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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Support Vector Regression 

 Gaussian Processes 

 

• Learning with Latent Variables 

 EM and Generalizations 

 Dirichlet Processes 

 

• Structured Output Learning 

 Large-margin Learning 
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Topics of This Lecture 

• Recap: Probabilistic View on Regression 
 

• Properties of Linear Regression 
 Loss functions for regression 

 Basis functions 

 Multiple Outputs 

 Sequential Estimation 
 

• Regularization revisited 
 Regularized Least-squares 

 The Lasso 

 Discussion 
 

• Bias-Variance Decomposition 
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Recap: Probabilistic Regression 

• First assumption:  

 Our target function values t are generated by adding noise to 

the ideal function estimate: 

 

 

 

 

 

• Second assumption: 

 The noise is Gaussian distributed. 
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Target function 

value 

Regression function Input value Weights or 

parameters 

Noise 

Mean Variance 

(¯ precision) 

Slide adapted from Bernt Schiele 
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Recap: Probabilistic Regression 

• Given 

 Training data points: 
 

 Associated function values: 

 

 

• Conditional likelihood (assuming i.i.d. data) 

 

 

 

 

 Maximize w.r.t. w, ¯  
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X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]
T

Generalized linear 

regression function 

Slide adapted from Bernt Schiele 
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Recap: Maximum Likelihood Regression 

 

 

• Setting the gradient to zero: 

 

 

 

 

 

 

 
 

 Least-squares regression is equivalent to Maximum Likelihood 

under the assumption of Gaussian noise. 
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Same as in least-squares 

regression! 

Slide adapted from Bernt Schiele 

©= [Á(x1); : : : ; Á(xn)]
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Recap: Role of the Precision Parameter 

• Also use ML to determine the precision parameter ¯: 

 

 

• Gradient w.r.t. ¯: 

 

 

 

 

 

 The inverse of the noise precision is given by the residual 

variance of the target values around the regression function. 
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Recap: Predictive Distribution 

• Having determined the parameters w and ¯, we can 

now make predictions for new values of x. 

 
 

 

• This means 

 Rather than giving a point 

estimate, we can now also  

give an estimate of the  

estimation uncertainty. 
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Recap: Maximum-A-Posteriori Estimation 

• Introduce a prior distribution over the coefficients w. 

 For simplicity, assume a zero-mean Gaussian distribution 

 

 
 

 New hyperparameter ® controls the distribution of model 

parameters. 

 

• Express the posterior distribution over w. 

 Using Bayes’ theorem: 

 
 

 We can now determine w by maximizing the posterior. 

 This technique is called maximum-a-posteriori (MAP). 
9 
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Recap: MAP Solution 

• Minimize the negative logarithm 

 

 

 

 

 
 

• The MAP solution is therefore 

 

 
 

 Maximizing the posterior distribution is equivalent to 

minimizing the regularized sum-of-squares error (with            ). 
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MAP Solution (2) 

 

 

• Setting the gradient to zero: 
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©= [Á(x1); : : : ; Á(xn)]
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Recap: Bayesian Curve Fitting 

• Given 

 Training data points: 
 

 Associated function values: 
 

 Our goal is to predict the value of t for a new point x. 

 

• Evaluate the predictive distribution 

 

 

 

 

 Noise distribition – again assume a Gaussian here 

 
 

 Assume that parameters ® and ¯ are fixed and known for now. 
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X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]
T

What we just computed for MAP 
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Bayesian Curve Fitting 

• Under those assumptions, the posterior distribution is a 

Gaussian and can be evaluated analytically: 

 

 

 where the mean and variance are given by 

 

 

 

 
 

 and S is the regularized covariance matrix 
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Analyzing the result 

• Analyzing the variance of the predictive distribution 
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Uncertainty in the parameters w 

(consequence of Bayesian 

treatment) 

Uncertainty in the predicted 

value due to noise on the  

target variables 

(expressed already in ML) 
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Bayesian Predictive Distribution 

 

 

 

 

 

 

 

 

 
 

• Important difference to previous example 

 Uncertainty may vary with test point x! 
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Discussion 

• We now have a better understanding of regression 

 Least-squares regression: Assumption of Gaussian noise 

 We can now also plug in different noise models and explore how 

they affect the error function. 

 

 L2 regularization as a Gaussian prior on parameters w. 

 We can now also use different regularizers and explore what 

they mean. 

 This lecture… 

 

 General formulation with basis functions Á(x). 

 We can now also use different basis functions. 
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Discussion 

• General regression formulation 

 In principle, we can perform regression in arbitrary spaces  

and with many different types of basis functions 

 However, there is a caveat… Can you see what it is? 

 

• Example: Polynomial curve fitting, M = 3 

 

 

 

 Number of coefficients grows with DM! 

 The approach becomes quickly unpractical for high dimensions. 

 This is known as the curse of dimensionality. 

 We will encounter some ways to deal with this later... 
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Topics of This Lecture 

• Recap: Probabilistic View on Regression 
 

• Properties of Linear Regression 
 Loss functions for regression 

 Basis functions 

 Multiple Outputs 

 Sequential Estimation 
 

• Regularization revisited 
 Regularized Least-squares 

 The Lasso 

 Discussion 
 

• Bias-Variance Decomposition 
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Loss Functions for Regression 

• Given p(y, x, w, ¯), how do we actually estimate a 

function value yt for a new point xt? 
 

• We need a loss function, just as in the classification case 

 

 

 

 

• Optimal prediction: Minimize the expected loss 

19 
B. Leibe Slide adapted from Stefan Roth 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
5

 

Loss Functions for Regression 

 

 

• Simplest case 

 Squared loss: 

 Expected loss  
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p(x; t)dt
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Loss Functions for Regression 

 

 

 

 

 

• Important result 

 Under Squared loss, the optimal regression function is the  

mean E [t|x] of the posterior p(t|x). 

 Also called mean prediction. 

 For our generalized linear regression function and square loss, 

we obtain as result 
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Z
tp(x; t)dt = y(x)

Z
p(x; t)dt

, y(x) =

Z
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p(x; t)

p(x)
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Z
tp(tjx)dt

, y(x) = E[tjx]
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Visualization of Mean Prediction 
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mean prediction 

Slide adapted from Stefan Roth Image source: C.M. Bishop, 2006 
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Loss Functions for Regression 

• Different derivation: Expand the square term as follows 

 

 

 

 

• Substituting into the loss function 

 The cross-term vanishes, and we end up with   
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fy(x)¡ tg2 = fy(x)¡ E[tjx] + E[tjx]¡ tg2

= fy(x)¡ E[tjx]g2 + fE[tjx]¡ tg2

+2fy(x)¡ E[tjx]gfE[tjx]¡ tg

Optimal least-squares predictor 

given by the conditional mean 

Intrinsic variability of target data 

 Irreducible minimum value 

of the loss function P
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Other Loss Functions 

• The squared loss is not the only possible choice 

 Poor choice when conditional distribution p(t|x) is multimodal. 

 

• Simple generalization: Minkowski loss 

 
 

 Expectation 

 

 

• Minimum of E[Lq] is given by   

 Conditional mean    for q = 2, 

 Conditional median for q = 1, 

 Conditional mode    for q = 0. 
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E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt
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Minkowski Loss Functions 
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Topics of This Lecture 

• Recap: Probabilistic View on Regression 
 

• Properties of Linear Regression 
 Loss functions for regression 

 Basis functions 

 Multiple Outputs 

 Sequential Estimation 
 

• Regularization revisited 
 Regularized Least-squares 

 The Lasso 

 Discussion 
 

• Bias-Variance Decomposition 
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Linear Basis Function Models 

• Generally, we consider models of the following form 

 

 

 

 where Áj(x) are known as basis functions. 

 Typically, Á0(x) = 1, so that w0 acts as a bias. 

 In the simplest case, we use linear basis functions: Ád(x) = xd. 

 

 

 

• Let’s take a look at some other possible basis 

functions... 

 
27 

B. Leibe Slide adapted from C.M. Bishop, 2006 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
5

 
Linear Basis Function Models (2) 

• Polynomial basis functions 

 

 

 

• Properties 

 Global 

 A small change in x affects all  

basis functions. 

 

28 
B. Leibe Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r’

1
5

 

Linear Basis Function Models (3) 

• Gaussian basis functions 

 

 

 

• Properties 

 Local 

 A small change in x affects  

only nearby basis functions. 

 ¹j and s control location and  

scale (width). 
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Linear Basis Function Models (4) 

• Sigmoid basis functions 

 
 

 where 

 

 

• Properties 

 Local 

 A small change in x affects  

only nearby basis functions. 

 ¹j and s control location and  

scale (slope). 
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Topics of This Lecture 

• Recap: Probabilistic View on Regression 
 

• Properties of Linear Regression 
 Loss functions for regression 

 Basis functions 

 Multiple Outputs 

 Sequential Estimation 
 

• Regularization revisited 
 Regularized Least-squares 

 The Lasso 

 Discussion 
 

• Bias-Variance Decomposition 
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Multiple Outputs 

• Multiple Output Formulation 

 So far only considered the case of a single target variable t. 

 We may wish to predict K > 1 target variables in a vector t. 

 We can write this in matrix form 

 
 

 where 
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Multiple Outputs (2) 

• Analogously to the single output case we have: 

 

 
 

 

• Given observed inputs,                          , and targets, 

                      , we obtain the log likelihood function 
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Multiple Outputs (3) 

• Maximizing with respect to W, we obtain 

 

 

• If we consider a single target variable, tk, we see that 

 

 

where                           , which is identical with the 

single output case. 
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Topics of This Lecture 
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Sequential Learning 

• Up to now, we have mainly considered batch methods 

 All data was used at the same time 

 Instead, we can also consider data items one at a time 

(a.k.a. online learning) 
  

• Stochastic (sequential) gradient descent: 

 

 
 

• This is known as the least-mean-squares (LMS) 

algorithm.  

• Issue: how to choose the learning rate ´? 
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Regularization Revisited 

• Consider the error function 

 

 

 

• With the sum-of-squares error function and a quadratic 

regularizer, we get   

 

 
 

• which is minimized by 
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Regularized Least-Squares 

• Let’s look at more general regularizers 

 

 

 
 

• “Lq norms” 
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Recall: Lagrange Multipliers 
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Regularized Least-Squares 

• We want to minimize 

 

 

 
 

• This is equivalent to minimizing 

 

 
 

 subject to the constraint 

 

 

 

 (for some suitably chosen ´) 
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Regularized Least-Squares 

• Effect: Sparsity for q  1. 

 Minimization tends to set many coefficients to zero 

 

 

 

 

 

 

 

 

 
 

• Why is this good? 

• Why don’t we always do it, then? Any problems? 
42 
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• Consider the following regressor 

 

 
 

 This formulation is known as the Lasso. 
 

• Properties 

 L1 regularization  The solution will be sparse 

(only few coefficients will be non-zero) 
 

 The L1 penalty makes the problem non-linear. 

 There is no closed-form solution. 

 Need to solve a quadratic programming problem. 

 However, efficient algorithms are available with 

the same computational cost as for ridge regression. 

The Lasso 
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Lasso as Bayes Estimation 

• Interpretation as Bayes Estimation 

 

 

 

 We can think of |wj|
q as the log-prior density for wj. 

 

• Prior for Lasso (q = 1): Laplacian distribution 
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Analysis 

• Equicontours of the prior distribution 

 

 

 

 
 

• Analysis 

 For q · 1, the prior is not uniform in direction, but  

concentrates more mass on the coordinate directions. 
 

 The case q = 1 (lasso) is the smallest q such that the constraint 

region is convex.  

 Non-convexity makes the optimization problem more difficult. 
 

 Limit for q = 0: regularization term becomes j=1..M 1 = M. 

 This is known as Best Subset Selection. 
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Discussion 

• Bayesian analysis 

 Lasso, Ridge regression and Best Subset Selection are Bayes 

estimates with different priors. 

 However, derived as maximizers of the posterior. 

 Should ideally use the posterior mean as the Bayes estimate! 

 Ridge regression solution is also the posterior mean, but Lasso 

and Best Subset Selection are not. 
 

• We might also try using other values of q besides 0,1,2… 

 However, experience shows that this is not worth the effort. 

 Values of q 2 (1,2) are a compromise between lasso and ridge 

 However, |wj|
q with q > 1 is differentiable at 0. 

 Loses the ability of lasso for setting coefficients exactly to zero. 
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Bias-Variance Decomposition 

• Recall the expected squared loss, 

 

 where 

 

 

• The second term of E[L] corresponds to the noise 

inherent in the random variable t. 

• What about the first term? 
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Bias-Variance Decomposition 

• Suppose we were given multiple data sets, each of size 

N. Any particular data set D will give a particular 

function y(x;D). We then have 

 

 

 

 
 

• Taking the expectation over D yields 
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Bias-Variance Decomposition 

• Thus we can write 

 

 

 where  
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Bias-Variance Decomposition 

• Example 

 25 data sets from the sinusoidal, varying the degree of 

regularization, ¸. 
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Bias-Variance Decomposition 

• Example 

 25 data sets from the sinusoidal, varying the degree of 

regularization, ¸. 
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Bias-Variance Decomposition 

• Example 

 25 data sets from the sinusoidal, varying the degree of 

regularization, ¸. 
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The Bias-Variance Trade-Off 

• Result from these plots 

 An over-regularized model 
(large ¸) will have a high  

bias. 

 An under-regularized model 
(small ¸) will have a high  

variance. 

 

 
 

• We can compute an estimate for the generalization 

capability this way (magenta curve)! 

 Can you see where the problem is with this? 

 Computation is based on average w.r.t. ensembles of data sets. 

 Unfortunately of little practical value… 
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References and Further Reading 

• More information on linear regression, including a 

discussion on regularization can be found in Chapters 

1.5.5 and 3.1-3.2 of the Bishop book. 

 

 

 

 

 

 

• Additional information on the Lasso, including efficient 

algorithms to solve it, can be found in Chapter 3.4 of the 

Hastie book. 
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