

Computer Vision - Lecture 20

Motion and Optical Flow

22.01.2015

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
 - > Epipolar Geometry and Stereo Basics
 - Camera calibration & Uncalibrated Reconstruction
 - Active Stereo
- Motion
 - Motion and Optical Flow
 - 3D Reconstruction (Reprise)
 - Structure-from-Motion

RWTHAACHEN UNIVERSITY Recap: Epipolar Geometry - Calibrated Case

Slide credit: Svetlana Lazebnik

RWTHAACHEN UNIVERSITY Recap: Epipolar Geometry - Uncalibrated Case

Slide credit: Svetlana Lazebnik

Recap: The Eight-Point Algorithm

Computer Vision WS 14/15

RWTHAACHEN UNIVERSITY Recap: Normalized Eight-Point Algorithm

- 1. Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels.
- **2.** Use the eight-point algorithm to compute F from the normalized points.
- 4. Transform fundamental matrix back to original units: if T and T' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $T^T F T'$.

Computer Vision WS 14/15

[Hartley, 1995]

Practical Considerations

Large Baseline

Small Baseline

- 1. Role of the baseline
 - Small baseline: large depth error
 - Large baseline: difficult search problem

Solution

> Track features between frames until baseline is sufficient.

Topics of This Lecture

Introduction to Motion

- Applications, uses
- Motion Field
 - Derivation
- Optical Flow
 - Brightness constancy constraint
 - > Aperture problem
 - > Lucas-Kanade flow
 - Iterative refinement
 - > Global parametric motion
 - Coarse-to-fine estimation
 - Motion segmentation
- KLT Feature Tracking

Video

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

Computer Vision WS 14/15

Slide credit: Svetlana Lazebnik

Computer Vision WS 11/15

Motion and Perceptual Organization

• Sometimes, motion is the only cue...

Motion and Perceptual Organization

• Sometimes, motion is foremost cue

Slide credit: Kristen Grauman

Motion and Perceptual Organization

 Even "impoverished" motion data can evoke a strong percept

Slide credit: Svetlana Lazebnik

Motion and Perceptual Organization

 Even "impoverished" motion data can evoke a strong percept

Slide credit: Svetlana Lazebnik

Uses of Motion

- Estimating 3D structure
 - Directly from optic flow
 - Indirectly to create correspondences for SfM

- Segmenting objects based on motion cues
- Learning dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)

Motion Estimation Techniques

Direct methods

- Directly recover image motion at each pixel from spatiotemporal image brightness variations
- Dense motion fields, but sensitive to appearance variations
- > Suitable for video and when image motion is small

Feature-based methods

- Extract visual features (corners, textured areas) and track them over multiple frames
- Sparse motion fields, but more robust tracking
- Suitable when image motion is large (10s of pixels)

Topics of This Lecture

- Introduction to Motion
 Applications, uses
- Motion Field
 - Derivation
- Optical Flow
 - Brightness constancy constraint
 - > Aperture problem
 - > Lucas-Kanade flow
 - Iterative refinement
 - > Global parametric motion
 - > Coarse-to-fine estimation
 - Motion segmentation
- KLT Feature Tracking

Motion Field

• The motion field is the projection of the 3D scene motion into the image

Slide credit: Svetlana Lazebnik

- $\mathbf{P}(t)$ is a moving 3D point
- Velocity of 3D scene point: $\mathbf{V} = \mathrm{d}\mathbf{P}/\mathrm{d}t$
- $\mathbf{p}(t) = (\mathbf{x}(t), \mathbf{y}(t))$ is the projection of \mathbf{P} in the image.
- Apparent velocity ${f v}$ in the image: given by components $v_x={
 m d}{f x}/{
 m d}t$ and $v_y={
 m d}{f y}/{
 m d}t$
- These components are known as the *motion field* of the image.

• Pure translation: V is constant everywhere

$$v_x = \frac{fV_x - V_z x}{Z} \qquad \mathbf{v} = \frac{1}{Z} (\mathbf{v}_0 - V_z \mathbf{p}),$$
$$v_y = \frac{fV_y - V_z y}{Z} \qquad \mathbf{v}_0 = (fV_x, fV_y)$$

• Pure translation: V is constant everywhere

$$\mathbf{v} = \frac{1}{Z} (\mathbf{v}_0 - V_z \mathbf{p}),$$

$$\mathbf{v}_0 = (fV_x, fV_y)$$

- V_z is nonzero:
 - > Every motion vector points toward (or away from) \mathbf{v}_0 , the vanishing point of the translation direction.

Slide credit: Svetlana Lazebnik

• Pure translation: V is constant everywhere

$$\mathbf{v} = \frac{1}{Z} (\mathbf{v}_0 - V_z \mathbf{p}),$$

$$\mathbf{v}_0 = (fV_x, fV_y)$$

- V_z is nonzero:
 - > Every motion vector points toward (or away from) v_0 , the vanishing point of the translation direction.
- V_z is zero:
 - > Motion is parallel to the image plane, all the motion vectors are parallel.
- The length of the motion vectors is inversely proportional to the depth Z.

Topics of This Lecture

- Introduction to Motion
 - Applications, uses
- Motion Field
 - > Derivation

Optical Flow

- Brightness constancy constraint
- > Aperture problem
- > Lucas-Kanade flow
- Iterative refinement
- > Global parametric motion
- Coarse-to-fine estimation
- Motion segmentation

• KLT Feature Tracking

Optical Flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image.
- Ideally, optical flow would be the same as the motion field.
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion.
 - > Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination.

Apparent Motion ≠ **Motion Field**

Slide credit: Kristen Grauman

Estimating Optical Flow

• Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them.

Key assumptions

- Brightness constancy: projection of the same point looks the same in every frame.
- Small motion: points do not move very far.
- Spatial coherence: points move like their neighbors.

The Brightness Constancy Constraint

Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

• Linearizing the right hand side using Taylor expansion:

$$I(x, y, t-1) \approx I(x, y, t) + I_x \cdot u(x, y) + I_y \cdot v(x, y)$$

Temporal derivative

• Hence, $(I_x) \cdot u + (I_y) \cdot v + (I_t) \approx 0$

Spatial derivatives

Slide credit: Svetlana Lazebnik

The Brightness Constancy Constraint

 $I_x \cdot u + I_y \cdot v + I_t = 0$

How many equations and unknowns per pixel?

One equation, two unknowns

- Intuitively, what does this constraint mean? $\nabla I \cdot (u, v) + I_t = 0$
- The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

```
If (u,v) satisfies the equation,
so does (u+u', v+v') if \nabla I \cdot (u', v') = 0
```

gradient

edge

The Aperture Problem

The Aperture Problem

Slide credit: Svetlana Lazebnik

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Slide credit: Svetlana Lazebnik

Computer Vision WS 14/15

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Slide credit: Svetlana Lazebnik

Computer Vision WS 14/15

The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Slide credit: Svetlana Lazebnik

Computer Vision WS 14/15

Solving the Aperture Problem

- How to get more equations for a pixel?
- Spatial coherence constraint: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

 $0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981. 42

Solving the Aperture Problem

Least squares problem:

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

• Minimum least squares solution given by solution of $(A^T A) \ d = A^T b$

2x1

 2×1

2x2

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad A^T b$$

(The summations are over all pixels in the $K \times K$ window)

Conditions for Solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- When is this solvable?
 - ▶ A^TA should be invertible.
 - > A^TA entries should not be too small (noise).
 - ▶ A^TA should be well-conditioned.

Slide credit: Svetlana Lazebnik

Eigenvectors of $A^T A$

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Haven't we seen an equation like this before?
- Recall the Harris corner detector: M = A^TA is the second moment matrix.
- The eigenvectors and eigenvalues of *M* relate to edge direction and magnitude.
 - > The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change.
 - > The other eigenvector is orthogonal to it.

Interpreting the Eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

Slide credit: Kristen Grauman

46

 λ_1

Edge

Slide credit: Svetlana Lazebnik

B. Leibe

47

Low-Texture Region

Slide credit: Svetlana Lazebnik

High-Texture Region

 $\sum \nabla I (\nabla I)^T$

- Gradients are different, large magnitude - Large λ_1 , large λ_2

Per-Pixel Estimation Procedure

• Let
$$M = \sum (\nabla I) (\nabla I)^T$$
 and $b = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$

- Algorithm: At each pixel compute U by solving MU = b
- *M* is singular if all gradient vectors point in the same direction
 - > E.g., along an edge
 - Trivially singular if the summation is over a single pixel or if there is no texture
 - I.e., only normal flow is available (aperture problem)
- Corners and textured areas are OK

Iterative Refinement

1. Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation.

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- 2. Warp one image toward the other using the estimated flow field.
 - > (Easier said than done)

3. Refine estimate by repeating the process.

(using *d* for *displacement* here instead of *u*)

(using *d* for *displacement* here instead of *u*)

(using *d* for *displacement* here instead of *u*)

(using *d* for *displacement* here instead of *u*)

Slide credit: Steve Seitz

- Some Implementation Issues:
 - Warping is not easy (ensure that errors in warping are smaller than the estimate refinement).
 - Warp one image, take derivatives of the other so you don't need to re-compute the gradient after each iteration.
 - Often useful to low-pass filter the images before motion estimation (for better derivative estimation, and linear approximations to image intensity).

RWTHAACHEN UNIVERSITY Extension: Global Parametric Motion Models

B. Leibe

Translation

2 unknowns

Affine

6 unknowns

8 unknowns

3D rotation

3 unknowns

Computer Vision WS 14/15

Example: Affine Motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$

 $v(x, y) = a_4 + a_5 x + a_6 y$

• Substituting into the brightness constancy equation:

$$I_x \cdot u + I_y \cdot v + I_t \approx 0$$

Slide credit: Svetlana Lazebnik

Example: Affine Motion

$$u(x, y) = a_1 + a_2 x + a_3 y$$

$$v(x, y) = a_4 + a_5 x + a_6 y$$

 Substituting into the brightness constancy equation:

 $I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \approx 0$

- Each pixel provides 1 linear constraint in 6 unknowns.
- Least squares minimization:

 $Err(\vec{a}) = \sum \left[I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \right]^2$

Problem Cases in Lucas-Kanade

- The motion is large (larger than a pixel)
 - Iterative refinement, coarse-to-fine estimation
- A point does not move like its neighbors
 - Motion segmentation
- Brightness constancy does not hold
 - Do exhaustive neighborhood search with normalized correlation.

Dealing with Large Motions

Temporal Aliasing

- Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.
- I.e., how do we know which 'correspondence' is correct?

correct (no aliasing)

Nearest match is incorrect (aliasing)

• To overcome aliasing: coarse-to-fine estimation.

Computer Vision WS 14/15

Idea: Reduce the Resolution!

Slide credit: Svetlana Lazebnik

Coarse-to-fine Optical Flow Estimation

Slide credit: Steve Seitz

Coarse-to-fine Optical Flow Estimation

Dense Optical Flow

- Dense measurements can be obtained by adding smoothness constraints.

(c) Thomas Brox 2009

T. Brox, C. Bregler, J. Malik, <u>Large displacement</u> optical flow, CVPR'09, Miami, USA, June 2009.

Summary

- Motion field: 3D motions projected to 2D images; dependency on depth.
- Solving for motion with
 - > Sparse feature matches
 - Dense optical flow
- Optical flow
 - > Brightness constancy assumption
 - > Aperture problem
 - Solution with spatial coherence assumption

Computer Vision WS 14/15

References and Further Reading

- Here is the original paper by Lucas & Kanade
 - B. Lucas and T. Kanade. <u>An iterative image registration</u> <u>technique with an application to stereo vision.</u> In *Proc. IJCAI*, pp. 674-679, 1981.
- And the original paper by Shi & Tomasi
 - > J. Shi and C. Tomasi. <u>Good Features to Track</u>. CVPR 1994.
- Read the story how optical flow was used for special effects in a number of recent movies
 - http://www.fxguide.com/article333.html