Computer Vision - Lecture 16
 Part-based Models for Object Categorization

08.01. 2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Topics of This Lecture

- Recap: Specific Object Recognition with Local Features
- Matching \& Indexing
- Geometric Verification
- Part-Based Models for Object Categorization
, Structure representations
, Different connectivity structures
- Bag-of-Words Model
- Use for image classification
- Implicit Shape Model
- Generalized Hough Transform for object category detection
- Deformable Part-based Model
, Discriminative part-based detection

Recap: Geometric Verification by Alignment

- Assumption
- Known object, rigid transformation compared to model image
\Rightarrow If we can find evidence for such a transformation, we have recognized the object.
- You learned methods for
, Fitting an affine transformation from ≥ 3 correspondences
- Fitting a homography from ≥ 4 correspondences

$$
\begin{array}{cc}
\text { Affine: solve a system } & \text { Homography: solve a system } \\
A t=b & A h=0
\end{array}
$$

- Correspondences may be noisy and may contain outliers \Rightarrow Need to use robust methods that can filter out outliers \Rightarrow Use RANSAC or the Generalized Hough Transform

RUIT
Applications: Mobile Augmented Reality

> Mobile Phone Augmented Reality

at
30 Frames per Second
using Natural Feature Tracking
(all processing and rendering done in software)
D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg Pose Tracking from Natural Features on Mobile Phones. In ISMAR 2008. B. Leibe

RWITAACHE
Topics of This Lecture
UNIVERSIT

- Recap: Specific Object Recognition with Local Features
- Part-Based Models for Object Categorization
- Structure representations
, Different connectivity structures
- Bag-of-Words Model

Use for image classification

- Implicit Shape Mode!
-Generalized Hough Transform for object category detection
- Deformable Part-based Model
, Discriminative part-based detection

Applications: Fast Image Registration

B. Leibe

Similarly, Bags-of-Textons for Texture Repr.

Julesz, 1981; Cula \& Dana, 2001; Leung \& Malik 2001; Mori, Belongie \& Malik, 2001; Schmid 2001; Varma \& Zisserman, 2002, 2003; Lazebnik, Schmid \& Ponce, 2003

Spatial Pyramid Representation

- Representation in-between orderless BoW and global appearance

- Why a weakness?

RWHHAACHE
Limitations of BoW Representations

- The bag of words removes spatial layout.
- This is both a strength and a weakness.
- Why a strength?

RWIHAMCHER

Summary: Bag-of-Words

- Pros:
, Flexible to geometry / deformations / viewpoint
, Compact summary of image content
- Provides vector representation for sets
, Empirically good recognition results in practice
- Cons:
. Basic model ignores geometry - must verify afterwards, or encode via features.
. Background and foreground mixed when bag covers whole image
- Interest points or sampling: no guarantee to capture object-level parts.
, Optimal vocabulary formation remains unclear.

RNUHAACHE

Implicit Shape Model: Basic Idea

- Visual vocabulary is used to index votes for object position [a visual word = "part"].

Training image

Visual codeword with displacement vectors
B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(1-3), 2008.

Implicit Shape Model (ISM)

- Basic ideas
, Learn an appearance codebook
, Learn a star-topology structural model
Features are considered independent given obj. center

- Algorithm: probabilistic Gen. Hough Transform
, Exact correspondences \rightarrow Prob. match to object part
, NN matching \rightarrow Soft matching
, Feature location on obj. \rightarrow Part location distribution
, Uniform votes \rightarrow Probabilistic vote weighting
, Quantized Hough array \rightarrow Continuous Hough space

RWIHAACHE
Sometimes, Rotation Invariance Is Needed...

Topics of This Lecture - Recap: Specific Object Recognition with Local Features	
	- Part-Based Models for Object Categorization - Structure representations , Different connectivity structures
	- Bag-of-Words Model , Use for image classification
	- Implicit Shape Model Generalized Hough Transform for object category detection - Deformable Part-based Model - Discriminative part-based detection
	B. Letee

RWIHAMCHE

References and Further Reading

- Details about the ISM approach can be found in
B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(1-3), 2008.
- Details about the DPMs can be found in
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, IEEE Trans. PAMI, Vol. 32(9), 2010.
- Try the ISM Linux binaries
- http://www.vision.ee.ethz.ch/bleibe/code
- Try the Deformable Part-based Models http://www.cs.uchicago.edu/~pff/latent

You Can Try It At Home...

- Deformable part-based models have been very successful at several recent evaluations.
\Rightarrow Currently, state-of-the-art approach in object detection
- Source code and models trained on PASCAL 2006, 2007, and 2008 data are available here:

RWIHAACHE UNIVERSITY

http://www.cs.uchicago.edu/~pff/latent

