plt| X, w8, H;)p(w|8, X, H,)

« Hierarchy of parameters p(t[X.0,H;)
. Lowest level _ plt[ X, w, H)p(wl|6, Hy)
— w - e.g. parameters of a linear model. p(t| X, 8, H,)
» Mid-level (hyperparameters) * with
- 0 - e.g. controlling prior distribution of w. . p(t|X,w,H,) likelihood and
+ Top level > p(wl6,H,;) prior parameters w,

- Typically discrete set of model structures #,;.
ypically ‘ » Denominator (normalizing constant) is independent of the
parameters and is called marginal likelihood.

p(t|X,0,H;) = [p(t\X.W.Ha‘)ii(ww.?—[.,}dw

e Approach

» Inference takes place one level at a time.

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12

lide credit: Bernt Schiele B. Leibe ide credit: Bernt Schiele B. Leibe
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Model Selection at Mid Level Model Selection at Top Level

¢ Posterior of parameters ¢ is again given by Bayes’ rule
p(b] X, 8, Hi)p(8] X, Ha)
p(t| X, H;)
_ p(b|X, 6. H)p(dIH:)
- p(t|X, H,)

¢ At the top level, we calculate the posterior of the model
p(t| X, Hi)p(Hs)
p(tlX)

p(At. X, ;) p(H:t. X) =

¢ where

» The marginal likelihood of the previous level p(t|X,0,7;)
plays the role of the likelihood of this level.

» p(01#H,;) is the hyperprior (prior of the hyperparameters)
» Denominator (normalizing constant) is given by:

p(t| X, H) = /p(t|X. B, M, )p(8|H;)de

¢ where
» Again, the denominator of the previous level p(t | X,H,;)
plays the role of the likelihood.
» p(H;) is the prior of the model structure.
» Denominator (normalizing constant) is given by:

p(t|X) = X}J(t X, Hi)p(Hy)
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Slide credit: Bernt Schiele B. Leibe ide credit: Rernt Schiele B. Leibe
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Bayesian Model Selection

¢ Discussion
~ Marginal likelihood is main difference to non-Bayesian methods

» It automatically incorporates a trade-off
between the model fit and the model
complexity:

- A simple model can only account
for a limited range of possible
sets of target values - if a simple
model fits well, it obtains a high
posterior.

- A complex model can account for
a large range of possible sets of
target values - therefore, it can
never attain a very high posterior.

marginal likelinaod, p(ylXH)

all possible da{a sets

41
ide credit: Bernt Schiele B. Leibe Jmage source: Rasmussen & Williams, 2004

Example
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ide credit: Bernt Schiele B. Leibe
Example
i
45
ide credit; Berpt Schiele B. Leibe
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Bayesian Model Selection

« Computational issues

» Requires the evaluation of several integrals, which may or may
not be analytically tractable, depending on details of the
models.

» In general, one may have to resort to analytic approximations or
MCMC methods. (—Lecture 7)

¢ Model selection for GP regression
» GP regression models with Gaussian noise are an (important)
exception:
- Integrals over the parameters are analytically tractable and
- At the same time, the models are flexible.
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ide credit: Bernt Schiele B. Leibe
Example
10"
length seale
. 44

ide credit: Bernt Schiele B. Leibe

Example

46

ide credit: Bernt Schiele B. Leibe
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Example

ide credit: Bernt Schiele

B. Leibe
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Example

ide credit: Bernt Schiele

B. Leibe
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ide credit: Berpt Schiele

B. Leibe

Example
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ide credit: Bernt Schiele B. Leibe

48

Example

Advanced Machine Learning Winter’12

ide credit: Bernt Schiele B. Leibe

10"
length scale

Topics of This Lecture

¢ Applications

Advanced Machine Learning Winter’12

B. Leibe
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Application: Non-Linear Dimensionality Reduction
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Gaussian Process Latent Variable Model

2D space

2D manifold
in 3D space

¢ At each time step ¢, we express our observations y as a
combination of basis functions v of latent variables x.

& ® ® -
£ £ y v
: : (B) |
[=2] o
g E space E
- i R, 2, -
] ’, R ]
c 30D . N, c
5 icu ‘ H N = = babi (%) + 6,
e il ; 2 bl i
E - — §  This is modeled as a Gaussian process...
S e 3
3 66 3 67
Slide credit: Andreas Geiger B. Leibe Slide credit: Andreas Geiger B. Leibe
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Example: Style-based Inverse Kinematics Application: Modeling Body Dynamics
¢ Task: estimate full body pose in m video frames.
» High-dimensional Y.
» Model body dynamics using hierarchical Gaussian process latent
i ” 1 variable model (hGPLVM) [Lawrence & Moore, ICML 2007].
,,' o . ..’. . ..' X’-‘,
¥ 5 ———— Time (frame #) T=[t cR] Training
p(Z/T@) = (Z.;10,Kr)

» - Latent space Z =z, € RY

p(Y(Z.9) = [[V(Y..l0.K,)
i=1

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12

Yi
"
. . _ D
Configuration Y =[y; € R”]
. 68 . 69
lide credit: Andreas Geiger B. Leibe ide credit: Bernt Schiele B. Leibe [Andriluka, Roth, Schiele, CVPR'08]

Application: Mapping b/w Pose and Appearance Learning a Generative Mapping

¢ Appearance prediction

; Body Pose !
~ Regression problem ,,k ;’K v Pos JPEEEE N kearm LLE dim. e
. N . : 4
» High-dimensional data on both sides 3 ) \ ‘X > iy Fase RS Pose‘
= Low-dim. representation needed . (high dim.) reconstruct (low dim.) | -
for learning! pose

/ dynamic prior,

« 3D joint locations « segm. image
* 60-dim. * ~2500-dim.
likelihood

generative mapping

¢ Training with Motion-capture data possible
~ Synthesized silhouettes for training
~ Background subtraction for test

Y : Image — y : Appearance
) " PCA projection ’ 2
high dim. 4; Descriptor: (low dim.

Appearance
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Experimental Results

¢ Difficulties
» Changing viewpoints

» Low resolution (50 px)
» Compression artifacts
» Disturbing objects

Advanced Machine Learning Winter’12

Original video

Llaegoli, Koller-Meier, Van Gool, ACCV'(Q;

Results

454 frames (~35 sec)
23 Pedestrians
20 detected by multi-body tracker

Advanced Machine Learning Winter’12

74

B. Leibe Ess. Leibe, Schindler, Van Gool, ECCV’08]
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Articulated Motion in Latent Space (ifferent work)
¢ Gaussian Process regression from latent space to

» Pose [—>= p(Pose|z) to recover original pose from latent space]
» Silhouette [ = p(Silhouette | z) to do inference on silhouettes]

Walking cycles have one
main (periodic) DOF

Additional DOF encodes
»walking style“

73
B. Leibe Ess. Leibe, Schindler, Van Gool, ECCV’08
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References and Further Reading

¢ Kernels and Gaussian Processes are (shortly) described
in Chapters 6.1 and 6.4 of Bishop’s book.

Christopher M. Bishop ‘b
Pattern Recognition and Machine Learning ~
Springer, 2006

Carl E. Rasmussen, Christopher K.I. Williams
Gaussian Processes for Machine Learning
MIT Press, 2006

¢ A better introduction can be found in Chapters 3 and 5
of the book by Rasmussen & Williams (also available
online: http://www.gaussianprocess.org/gpml/)

B. Leibe
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