RWTHAACHEN UNIVERSITY

Computer Vision - Lecture 17

Epipolar Geometry & Stereo Basics

13.01.2015

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements

- Seminar in the summer semester
 - "Current Topics in Computer Vision and Machine Learning"
 - > Block seminar, presentations in 1st week of semester break
 - Registration period: 14.01.2015 28.01.2015
 - http://web-info8.informatik.rwth-aachen.de/apse
 - > Quick poll: Who would be interested in that?

RWTHAACHE UNIVERSIT

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- · Local Features & Matching
- Object Categorization
- 3D Reconstruction
 - > Epipolar Geometry and Stereo Basics
 - > Camera calibration & Uncalibrated Reconstruction
 - Multi-view Stereo
- Optical Flow

Topics of This Lecture

- Geometric vision
 - Visual cues
 - Stereo vision
- · Epipolar geometry
 - Depth with stereo
 - Geometry for a simple stereo system
 - Case example with parallel optical axes
 - General case with calibrated cameras
- Stereopsis & 3D Reconstruction
 - Correspondence search
 - > Additional correspondence constraints
 - Possible sources of error
 - Applications

B. Leibe

Geometric vision

- · Goal: Recovery of 3D structure
 - What cues in the image allow us to do this?

Slide credit: Svetlana Lazebnik

Visual Cues

Shading

Merle Norman Cosmetics, Los Angeles

Slide credit: Steve Seitz

. Leibe

Let's Formalize This!

• For a given stereo rig, how do we express the epipolar constraints algebraically?

• For this, we will need some linear algebra.

• But don't worry! We'll go through it step by step...

Excursion: Cross Product $\vec{a} \cdot \vec{c} = 0$ $\vec{a} \cdot \vec{c} = 0$ $\vec{b} \cdot \vec{c} = 0$ • Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs. • So here, c is perpendicular to both a and b, which means the dot product is 0.

