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Organization 

• Lecturer 

 Prof. Bastian Leibe (leibe@vision.rwth-aachen.de) 

 

• Teaching Assistants 

 Umer Rafi (rafi@vision.rwth-aachen.de) 

 Lucas Beyer (beyer@vision.rwth-aachen.de) 

 

• Course webpage 

 http://www.vision.rwth-aachen.de/teaching/ 

 Slides will be made available on the webpage 

 There is also an L2P electronic repository 

 

• Please subscribe to the lecture on the Campus system! 

 Important to get email announcements and L2P access! 
 

B. Leibe 
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Language 

• Official course language will be English 

 If at least one English-speaking student is present. 

 If not… you can choose. 

 

 

• However… 

 Please tell me when I’m talking too fast or when I should repeat 

something in German for better understanding! 

 You may at any time ask questions in German! 

 You may turn in your exercises in German. 

 You may take the oral exam in German. 

3 
B. Leibe 
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Relationship to Previous Courses 

• Lecture Machine Learning (past summer semester) 

 Introduction to ML 

 Classification 

 Graphical models 
 

• This course: Advanced Machine Learning 

 Natural continuation of ML course 

 Deeper look at the underlying concepts 

 But: will try to make it accessible also to newcomers 

 Quick poll: Who hasn’t heard the ML lecture? 
 

• This year: Lots of new material 

 Large lecture block on Deep Learning 

 First time for us to teach this (so, bear with us...) 

4 
B. Leibe 
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New Content This Year  

 

5 
B. Leibe 

Deep Learning 
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Organization 

• Structure: 3V (lecture) + 1Ü (exercises) 

 6 EECS credits 

 Part of the area “Applied Computer Science” 
 

• Place & Time 

 Lecture/Exercises:  Mon  14:15 – 15:45 room UMIC 025 

 Lecture/Exercises:  Thu  10:15 – 11:45 room UMIC 025 
 

• Exam 

 Oral or written exam, depending on number of participants 

 Towards the end of the semester, there will be a proposed date 

 

 

 

 B. Leibe 
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http://www.vision.rwth-aachen.de/teaching/ 

Course Webpage 

7 
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Monday: Matlab tutorial 
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Exercises and Supplementary Material 

• Exercises 

 Typically 1 exercise sheet every 2 weeks. 

 Pen & paper and programming exercises 

– Matlab for early topics 

– Theano for Deep Learning topics 

 Hands-on experience with the algorithms from the lecture. 

 Send your solutions the night before the exercise class. 

 
 

• Supplementary material 

 Research papers and book chapters 

 Will be provided on the webpage. 

 

B. Leibe 
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Textbooks 

• Most lecture topics will be covered in Bishop’s book. 

• Some additional topics can be found in Rasmussen & 

Williams. 

 

 

 

 

 

 

• Research papers will be given out for some topics. 

 Tutorials and deeper introductions. 

 Application papers 

B. Leibe 
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Christopher M. Bishop 

Pattern Recognition and Machine Learning 

Springer, 2006 

(available in the  library’s “Handapparat”) 

Carl E. Rasmussen, Christopher K.I. Williams 

Gaussian Processes for Machine Learning 

MIT Press, 2006 

(also available online: http://www.gaussianprocess.org/gpml/) 

http://www.gaussianprocess.org/gpml/
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How to Find Us 

• Office: 

 UMIC Research Centre 

 Mies-van-der-Rohe-Strasse 15, room 124 

 

 

 

 

• Office hours 

 If you have questions to the lecture, come see us. 

 My regular office hours will be announced. 

 Send us an email before to confirm a time slot. 
 

Questions are welcome! 

B. Leibe 
10 
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Machine Learning 

• Statistical Machine Learning 

 Principles, methods, and algorithms for learning and prediction 

on the basis of past evidence 

 

• Already everywhere 

 Speech recognition (e.g. speed-dialing) 

 Computer vision (e.g. face detection) 

 Hand-written character recognition (e.g. letter delivery) 

 Information retrieval (e.g. image & video indexing) 

 Operation systems (e.g. caching) 

 Fraud detection (e.g. credit cards) 

 Text filtering (e.g. email spam filters) 

 Game playing (e.g. strategy prediction) 

 Robotics (e.g. prediction of battery lifetime) 

 
11 
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What Is Machine Learning Useful For? 

 

 

 

 

 

 

 

 

 

 

Automatic Speech Recognition 

12 
B. Leibe Slide adapted from Zoubin Gharamani 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
5

 

What Is Machine Learning Useful For? 

 

 

 

 

 

 

 

 

 

 

Computer Vision 

(Object Recognition, Segmentation, Scene Understanding) 

 13 
B. Leibe Slide adapted from Zoubin Gharamani 
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What Is Machine Learning Useful For? 

 

 

 

 

 

 

 

 

 

 

Information Retrieval 

(Retrieval, Categorization, Clustering, ...) 
14 
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What Is Machine Learning Useful For? 

 

 

 

 

 

 

 

 

 

 

Financial Prediction 

(Time series analysis, ...) 
15 

B. Leibe Slide adapted from Zoubin Gharamani 
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What Is Machine Learning Useful For? 

 

 

 

 

 

 

 

 

 

 

Medical Diagnosis 

(Inference from partial observations) 
16 

B. Leibe Slide adapted from Zoubin Gharamani Image from Kevin Murphy 
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What Is Machine Learning Useful For? 

 

 

 

 

 

 

 

 

 

 

Bioinformatics 

(Modelling gene microarray data,...) 
17 
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What Is Machine Learning Useful For? 

 

 

 

 

 

 

 

 

 

 

Robotics 

(DARPA Grand Challenge,...) 
18 
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Machine Learning: Core Questions 

• Learning to perform a task from experience 

 

• Task 

 Can often be expressed through a mathematical function 

 

 

 x: Input 

 y: Output 

 w: Parameters (this is what is “learned”) 

 

• Classification vs. Regression 

 Regression: continuous y 

 Classification: discrete y 

– E.g. class membership, sometimes also posterior probability 

 B. Leibe 
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y = f(x;w)

Slide credit: Bernt Schiele 
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Machine Learning: Core Questions 

•   
 

 w: characterizes the family of functions 

 w: indexes the space of hypotheses 

 w: vector, connection matrix, graph, … 

B. Leibe 
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y = f(x;w)

Slide credit: Bernt Schiele 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
5

 

A Look Back: Lecture Machine Learning 

• Fundamentals 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Classification Approaches 

 Linear Discriminant Functions 

 Support Vector Machines 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
21 
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This Lecture: Advanced Machine Learning 

Extending lecture Machine Learning from last semester… 
 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 

 

• Learning with Latent Variables 

 EM and Generalizations 

 Approximate Inference 

 

• Deep Learning 

 Neural Networks 

 CNNs, RNNs, RBMs, etc. 

B. Leibe 
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Let’s Get Started… 

• Some of you already have basic ML background 

 Who hasn’t? 

 

• We’ll start with a gentle introduction 

 I’ll try to make the lecture also accessible to newcomers 

 We’ll review the main concepts before applying them 

 I’ll point out chapters to review from ML lecture whenever 

knowledge from there is needed/helpful 

 But please tell me when I’m moving too fast (or too slow) 

 

23 
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Topics of This Lecture 

• Regression: Motivation 
 Polynomial fitting 

 General Least-Squares Regression 

 Overfitting problem 

 Regularization 

 Ridge Regression 
 

• Recap: Important Concepts from ML Lecture 
 Probability Theory 

 Bayes Decision Theory 

 Maximum Likelihood Estimation 

 Bayesian Estimation 
 

• A Probabilistic View on Regression 
 Least-Squares Estimation as Maximum Likelihood 

 

24 
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Regression 

• Learning to predict a continuous function value 

 Given: training set X = {x1, …, xN}  

with target values  T = {t1, …, tN}. 

 Learn a continuous function y(x) to predict the function value 

for a new input x. 

 

• Steps towards a solution 

 Choose a form of the function y(x,w) with parameters w. 

 Define an error function E(w) to optimize. 

 Optimize E(w) for w to find a good solution. 

(This may involve math). 

 Derive the properties of this solution and think about its 

limitations. 

25 
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Example: Polynomial Curve Fitting 

• Toy dataset 

 Generated by function 

 

 

 Small level of random 

noise with Gaussian  

distribution added  

(blue dots) 

 

 

• Goal: fit a polynomial function to this data 

 

 

 Note: Nonlinear function of x, but linear function of the wj. 

  

 

26 
B. Leibe Image source: C.M. Bishop, 2006 
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Error Function 

• How to determine the values of the coefficients w? 

 We need to define an error function to be minimized. 

 This function specifies how a deviation from the target value 

should be weighted. 

 

• Popular choice: sum-of-squares error 

 Definition 

 

 

 

 We’ll discuss the motivation 

for this particular function later… 

27 
B. Leibe Image source: C.M. Bishop, 2006 
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Minimizing the Error 

• How do we minimize the error? 

 

 
 

• Solution (Always!) 

 Compute the derivative and set it to zero. 

 

 

 

 Since the error is a quadratic function of w, its derivative will 

be linear in w. 

 Minimization has a unique solution. 

 

 
28 
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Least-Squares Regression 

• We have given 

 Training data points: 

 Associated function values: 

 

• Start with linear regressor: 

 Try to enforce 

 One linear equation for each training data point / label pair. 

 

 This is the same basic setup used for least-squares classification! 

– Only the values are now continuous. 

29 
B. Leibe Slide credit: Bernt Schiele 

X = fx1 2 Rd; : : : ;xng
T = ft1 2 R; : : : ; tng
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Least-Squares Regression 

 
 

• Setup 

 Step 1: Define 

 

 Step 2: Rewrite 
 

 Step 3: Matrix-vector notation 

 

 
 

 Step 4: Find least-squares solution 

 
 

 Solution: 

30 
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~xi =

µ
xi
1

¶
; ~w =

µ
w

w0

¶

with 

Slide credit: Bernt Schiele 
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Regression with Polynomials 

• How can we fit arbitrary polynomials using least-squares 

regression? 

 We introduce a feature transformation (as before in ML). 

 

 

 

 

 

 

 

 E.g.: 

 Fitting a cubic polynomial. 

31 
B. Leibe Slide credit: Bernt Schiele 

y(x) = wTÁ(x)

=

MX

i=0

wiÁi(x)

Á0(x) = 1

assume 

basis functions 

Á(x) = (1; x; x2; x3)T
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Varying the Order of the Polynomial. 

 

 

 

 

 

 

 

 

 

 

 
 

Which one should we pick? 32 
Image source: C.M. Bishop, 2006 

Massive 

overfitting! 
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Analysis of the Results 

• Results for different values of M 

 

 Best representation of the original  

function sin(2¼x) with M = 3. 

 

 

 

 

 Perfect fit to the training data with 

M = 9, but poor representation of the  

original function. 

 

• Why is that??? 

 After all, M = 9 contains M = 3 as a special case! 
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Overfitting 

• Problem 

 Training data contains some noise 

 

 

 Higher-order polynomial fitted perfectly to the noise. 

 We say it was overfitting to the training data. 

 

• Goal is a good prediction of future data 

 Our target function should fit well to the training data, but  

also generalize. 

 Measure generalization performance on independent test set. 
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Measuring Generalization 

 

 

 

 

 

 

 
 

• E.g., Root Mean Square Error (RMS): 
 

• Motivation 

 Division by N lets us compare different data set sizes. 

 Square root ensures ERMS is measured on the same scale (and in 

the same units) as the target variable t. 
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Overfitting! 

Image source: C.M. Bishop, 2006 
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Analyzing Overfitting 

• Example: Polynomial of degree 9 

 

 

 

 

 

 

 

 

 
 

 Overfitting becomes less of a problem with more data. 
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Relatively little data 

Overfitting typical 

Enough data 

Good estimate 

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006 
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What Is Happening Here? 

• The coefficients get very large: 

 Fitting the data from before with various polynomials. 

 

 Coefficients: 
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Regularization 

• What can we do then? 

 How can we apply the approach to data sets of limited size? 

 We still want to use relatively complex and flexible models. 

 

• Workaround: Regularization 

 Penalize large coefficient values 

 

 

 

 Here we’ve simply added a quadratic regularizer, which is 

simple to optimize 

 
 

 The resulting  form of the problem is called Ridge Regression. 

 (Note: w0 is often omitted from the regularizer.) 
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Results with Regularization (M=9) 
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RMS Error for Regularized Case 

 

 

 

 

 

 

 

 

 

• Effect of regularization 

 The trade-off parameter ¸ now controls the effective model 

complexity and thus the degree of overfitting. 
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Summary 

• We’ve seen several important concepts 

 Linear regression 

 Overfitting 

 Role of the amount of data 

 Role of model complexity 

 Regularization 

 

• How can we approach this more systematically? 

 Would like to work with complex models. 

 How can we prevent overfitting systematically? 

 How can we avoid the need for validation on separate test data? 

 What does it mean to do linear regression? 

 What does it mean to do regularization? 
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Topics of This Lecture 

• Regression: Motivation 
 Polynomial fitting 

 General Least-Squares Regression 

 Overfitting problem 

 Regularization 

 Ridge Regression 
 

• Recap: Important Concepts from ML Lecture 
 Probability Theory 

 Bayes Decision Theory 

 Maximum Likelihood Estimation 

 Bayesian Estimation 
 

• A Probabilistic View on Regression 
 Least-Squares Estimation as Maximum Likelihood 
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Recap: The Rules of Probability 

• Basic rules 

 

 

 

 

 
 

• From those, we can derive 

43 

 

Sum Rule 

 
 

Product Rule 

 

Bayes’ Theorem 
 

       where 

B. Leibe 
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Recap: Bayes Decision Theory 
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x

x

x

 |p x a  |p x b

 | ( )p x a p a

 | ( )p x b p b

 |p a x  |p b x

Decision boundary 

Likelihood

Posterior =
Likelihood £ Prior

NormalizationFactor

Likelihood £Prior

Slide credit: Bernt Schiele 
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• One-dimensional case 

 Mean ¹ 

 Variance ¾2 

 

 

 

 

• Multi-dimensional case 

 Mean ¹ 

 Covariance § 

 

Recap: Gaussian (or Normal) Distribution 
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N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp
½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006 
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Side Note 

• Notation 

 In many situations, it will be necessary to work with the inverse 

of the covariance matrix §: 

 
 

 We call ¤ the precision matrix. 

 

 We can therefore also write the Gaussian as 
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Recap: Parametric Methods 

• Given  

 Data 

 Parametric form of the distribution 

with parameters µ  

 E.g. for Gaussian distrib.: 

 

• Learning 

 Estimation of the parameters µ 

 

• Likelihood of µ 
 Probability that the data X have indeed been generated from a 

probability density with parameters µ  
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x

x
X = fx1; x2; : : : ; xNg

µ = (¹;¾)

L(µ) = p(Xjµ)

Slide adapted from Bernt Schiele 
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E(µ) = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Computation of the likelihood 

 Single data point: 
 

 Assumption: all data points                            are independent 

 

 
 

 Log-likelihood 

 
 
 

• Estimation of the parameters µ (Learning) 

 Maximize the likelihood (=minimize the negative log-likelihood) 

 Take the derivative and set it to zero. 

 

Recap: Maximum Likelihood Approach 
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L(µ) = p(Xjµ) =
NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele 

@

@µ
E(µ) = ¡

NX

n=1

@
@µ

p(xnjµ)
p(xnjµ)

!
= 0

X = fx1; : : : ; xng
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Recap: Maximum Likelihood – Limitations 

• Maximum Likelihood has several significant limitations 

 It systematically underestimates the variance of the distribution! 

 E.g. consider the case  

 

 

 

 Maximum-likelihood estimate: 

 

 

 

 We say ML overfits to the observed data. 

 We will still often use ML, but it is important to know about this 

effect. 
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x
N = 1;X = fx1g

x

¾̂ = 0 !

¹̂

Slide adapted from Bernt Schiele 
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Recap: Deeper Reason 

• Maximum Likelihood is a Frequentist concept 

 In the Frequentist view, probabilities are the frequencies of 

random, repeatable events. 

 These frequencies are fixed, but can be estimated more 

precisely when more data is available. 
 

• This is in contrast to the Bayesian interpretation 

 In the Bayesian view, probabilities quantify the uncertainty 

about certain states or events. 

 This uncertainty can be revised in the light of new evidence. 

 

• Bayesians and Frequentists do not like 

each other too well… 

50 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
5

 

Recap: Bayesian Learning Approach 

• Bayesian view:  

 Consider the parameter vector µ as a random variable. 

 When estimating the parameters, what we compute is 
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p(xjX) =

Z
p(x; µjX)dµ

p(x; µjX) = p(xjµ;X)p(µjX)

p(xjX) =

Z
p(xjµ)p(µjX)dµ

This is entirely determined by the parameter µ 
(i.e. by the parametric form of the pdf). 

Slide adapted from Bernt Schiele 

Assumption: given µ, this 

doesn’t depend on X anymore 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
5

 

Recap: Bayesian Learning Approach 

• Discussion 

 

 

 

 

 

 

 

 

 
 

 The more uncertain we are about µ, the more we average over 

all possible parameter values. 
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p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate  

over all possible values of µ 

Likelihood of the parametric  

form µ given the data set X. 

Prior for the  

parameters µ 

Estimate for x based on 

parametric form µ 
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Topics of This Lecture 

• Regression: Motivation 
 Polynomial fitting 

 General Least-Squares Regression 

 Overfitting problem 

 Regularization 

 Ridge Regression 
 

• Recap: Important Concepts from ML Lecture 
 Probability Theory 

 Bayes Decision Theory 

 Maximum Likelihood Estimation 

 Bayesian Estimation 
 

• A Probabilistic View on Regression 
 Least-Squares Estimation as Maximum Likelihood 
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Next lecture… 
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