

RWIHAA

 $f: \mathcal{X} \to \mathbb{R}$

 $: \mathcal{X} \to \mathcal{Y}$

• Example: Polynomial curve fitting, M = 3

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

- \Rightarrow Number of coefficients grows with D^{M} !
- \Rightarrow The approach becomes quickly unpractical for high dimensions.
- > This is known as the curse of dimensionality.
- > We will encounter some ways to deal with this later... B. Leibe

	Topics of This Lecture	RWITH AACHEN UNIVERSITY
	• Recap: Probabilistic View on Regression	
VINUEL 10	 Properties of Linear Regression Loss functions for regression Basis functions Multiple Outputs Sequential Estimation 	
сппе сеагліпд v	 Regularization revisited Regularized Least-squares The Lasso Discussion 	
Havancea may	Bias-Variance Decomposition	
	B. Leibe	18

	Multiple Outputs (2)	
	• Analogously to the single output case we have: $p(\mathbf{t} \mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t} \mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$	
	$= \mathcal{N}(\mathbf{t} \mathbf{W}^{\mathrm{T}}oldsymbol{\phi}(\mathbf{x}),eta^{-1}\mathbf{I}).$	
	• Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^T$, we obtain the log likelihood function $\ln p(\mathbf{T} \mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^N \ln \mathcal{N}(\mathbf{t}_n \mathbf{W}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1} \mathbf{I})$ $= \frac{NK}{n} \ln \left(\frac{\beta}{2} \right) = \frac{\beta}{2} \sum_{n=1}^N \mathbf{t} = \mathbf{W}^T \boldsymbol{\phi}(\mathbf{x}_n) ^2$	
	$= -\frac{1}{2} \ln\left(\frac{1}{2\pi}\right) - \frac{1}{2} \sum_{n=1}^{\infty} \ \mathbf{t}_n - \mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_n)\ .$ Slide adapted from C. M. Bishon. 2006. B. Leibe 33	

References and Further Reading More information on linear regression, including a discussion on regularization can be found in Chapters 1.5.5 and 3.1-3.2 of the Bishop book. Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006 T. Hastie, R. Tibshirani, J. Friedman Elements of Statistical Learning 2nd edition, Springer, 2009

 Additional information on the Lasso, including efficient algorithms to solve it, can be found in Chapter 3.4 of the Hastie book.

55

B. Leibe

15

g Winter