|  | Advanced Machine Lecture 1 |
| :---: | :---: |
|  | Introduction $20.10 .2015$ |
| \% | Bastian Leibe <br> Visual Computing Institute <br> RWTH Aachen University <br> http://www.vision.rwth-aachen.de/ <br> leibe@vision.rwth-aachen de |

## Organization

- Lecturer
, Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)
- Teaching Assistants
, Umer Rafi (rafi@vision.rwth-aachen.de)
, Lucas Beyer (beyer@vision.rwth-aachen.de)
- Course webpage
, http://www.vision.rwth-aachen.de/teaching/
- Slides will be made available on the webpage
- There is also an L2P electronic repository
- Please subscribe to the lecture on the Campus system! , Important to get email announcements and L2P access!


## Language

- Official course language will be English
, If at least one English-speaking student is present.
, If not... you can choose.


## - However...

- Please tell me when I'm talking too fast or when I should repeat something in German for better understanding!
- You may at any time ask questions in German!


## Relationship to Previous Courses

- Lecture Machine Learning (past summer semester)
, Introduction to ML
, Classification
, Graphical models
- This course: Advanced Machine Learning
, Natural continuation of ML course
, Deeper look at the underlying concepts
, But: will try to make it accessible also to newcomers
, Quick poll: Who hasn't heard the ML lecture?
- This year: Lots of new material
, Large lecture block on Deep Learning
, First time for us to teach this (so, bear with us...)


## Exercises and Supplementary Material

- Exercises
, Typically 1 exercise sheet every 2 weeks.
- Pen \& paper and programming exercises

Matlab for early topics
Theano for Deep Learning topics
, Hands-on experience with the algorithms from the lecture.

- Send your solutions the night before the exercise class.
- Supplementary material
, Research papers and book chapters
, Will be provided on the webpage.



## Machine Learning

- Statistical Machine Learning

Principles, methods, and algorithms for learning and prediction on the basis of past evidence

- Already everywhere
, Speech recognition (e.g. speed-dialing)
, Computer vision (e.g. face detection)
, Hand-written character recognition (e.g. letter delivery)
, Information retrieval (e.g. image \& video indexing)
, Operation systems (e.g. caching)
, Fraud detection (e.g. credit cards)
, Text filtering (e.g. email spam filters)
, Game playing (e.g. strategy prediction)
, Robotics (e.g. prediction of battery lifetime)
Slide credit: Bernt Schiele

RWITMACHE What Is Machine Learning Useful For?


Your wish is its command.

## Automatic Speech Recognition



## Machine Learning: Core Questions

- Learning to perform a task from experience
- Task
- Can often be expressed through a mathematical function

$$
y=f(x ; w)
$$

. $x$ : Input
, $y$ : Output
. $w$ : Parameters (this is what is "learned")

- Classification vs. Regression
- Regression: continuous $y$
- Classification: discrete $y$
E.g. class membership, sometimes also posterior probability


## Machine Learning: Core Questions

- $y=f(x ; w)$
, $w$ : characterizes the family of functions
$w$ : indexes the space of hypotheses
, $w$ : vector, connection matrix, graph, ...

B. Leibe

RWIHAMCHE

## This Lecture: Advanced Machine Learning

Extending lecture Machine Learning from last semester...

- Regression Approaches
, Linear Regression
, Regularization (Ridge, Lasso)
, Gaussian Processes

- Learning with Latent Variables
- EM and Generalizations
- Approximate Inference
- Deep Learning
- Neural Networks
, CNNs, RNNs, RBMs, etc.


Let's Get Started...

- Some of you already have basic ML background Who hasn't?
- We'll start with a gentle introduction
, I'll try to make the lecture also accessible to newcomers
, We'll review the main concepts before applying them
, I'll point out chapters to review from ML lecture whenever knowledge from there is needed/helpful
, But please tell me when I'm moving too fast (or too slow)


## Regression

- Learning to predict a continuous function value
, Given: training set $\mathbf{X}=\left\{x_{1}, \ldots, x_{N}\right\}$
with target values $\mathbf{T}=\left\{t_{1}, \ldots, t_{N}\right\}$.
$\Rightarrow$ Learn a continuous function $y(x)$ to predict the function value for a new input $x$.
- Steps towards a solution
- Choose a form of the function $y(x, \mathbf{w})$ with parameters $\mathbf{w}$.
, Define an error function $E(\mathbf{w})$ to optimize.
- Optimize $E(\mathbf{w})$ for $\mathbf{w}$ to find a good solution. (This may involve math).
- Derive the properties of this solution and think about its limitations.


## Error Function

- How to determine the values of the coefficients $w$ ?
- We need to define an error function to be minimized.
, This function specifies how a deviation from the target value should be weighted.
- Popular choice: sum-of-squares error

Definition
$E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}$
, We'll discuss the motivation for this particular function later...


## Example: Polynomial Curve Fitting

- Toy dataset
, Generated by function $f(x)=\sin (2 \pi x)+\epsilon$

Small level of random noise with Gaussian distribution added (blue dots)


- Goal: fit a polynomial function to this data $y(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j}$
Note: Nonlinear function of $x$, but linear function of the $w_{j}$.


## Minimizing the Error

- How do we minimize the error?

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}
$$

- Solution (Always!)
- Compute the derivative and set it to zero.

$$
\frac{\partial E(\mathbf{w})}{\partial w_{j}}=\sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\} \frac{\partial y\left(x_{n}, \mathbf{w}\right)}{\partial w_{j}} \stackrel{!}{=} 0
$$

- Since the error is a quadratic function of $\mathbf{w}$, its derivative will
be linear in w.
$\Rightarrow$ Minimization has a unique solution.


## Least-Squares Regression

- We have given
, Training data points:
- Associated function values:

$$
\begin{aligned}
& X=\left\{\mathbf{x}_{1} \in \mathbb{R}^{d}, \ldots, \mathbf{x}_{n}\right\} \\
& T=\left\{t_{1} \in \mathbb{R}, \ldots, t_{n}\right\}
\end{aligned}
$$

- Start with linear regressor:
, Try to enforce $\quad \mathbf{x}_{i}^{T} \mathbf{w}+w_{0}=t_{i}, \quad \forall i=1, \ldots, n$
, One linear equation for each training data point / label pair.
- This is the same basic setup used for least-squares classification! Only the values are now continuous.


## Least-Squares Regression

$$
\mathbf{x}_{i}^{T} \mathbf{w}+w_{0}=t_{i}, \quad \forall i=1, \ldots, n
$$

- Setup
, Step 1: Define
$\tilde{\mathbf{x}}_{i}=\binom{\mathbf{x}_{i}}{1}, \quad \tilde{\mathbf{w}}=\binom{\mathbf{w}}{w_{0}}$
- Step 2: Rewrite

$$
\tilde{\mathbf{x}}_{i}^{T} \tilde{\mathbf{w}}=t_{i}, \quad \forall i=1, \ldots, n
$$

- Step 3: Matrix-vector notation

$$
\begin{aligned}
\tilde{\mathbf{X}}^{T} \tilde{\mathbf{w}}=\mathbf{t} \quad \text { with } \quad \widetilde{\mathbf{X}} & =\left[\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathbf{x}}_{n}\right] \\
\mathbf{t} & =\left[t_{1}, \ldots, t_{n}\right]^{T}
\end{aligned}
$$

, Step 4: Find least-squares solution

$$
\begin{gathered}
\left\|\tilde{\mathbf{X}}^{T} \tilde{\mathbf{w}}-\mathbf{t}\right\|^{2} \rightarrow \min \\
\tilde{\mathbf{w}}=\left(\widetilde{\mathbf{X}} \widetilde{\mathbf{X}}^{T}\right)^{-1} \widetilde{\mathbf{X}} \mathbf{t}
\end{gathered}
$$

. Solution:

## Regression with Polynomials

- How can we fit arbitrary polynomials using least-squares regression?
- We introduce a feature transformation (as before in ML).

- E.g.: $\quad \phi(\mathbf{x})=\left(1, x, x^{2}, x^{3}\right)^{T}$
, Fitting a cubic polynomial.
Varying the Order of the Polynomial.





Which one should we pick?

## Analysis of the Results

- Results for different values of $M$

Best representation of the original function $\sin (2 \pi x)$ with $M=3$


Measuring Generalization


- E.g., Root Mean Square Error (RMS): $E_{\text {RMS }}=\sqrt{2 E\left(\mathbf{w}^{\star}\right) / N}$
- Motivation
, Division by $N$ lets us compare different data set sizes.
, Square root ensures $E_{R M S}$ is measured on the same scale (and in the same units) as the target variable $t$.

Analyzing Overfitting

- Example: Polynomial of degree 9


Relatively little data Overfitting typical

$\Rightarrow$ Overfitting becomes less of a problem with more data.
Slide adanted from Bernt Schiele
B. Leibe

RIIHAMCRE

## Overfitting

- Problem

Training data contains some noise

$$
f(x)=\sin (2 \pi x)+\epsilon
$$

, Higher-order polynomial fitted perfectly to the noise.
We say it was overfitting to the training data.

- Goal is a good prediction of future data
- Our target function should fit well to the training data, but also generalize.
, Measure generalization performance on independent test set.
B. Leibe

UNIVERSIT

## What Is Happening Here?

- The coefficients get very large:
- Fitting the data from before with various polynomials.
, Coefficients:



## Regularization

- What can we do then?
- How can we apply the approach to data sets of limited size?
- We still want to use relatively complex and flexible models.
- Workaround: Regularization
- Penalize large coefficient values

$$
\widetilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

, Here we've simply added a quadratic regularizer, which is simple to optimize

$$
\|\mathbf{w}\|^{2}=\mathbf{w}^{T} \mathbf{w}=\not \mu_{0}^{2}+w_{1}^{2}+\ldots+w_{M}^{2}
$$

, The resulting form of the problem is called Ridge Regression.

- (Note: $w_{0}$ is often omitted from the regularizer.)



## RMS Error for Regularized Case



- Effect of regularization

The trade-off parameter $\lambda$ now controls the effective model complexity and thus the degree of overfitting.

## Summary

- We've seen several important concepts
- Linear regression
, Overfitting
, Role of the amount of data
, Role of model complexity
- Regularization
- How can we approach this more systematically?
, Would like to work with complex models.
, How can we prevent overfitting systematically?
, How can we avoid the need for validation on separate test data?
, What does it mean to do linear regression?
, What does it mean to do regularization?

RWITAACHE

## Topics of This Lecture

- Regression: Motivation

Polynomial fitting
General Least-Squares Regression
Overfitting problem
Regularization
Ridge Regression

- Recap: Important Concepts from ML Lecture Probability Theory
- Bayes Decision Theory
, Maximum Likelihood Estimation
- Bayesian Estimation
- A Probabilistic View on Regression

Least-Squares Estimation as Maximum Likelihood

## Recap: The Rules of Probability

- Basic rules

| Sum Rule | $p(X)$ | $=\sum_{Y} p(X, Y)$ |
| ---: | :--- | ---: | :--- |
| Product Rule | $p(X, Y)$ | $=p(Y \mid X) p(X)$ |

- From those, we can derive

$$
\text { Bayes' Theorem } \quad p(Y \mid X)=\frac{p(X \mid Y) p(Y)}{p(X)}
$$

$$
\text { where } \quad p(X)=\sum_{Y} p(X \mid Y) p(Y)
$$

Recap: Gaussian (or Normal) Distribution

- One-dimensional case
- Mean $\mu$
, Variance $\sigma^{2}$
$\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$

- Multi-dimensional case
- Mean $\mu$
. Covariance $\Sigma$

$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$



## Side Note

- Notation

In many situations, it will be necessary to work with the inverse of the covariance matrix $\Sigma$ :

$$
\mathbf{\Lambda}=\boldsymbol{\Sigma}^{-1}
$$

We call $\Lambda$ the precision matrix.

We can therefore also write the Gaussian as

$$
\mathcal{N}\left(x \mid \mu, \lambda^{-1}\right)=\frac{1}{\sqrt{2 \pi} \lambda^{-1 / 2}} \exp \left\{-\frac{\lambda}{2}(x-\mu)^{2}\right\}
$$

$\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right)=\frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Lambda}|^{-1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})\right\}$

RUMHMCEE

## Recap: Maximum Likelihood Approach

- Computation of the likelihood
, Single data point: $p\left(x_{n} \mid \theta\right)$
, Assumption: all data points $X=\left\{x_{1}, \ldots, x_{n}\right\}$ are independent

$$
L(\theta)=p(X \mid \theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \theta\right)
$$

$$
\text { ihood } \quad E(\theta)=-\ln L(\theta)=-\sum_{n=1}^{N} \ln p\left(x_{n} \mid \theta\right)
$$

- Estimation of the parameters $\theta$ (Learning)
- Maximize the likelihood (=minimize the negative log-likelihood) $\Rightarrow$ Take the derivative and set it to zero.
Probability that the data $X$ have indee
probability density with parameters $\theta$

$$
L(\theta)=p(X \mid \theta)
$$

$$
\frac{\partial}{\partial \theta} E(\theta)=-\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p\left(x_{n} \mid \theta\right)}{p\left(x_{n} \mid \theta\right)} \stackrel{!}{=} 0
$$



## Recap: Deeper Reason

- Maximum Likelihood is a Frequentist concept
, In the Frequentist view, probabilities are the frequencies of random, repeatable events.
- These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
, In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
, This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...


## Recap: Bayesian Learning Approach

- Bayesian view:
- Consider the parameter vector $\theta$ as a random variable.
, When estimating the parameters, what we compute is

$$
\begin{gathered}
p(x \mid X)=\int p(x, \theta \mid X) d \theta \quad \begin{array}{c}
\text { Assumption: given } \theta, \text { this } \\
\text { doesn't depend on } \mathrm{X} \text { anymor }
\end{array} \\
p(x, \theta \mid X)=p\left(x \mid \theta, X^{\prime}\right) p(\theta \mid X)
\end{gathered}
$$

$$
p(x \mid X)=\int \underbrace{p(x \mid \theta)} p(\theta \mid X) d \theta
$$

This is entirely determined by the parameter $\theta$ (i.e. by the parametric form of the pdf).

Slide adapted from Bernt Schiele
B. Leibe

## Topics of This Lecture

- Regression: Motivation

Polynomial fitting
General Least-Squares Regression
Overfitting problem
Regularization
Ridge Regression

- Recap: Important Concepts from ML Lecture
- Probability Theory
- Bayes Decision Theory
- Maximum Likelihood Estimation

Bayesian Estimation

- A Probabilistic View on Regression
, Least-Squares Estimation as Maximum Likelihood
- More information, including a short review of Probability theory and a good introduction in Bayes Decision Theory can be found in Chapters 1.1, 1.2 and 1.5 of

> Christopher M. Bishop
> Pattern Recognition and Machine Learning
> Springer, 2006


