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Topics of This Lecture Recap: Probabilistic Regression
¢ Recap: Probabilistic View on Regression ¢ First assumption:
« Properties of Linear Regression » Our .target func.tion va?lues t are generated by adding noise to
. . the ideal function estimate:
» Loss functions for regression
» Basis functions . —
4 © Target function t=y(x,w)+e .
= . Multiple Outputs I i /'/v ( \)‘\\ Noise
= . Sequential Estimation = . . N
H H Regression function Input value Weights or
'} « Regularization revisited g parameters
£ =
& » Regularized Least-squares g .
% . The Lasso = . Second assumption:
= » Discussion £ > The noise is Gaussian distributed.
8 8 Ay — A a—1
= « Bias-Variance Decomposition £ plthx, w. ) = N(tly(x. w). 5, )
(93 19
8 8
§ E Mean Variance
2 N 2 (3 precision) .
B. Leibe ide adapted from Bernt Schiele B. Leibe
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Recap: Probabilistic Regression Recap: Maximum Likelihood Regression
. N
e Given i )
. Training data points: X = [xh . 7xn] c Rxn Vw lOgP(t‘X-W- B) = 3 Z:l(tu w @(xnng(xu)
n=
~ Associated function values: t = [t1,... ,tn]T

¢ Setting the gradient to zero:
N

0 = B3 (ta— who(x.))d(x,)

n=1

N N
& Y tho(x,) = [Z c(x..)@(x..)’l} w

n=1 n=1

¢ Conditional likelihood (assuming i.i.d. data)
N N
X, w,8) = [ [ N(ta|y(x,. w). 374 = [ Nt |who(x,). 374
p(6X,w, 8) = [[ M (taly(xe, w). 370 = T Mta|w? é(x,), 87

n=1 n=1 /

= Maximize w.r.t. w, 3 Genera'lized lingar
regression function

& Pt=3d"w @ = [p(x1), ..., P(xn)]
= = (®d") 't
war = ( ) “¥—— Same as in least-squares
regression!
= Least-squares regression is equivalent to Maximum Likelihood
under the assumption of Gaussian noise.
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Recap: Role of the Precision Parameter

e Also use ML to detez'mine the precision parameter 3:

3 ro e NN
logp(t|X.w,3) = -3 Zl{f,, —w (:)(x.,)} + 5 log 3 — 5 log(2m
o Gradient w.r.t. 3:

N1

N
T 2
Vilogp(t[X, w.5) = ; {tn Wl@(xxr)} + 33

[T

1 . 2
Bar Tz{t“ w! 6(xn)}

n=1

= The inverse of the noise precision is given by the residual
variance of the target values around the regression function.

B. Leibe
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Recap: Maximum-A-Posteriori Estimation

¢ Introduce a prior distribution over the coefficients w.
» For simplicity, assume a zero-mean Gaussian distribution
o (M+1)/2 o .
: = N(w]0.0a7') = () exp { - Swl'w}
p(w|a) (w]0,a™'I) o eXp W W

» New hyperparameter « controls the distribution of model
parameters.

e Express the posterior distribution over w.
» Using Bayes’ theorem:
p(wX,t,8,a) o p(t|X. w. B)p(wla)
> We can now determine w by maximizing the posterior.
» This technique is called maximum-a-posteriori (MAP).
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MAP Solution (2)
N
V logp(w|X,t,8,0) = 83 (t, — w'é(x,))(x,) + aw
n=1
¢ Setting the gradient to zero:
N
0 = EZ(t,, wlo(x,))o(x,) + aw
N = N a
. - , . T o
& gt“o(x,,) = Lgl o(x, )o(x,,) } W+ ﬁw
& Bt= (@@T' + %1) w o B=[g(x1),..., (%)
{ -
& Wyap = (q@‘ + EI‘Lti-t
: Effect of regularization:
Keeps the inverse well-conditioned
1
B. Leibe
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Recap: Predictive Distribution

» Having determined the parameters w and (3, we can
now make predictions for new values of x.

P(HX, W, Bur) = N (ty(x. wa), Bypr)

¢ This means
» Rather than giving a point
estimate, we can now also
give an estimate of the
estimation uncertainty. O

B. Leibe

Image source: CM, Bishop,

Recap: MAP Solution

¢ Minimize the negative logarithm
—logp(w|X,t, 3, a) x —logp(t|X, w, 3) — log p(w|a)

N
logp(t| X, w.3) = g Z{y(x,,. w) — t,}” + const

n=1

a o,
—logp(w|a) = ;w’w+const

e The MAP solution is therefore
el a
L 2 T
argmin = Z{y(x,,.w) ta}” + FWW
n=1

= Maximizing the posterior distribution is equivalent to o
minimizing the regularized sum-of-squares error (with \ = 3 ).

510
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Recap: Bayesian Curve Fitting
e Given
. Training data points: X = [X1,...,Xn) € R
» Associated function values: t = [tl,.”,tn]T

» Our goal is to predict the value of ¢ for a new point x.

¢ Evaluate the predictive distribution

What we just computed for MAP
» Noise distribition - again assume a Gaussian here
r a—1
pltlz,w) = N(tlylx,w),5 )

» Assume that parameters « and 3 are fixed and known for now.
12

B. Leibe
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Bayesian Curve Fitting Analyzing the result

¢ Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

pltle, X, t) = N(t/m(z), s2(z))

¢ Analyzing the variance of the predictive distribution
s()? = 871 + o(2)" S¢(2)

» where the mean and variance are given by

m(z) = Bo(z)''s Z X )t )

2 e

s s

£ £

H B s ; I

B g o Uncertainty in the predicted Uncertainty in the parameters w

£ n=1 ot / € value due to noise on the (consequence of Bayesian

8 s(z)? = 7 + o(z)"Se(z) : 8 target variables treatment)

B o (expressed already in ML)

£ » and S is the regulanzed covanance matrix ° = ! 5

o <

= =

3 st —aI+ﬁZ o(xn)" 3

g n=1 :

< ©

> >

= =

< < 14
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Bayesian Predictive Distribution Discussion

* We now have a better understanding of regression
» Least-squares regression: Assumption of Gaussian noise

= We can now also plug in different noise models and explore how
they affect the error function.

» L2 regularization as a Gaussian prior on parameters w.

= We can now also use different regularizers and explore what
they mean.

= This lecture...

» General formulation with basis functions ¢(x).
« Important difference to previous example = We can now also use different basis functions.

» Uncertainty may vary with test point z!

Advanced Machine Learning Winter’15
Advanced Machine Learning Winter’15

. 15 ;
B. Leibe Image source; C.M, Bishop, 200 B Leibe

Discussion Topics of This Lecture
¢ General regression formulation

» In principle, we can perform regression in arbitrary spaces
and with many different types of basis functions

» However, there is a caveat... Can you see what it is?

¢ Properties of Linear Regression
» Loss functions for regression
» Basis functions
» Multiple Outputs
¢ Example: Polynomial curve fitting, M=3 - Sequential Estimation
D D D

xw)—u'othtvur,JrZZu”r fJJrZZZu,JkrrJu_

i=1 j=1 i=1 j=1 k=1

= Number of coefficients grows with D!

= The approach becomes quickly unpractical for high dimensions.
» This is known as the curse of dimensionality.

» We will encounter some ways to deal with this later...

B. Leibe
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Loss Functions for Regression

« Given p(y, x, w, 3), how do we actually estimate a
function value y, for a new point x,?

¢ We need a loss function, just as in the classification case
L: RxR — RT

(twy(xn)) = Llta,y(xa))

« Optimal prediction: Minimize the expected loss

E[L] = j / L(t,y(x))p(x,t) dx dt

Slide adapted from Stefan Roth B. Leibe

Loss Functions for Regression

[ivttit = o) [ pxtiae

& yx) = /tp]gz’s)dt:/tp(ﬂx)dt

& yx) = Eftfx]

¢ Important result

» Under Squared loss, the optimal regression function is the
mean E [t|x] of the posterior p(t|x).

Also called mean prediction.

For our generalized linear regression function and square loss,
we obtain as result

y(x) = f Nt w o(x), 87 )dt = wT b(x)

v

v

lide adaoted from Stefan Roth B. Leibe
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RWTH/ACHEN
Loss Functions for Regression

¢ Different derivation: Expand the square term as follows
{y(x) — t}* = {y(x) — Eft|x] +E[t|x] -t}
= {y(0) - Elt)x]}* + {E[tpx] - t}*
+2{y(x) — E[t|x]H{E[t}x] - t}

e Substituting into the loss function
» The cross-term vanishes, and we end up _with

E[L] = / {y(x) — lE[t\x]}2 p(x)dx + j var [t|x] p(x) dx

o \

Optimal least-squares predictor Intrinsic variability of target data
given by the conditional mean = Irreducible minimum value
of the loss function
B. Leibe
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Loss Functions for Regression

E[L] = / [ Lt y(x))p(x, t) dx dt

¢ Simplest case
» Squared loss:
» Expected loss

E[L] = ‘U{y(x) — t}?p(x. t) dx dt

Lt y(x)) = {y(x) ~ t}*

OE[L] / '
= 2 x) —t}p(x,t)dt =0
=Y RUCED )
< /tp(X,t)dt = y(X)/p(x,t)dt
20
de adapted from Stefan Roth B. Leibe
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Visualization of Mean Prediction

mean prediction

y (-lfo)

o z

22

Image source; C,M, Bishop,

ide adapted from Stefan Roth B. Leibe
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RWTHAACHER
Other Loss Functions

¢ The squared loss is not the only possible choice
» Poor choice when conditional distribution p(¢|x) is multimodal.

¢ Simple generalization: Minkowski loss
Lt y(x)) = |y(x) — 7
» Expectation

B(L) = [ [ 1v69) ~ trplx it

¢ Minimum of E[L ] is given by

» Conditional mean for ¢=2,
» Conditional median for ¢ =1,
» Conditional mode for ¢=0.

B. Leibe
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Minkowski Loss Functions

g=03

y— 7

y =t

i
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i
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B. Leibe
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mage source: C.M, Bishop, 200

Linear Basis Function Models
¢ Generally, we consider models of the following form
y(x,w) = Z wig(x) = wle(x)
» where ¢;(x) are known as basis functions.

» Typically, ¢y(x) = 1, so that w; acts as a bias.
» In the simplest case, we use linear basis functions: ¢,(x) = z,.

o Let’s take a look at some other possible basis

functions...

M-1

J=0

s 8. Leibe
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Linear Basis Function Models (3)

¢ Gaussian basis functions

b5(x) = exp { -

¢ Properties
» Local

= A small change in z affects
only nearby basis functions. 0

(r-—a;)g}

252 0.75

> pi;and s control location and

scale (width).

" B. Leibe

29
Image source: C.M, Bishop, 200d
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Topics of This Lecture

¢ Properties of Linear Regression
» Loss functions for regression
» Basis functions
> Multiple Outputs
» Sequential Estimation

B. Leibe

Linear Basis Function Models (2)

¢ Polynomial basis functions

() =

¢ Properties
» Global
= A small change in z affects all

basis functions. -1

" B. Leibe
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Image source; C,M, Bishop,
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Linear Basis Function Models (4)

¢ Sigmoid basis functions

RWTHACHEN

Do) — T Wy
9i(x) =0 ( s ) 075}/
» where /
o) = 1 05}
1+ exp(—a)’

¢ Properties

» Local

= A small change in z affects
only nearby basis functions.

> p;and s control location and
scale (slope).

" B. Leibe
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Topics of This Lecture Multiple Outputs

¢ Multiple Output Formulation
» So far only considered the case of a single target variable ¢.
» We may wish to predict K > 1 target variables in a vector t.
> We can write this in matrix form

Y W) = W g(x)

¢ Properties of Linear Regression
» Loss functions for regression
~ Basis functions
> Multiple Outputs
» Sequential Estimation

y=1lmn,. .. yl\-]T
#(x) = [L &1 (%), -+, Sar—1(x).]"

wp,1 e wo, K

W =

War-11 - WK

Advanced Machine Learning Winter’15
Advanced Machine Learning Winter’15
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Multiple Outputs (2) Multiple Outputs (3)

¢ Analogously to the single output case we have:
p(t|x, W, 3) N(tly(W,x),371T)
N(t|WTp(x), 5711).

¢ Maximizing with respect to W, we obtain

Wt = (‘1’1‘1’) o &TT.

¢ If we consider a single target variable, ¢, we see that

 Given observed inputs, X = {xi....,X~}, and targets,

—1
. s N Wi = (@T@) 3"t = e,
T — [t1,...,t~]", we obtain the log likelihood function

where ti. = [tik, ... .txi]’, which is identical with the

N
y A, T a—1
np(TX,W,5) = 3 InN(t W (x,), 5T single output case.

n=1
NK

A . 2
= m(gn) -5 e - Wreek”

n=1

Advanced Machine Learning Winter’15
Advanced Machine Learning Winter’15
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Topics of This Lecture Sequential Learning
« Up to now, we have mainly considered batch methods
» All data was used at the same time

~ Instead, we can also consider data items one at a time
(a.k.a. online learning)

¢ Properties of Linear Regression
» Loss functions for regression
» Basis functions
> Multiple Outputs ¢ Stochastic (sequential) gradient descent:
» Sequential Estimation

wi? —pVE,

wim) 4 n(tn W(?)T‘»(Xnn(ﬁ(xn)-

¢ This is known as the least-mean-squares (LMS)
algorithm.

-

e Issue: how to choose the learning rate 7?
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Topics of This Lecture

¢ Regularization revisited
» Regularized Least-squares
» The Lasso
~ Discussion

B. Leibe

Regularized Least-Squares

e Let’s look at more general regularizers

L - M
3 S {tn — whe(xa)} + 3 > fayl?
=1

n=1

e “Lynorms”

=05 g=1

“Lasso” “Ridge

Regression”
Bishon. 2006 B. Leibe

Image source; CM, Bishop, 200¢

g=4
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Regularized Least-Squares

* We want to minimize

1 N A M
3 3 Mt wTBx) + 5 D sl
=1

n=1
¢ This is equivalent to minimizing

N
>t - wloix,))
n=1

b2l =

» subject to the constraint

A

P,
E [ * <Ly
=1

» (for some suitably chosen 7)

B. Leibe

41
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Regularization Revisited

e Consider the error function

Ep(w) + AEw (w)
Data term + Regularization term

¢ With the sum-of-squares error function and a quadratic

% 3t — W)} + %WTW

¢ which is minimized by 1 T caled the
w= (,\I + {:‘TQ) T 3Tt regularization
coefficient.
Bishop. 2006 B. Leibe 38
RWTH/CHEN

Recall: Lagrange Multipliers

. 40
B. Leibe
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Regularized Least-Squares

o Effect: Sparsity for ¢ < 1.
» Minimization tends to set many coefficients to zero

w2 wa

© ©

A
NV |

o Why is this good?
* Why don’t we always do it, then? Any problems?

B. Leibe
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The Lasso

¢ Consider the following regressor
1 N M
: 1 2 .
Whaso = argmin =% {tn — w'o(x,)}* + A ||
j=1

n=1

» This formulation is known as the Lasso.

¢ Properties

» L, regularization = The solution will be sparse
(only few coefficients will be non-zero)

» The L, penalty makes the problem non-linear.
= There is no closed-form solution.
= Need to solve a quadratic programming problem.

» However, efficient algorithms are available with
the same computational cost as for ridge regression.

Advanced Machine Learning Winter’12

B. Leibe

3
Image source: CM, Bishop, 2001

¢ Analysis
» For g < 1, the prior is not uniform in direction, but
concentrates more mass on the coordinate directions.

v

The case g = 1 (lasso) is the smallest g such that the constraint
region is convex.

= Non-convexity makes the optimization problem more difficult.
~ Limit for ¢ = 0: regularization term becomes ¥ y 1= M.
= This is known as Best Subset Selection.

Advanced Machine Learning Winter’12

RWTH/ACHEN
Analysis
¢ Equicontours of the prior distribution
g=4 q=2 g=1 q=05 q=0.1

45

B. Leibe Image source: Friedman, Hastie, Tibshirani, 2004

Topics of This Lecture

¢ Bias-Variance Decomposition
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Lasso as Bayes Estimation

¢ Interpretation as Bayes Estimation
1 N . M
w=argmin =3 {t, — w0} + A} !

n=1 j=1

~ We can think of |w|? as the log-prior density for w;.

« Prior for Lasso (¢ = 1): Laplacian distribution

| =

1
pw)= espi—lwl/rh  with 7=

44
B. Leibe Image source: Friedman, Hastie, Tibshirani, 200¢

Discussion

« Bayesian analysis

» Lasso, Ridge regression and Best Subset Selection are Bayes
estimates with different priors.

» However, derived as maximizers of the posterior.
» Should ideally use the posterior mean as the Bayes estimate!

= Ridge regression solution is also the posterior mean, but Lasso
and Best Subset Selection are not.

¢ We might also try using other values of ¢ besides 0,1,2...
» However, experience shows that this is not worth the effort.
» Values of ¢ € (1,2) are a compromise between lasso and ridge
- However, |w |7 with ¢ > 1 is differentiable at 0.
= Loses the ability of lasso for setting coefficients exactly to zero.

. 46
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¢ What about the first term?

Bias-Variance Decomposition

¢ Recall the expected squared loss,
B[]~ [ (a0~ he)*pxyax -+ [ [ (hx) — ey ) axee
> where 4
hix) = Et|x] = /tp(ﬂx) dt.

¥
« The second term of E[L] corresponds to the noise’
inherent in the random variable ¢.

’ 48
" B. Leibe
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Bias-Variance Decomposition Bias-Variance Decomposition

¢ Suppose we were given multiple data sets, each of size
N. Any particular data set D will give a particular
function y(x;D). We then have

{y(x; D) — h(x)}*
{y(x: D) — Eply(x; D)] + Ep[y(x; D)] — h(x)}*
= {y(x:D) — Eply(x D)} + {Ep[y(x; D)) — h(x)}?
+2{y(x; D) — Ep[y(x; D) HEp[y(x; D)] — h(x)}.
» Taking the expectation over D yields
Ep [{y(x; D) — h(x)}?]
= {Eply(x:D)] — h(x)}* +Ep [{y(x; D) — Eply(x; D)|}*] .

(bias)? variance

e Thus we can write

expected loss = (bias)? + variance -+ noise
» where
(bias)? = [ {Eolux: D)) - h(x)}p(x) dx
variance = ]E[} [{y(x; D) — Eply(x: D)]}z] plx) dx

noise = / {h(x) — t}?p(x, t) dx dt

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12
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Bias-Variance Decomposition Bias-Variance Decomposition

¢ Example

» 25 data sets from the sinusoidal, varying the degree of
regularization, \.

¢ Example

» 25 data sets from the sinusoidal, varying the degree of
regularization, \.

Advanced Machine Learning Winter’12
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Richan. 2006 B. Leibe Image source: C.M, Bishop,

Bishop, 2006 B. Leibe

Bias-Variance Decomposition The Bias-Variance Trade-Off

¢ Example

» 25 data sets from the sinusoidal, varying the degree of
regularization, A.

¢ Result from these plots 0.15

» An over-regularized model
(large \) will have a high
bias. 0.09

» An under-regularized model 006

(small \) will have a high
variance. 0.03 %
0

Inx
¢ We can compute an estimate for the generalization
capability this way (magenta curve)!
» Can you see where the problem is with this?

——— (bias)®

——— varianee
——— (bias)” + variance
o lesl efror

o~ N
o 8
. e
o o
E 5
i= =
o j=
= =
c c
£ £
§ g
] ]
o o
= =
< <
[ o
] -}
H =
3 3
Qo Qo
c <
I 3
E 3

a a
= Computation is based on average w.r.t. ensembles of data sets.
= Unfortunately of little practical value...
53 54
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References and Further Reading

¢ More information on linear regression, including a
discussion on regularization can be found in Chapters

1.5.5 and 3.

o

¢ Additional information on the Lasso, including efficient
algorithms to solve it, can be found in Chapter 3.4 of the

Hastie book.

1-3.2 of the Bishop book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman
Elements of Statistical Learning
2nd edition, Springer, 2009
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