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Announcements (2)

e Exam
» There will be a written exam.
» I’'m currently organizing the exam date...
» We’ll organize a test exam towards the end of the semester.

¢ Admission requirements
» Need to reach at least 50% of the exercise points.
» Points are given
- for each exercise sheet.
- for the test exam.
» Bonus points will be available on several occasions.

= If you follow the lecture and do the exercises regularly,
you won’t have to worry about getting admitted.

B. Leibe
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Topics of This Lecture

¢ Recap: Linear Filters

¢ Multi-Scale representations

» How to properly rescale an image?
¢ Filters as templates

» Correlation as template matching
¢ Image gradients

» Derivatives of Gaussian

* Edge detection
» Canny edge detector

B. Leibe
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Announcements

¢ Exercise sheet 2 is available
» Thresholding, Morphology
~ Gaussian smoothing
~ Image gradients
» Edge Detection
= Deadline: Wednesday night, 05.11. (next week).

¢ Reminder
» You’re encouraged to form teams of up to 3 people!
» Make it easy for Aljosa & Dora to correct your solutions:
- Turn in everything as a single zip archive.
- Use the provided Matlab framework.
- For each exercise, you need to implement the corresponding
apply function. If the screen output matches the expected output,
you will get the points for the exercise; else, no points.

- Matlab helps you to find errors (red lines under your code)!
B. Leibe

Course Outline

* Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

¢ Segmentation

Local Features & Matching
¢ Object Recognition and Categorization
¢ 3D Reconstruction

¢ Motion and Tracking

B. Leibe
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Recap: Gaussian Smoothing

¢ Gaussian kernel - "
1 _(z +‘§ ) A
Gg = e 20 : y
2mo? . d Wy
¢ Rotationally symmetric
¢ Weights nearby pixels more

than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

¢ A Gaussian gives a good model
of a fuzzy blob

6
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Recap: Smoothing with a Gaussian Recap: Effect of Filtering

¢ Parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.
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* Noise introduces high frequencies.

To remove them, we want to apply a /‘I\ /-F

“low-pass” filter. T

The ideal filter shape in the
frequency domain would be a box.
But this transfers to a spatial sinc, |

which has infinite spatial support.

=] 1 =8« A compact spatial box filter i
3 | 3 transfers to a frequency sinc, which
2 | ¢ creates artifacts. —
= [T =
3 for sigma=1:3:10 5| * A Gaussian has compact support in
= h = fspecial('gaussian', fsize, sigma); = both domains. This makes it a
2 out = imfilter(im, h); Z convenient choice for a low-pass
E. imshow (out) ; E’ filter. '
3 pause; 3
end 7 8
ide credit: Kristen Grauman B. Leibe B. Leibe

Recap: Low-Pass vs. High-Pass ' Topics of This Lecture
Low-pass ¢ Multi-Scale representations
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B. Leibe Image Source: S, Chenne B. Leibe

Motivation: Fast Search Across Scales Recap: Sampling and Aliasing '

Fourier

Transform Magnitude
Signal —_— } Spectrum
Sample Capy and
Shill

Sampled Fourier

Samp Magnitude
LT_U_ELILL o ‘mﬂ““m

search )

,_uau;h_

3 # ZaN 3
5 . search ﬁ 3
%] L 0
= - Cut out by
5] S multiplication
G % Aceurately Ta— with box filter
g S Reconstructed Fourier
- 5 Signal “Transform
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2 2 Spectrum
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B. Leibe \mage Source: lrani & Ba B. Leibe Image Source: Forsvth & Poncd




RWTHAACHE
UNIVERSITY] UNIVERSITY]

Recap: Sampling and Aliasing

Fourier

Transform Magnitude
Signal —_— A Spectrum

Sample Copy and
Shift

Recap: Sampling and Aliasing

Fourier

) Transform Magnitude
Signal _— f Spectrum
Sample Copy and
Shirt

Sampled TFourier

Signal Transform ;’;’;i":;‘:;t‘ §i'§}'\5:”’ S ;‘F;#:'L‘r':l‘::“
< < o
5 5
12 [
= B ]
= = Cutout by
) o multiplication
2 2 Inaccurately e with hox filier
g > Reconstructed Fourier
o o Signal “Transform
g ] -_— Magnitude
(=3 Q Spectrum
£ £ f‘\_ /—I\
o o
S 1 = " 14
B. Leibe Jmage Source: Forsvth & Ponc B. Leibe Image Source: Forsvth & Ponc
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Recap: Resampling with Prior Smoothing The Gaussian Pyramid
256 x 256 128 x 128 64 x 64 32 x 32 16 x 16

Low resolution G, = (G, *gaussian) | 2 J
. * gAlSHan~ 2

no
smoothing

Gaussian
o=1

Gaussian
oc=2

¢ Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.

B. Leibe
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15 High resolution

Image Source; Forsvth & Ponc
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Source; Irani & Ba:
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Gaussian Pyramid - Stored Information

Vel " All the extra
il levels add very
, little overhead
for memory or
computation!
“
(A -

B. Leibe

Summary: Gaussian Pyramid

e Construction: create each level from previous one
» Smooth and sample

¢ Smooth with Gaussians, in part because
» a Gaussian*Gaussian = another Gaussian
- G(oy) * G(oy) = G(sqrt(c; 2* 0, %))

¢ Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

Computer Vision WS 14/15
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The Laplacian Pyramid
L; = G; - expand(Gy.,)
G; = L + expand(G;,,)

Laplacian ~ Difference of Gaussian

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.

Gaussian Pyramid

Laplacian Pyramid
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Why is this useful?
Ny v

B. Leibe
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Topics of This Lecture Note: Filters are Templates
* Applying a filter at some point ¢ Insight
can be seen as taking a dot- ~ Filters look like the effects
product between the image they are intended to find.
- and some vector. . Filters find effects they
ay @ ¢ Filtering the image is a set of look like.
* Filters as templates =) dot products.
» Correlation as template matching ii‘
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Where’s Waldo?

Correlation as Template Matching

¢ Think of filters as a dot product of the filter vector with
the image region
» Now measure the angle between the vectors

a-b
a-b=alb|cosé cosé =
lallbl
» Angle (similarity) between vectors can be measured by
o il normalizing the length of each vector to 1 and taking the dot
S 3 product.
12 [
2 2 =
S A ) o Sk T 5 a
2 2 -
> Detected template Correlation map > :] . 0 b
Q %
g_ E_ Template
E :
o 25 8] Image region Vector interpretation 2
ide credit: Kristen Grauman B. Leibe B. Leibe
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Topics of This Lecture Derivatives and Edges...

1st derivative | | ) |

8§ | Masima of first
|| " derivative
R T e
=N e« Image gradients S
< L. . 3 |
= » Derivatives of Gaussian — { .
< . | ] | fl
S 5 P !
= = .,‘ | | 2nd derivative |
& S | P -
g 5 e e 2010 Crossings :/}‘/ |
5 5 ol second |
a = rativ I
= £ derivative '
8 8 e e e N
. 27 . 28
B. Leibe B. Leibe
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Differentiation and Convolution Partial Derivatives of an Image

G

« For the 2D function f(X,y), the partial derivative is:
Axy) o e y)- f(xy)
OX -0 r3

¢ For discrete data, we can approximate this using finite
differences:

oy  fFix+Ly)-f(xy)
ox 1

¢ To implement the above as convolution, what would be
the associated filter?

[1]1]

ide credit; Kristen Grauman B Lefbe

0
!
<
g
1
=
.
8
@
S
g
E
2
£
I=3
o

g
3
[
2
=
S
@
>
g
5
g Which shows changes with respect to x?
o

8]

ide credit; Kristen Grauman LA




Computer Vision WS 14/15

Computer Vision WS 14/15

i
i~
5
&
0
=
=
o
2
>
g
=
a
2
1
o

TWTH/ZCEN
Assorted Finite Difference Filters

i [-1]
Prewitt: M. = [1] o My =
[T
01
Sobel: M. = [Z]0]2 3 My =
e
Roberts: M, = oM, =
>> My = fspecial(‘sobel’);
>> outim = imfilter (double(im), My);
>> imagesc (outim) ;
>> colormap gray;
31
ide credit: Kristen Grauman B. Leibe
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Effect of Noise
¢ Consider a single row or column of the image
» Plotting intensity as a function of position gives a signal
o Ea w0 % ma 0 0 w0 0 T 200
Where is the edge?
33
Slide credit; Steve Seit B. Leibe
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Derivative Theorem of Convolution
el — (0
Ga(hx ) = (5zh) * f
¢ Differentiation property of convolution.
Sigma = 50
O aveeeeeeseneme———
f % : : . B
200 400 600 BOO 1000 1200 1400 1600 1800 2000
A £ /f\
(.Lh £° 1\ /’
v
0 200 400 0 B00 1000 1200 1400 1600 1800 2000
:
o 3 f‘ 4
Gat)+ § -/ i
P S S S NS 00700 T SN St S SR
0 200 400 0 BUO 1000 1200 1400 1600 1800 2000
35
ide credit; Steve Seit. B. Leibe
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Image Gradient

* The gradient of an image:
_ [of Of ]
vi=[55

* The gradient points in the direction of most rapid intensity change

_ o _[8f @

v = [3.0] [ . vi=[%5]
vi=[0.%]

* The gradient direction (orientation of edge normal) is given by:

6 =tan-1 (af/af)

= ay/ v

* The edge strength is given by the gradient magnitude

VAl = /(3D + (&)

B. Leibe

lide credit: Steve Seitz

Solution: Smooth First

= T
f Bl
3
) 260 d[lﬂ} 600 BéU
i} i T
3
h H]
ot [ N S [ J
a 200 400 600 800 1000 1200 1400 1600 1800 2000
e o— T =
hxf % 4
F SO SRR SR 4
o 200 400 600 800 1000 1200 1400 1600 1800 2000
c — — ,
i) g
se(hxf) %
g P
. : I J
o 200 400 600 800 1000 1200 1400 1600 1800 2000
Where is the edge? Look for peaks in %(h* i) 2
ide credit: Steve Seit; B. Leibe _
Derivative of Gaussian Filter
g*(h*l) = (g=*h)=*1
00030 00133 00219 0.0133 0.0030
00133 00596 0.0983 0.0596 0.0133
1 —1 %k 00219 00983 0.1621 0.0983 0.0219
00133 00596 0.0983 0.0596 0.0133
00030 00133 00219 0.0133 0.0030
Why is this preferable?
36
ide adapted from Kristen Grauman
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Derivative of Gaussian Filters Laplacian of Gaussian (LoG)
. a2
* Consider > (h * f) —
Mt il . .
020 400 600 B0 1000 1200 1400 1800 1800 2000
< 52 h - q/\\ ! If\ i
2 directi -direction 2 927 20
5 x-direction y g Vo :
g & B A g T 200 400 600 600 1000 1200 1400 1600 1800 2000
= s : Al
2 2 92 £ : Sy ;
2 s (Wh)*f Zooe \ S R i
2 g ) 8 \/ |
=3 =3 i i i N i i i
E‘ ‘ ‘El o 200 400 600 BOO 1000 1200 1400 1600 1800 2000
o © Where is the edge? Zero-crossings of bottom graph 38
B. Leibe ource: Svetlana Lazebni lide credit: Steve Seitz B. Leibe
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Summary: 2D Edge Detection Filters
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Topics of This Lecture

Laplacian of Gaussian
T

Gaussian Derivative of Gaussian U
_ul402 d 2 i
o ho(u,v) = 5¢ 202 —ho(u,v) V=he(u, v) Hilt "
< 270 ox 0 B
3 }"j 3
g y 2
= =  Edge detection
2 VZ2is the Laplacian operator: 2 - Canny edge detector
& 2p _ 0%f 4 0?f g
E- Vep= 92 + 9y E-
8 8
39
Slide credit; Kristen Grauman B. Leibe B Leibe
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Edge Detection Designing an Edge Detector
¢ Goal: map image from 2D array of pixels to a set of

e Criteria for an “optimal” edge detector:
curves or line segments or contours.

» Good detection: the optimal detector should minimize the

o Why? probability of false positives (detecting spurious edges caused by
noise), as well as that of false negatives (missing real edges).
» Good localization: the edges detected should be as close as
- ~ possible to the true edges.
-5 " ™ @. - = e » Single response: the detector should return one point only for
o = )f‘ 2% - - each true edge point; that is, minimize the number of local
o g maxima around the true edge.
: Figure from J. Shotton et al., PAMI 2007 :
g 2 [l [ ] T}
z : | ] 11
g g iz | ]
5 5 B O an
% ¢ Main idea: look for strong gradients, post-process i 8] [ ] 1T
5 e Tue Poor robustness Poor Too many
o M o edge to noise localization responses

. ; 4
ide credit; Kristen Grauman, David Lowe LA o. Leibe Source: Li Fei-Fei]




Gradients — Edges

Primary edge detection steps

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast
3. Edge localization

> Determine which local maxima from filter output are actually
edges vs. noise

> Thresholding, thinning

e Two issues
» At what scale do we want to extract structures?
» How sensitive should the edge extractor be?

Computer Vision WS 14/15

44
adapted from Kristen Grauman B. Leibe

Sensitivity: Recall Thresholding

¢ Choose a threshold t
* Set any pixels less than t
to zero (off).

* Set any pixels greater than
or equal t to one (on).

S |
I A S L] 3¢
R lii]=
gl {O, otherwise

Computer Vision WS 14/15

B. Leibe

Gradient Magnitude Image
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ide credit; Kristen Grauman

Scale: Effect of ¢ on Derivatives
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o = 1 pixel

o = 3 pixels

* The apparent structures differ depending on Gaussian’s
scale parameter.

= Larger values: larger-scale edges detected
= Smaller values: finer features detected

45

lide credit: Kristen Grauman B. Leibe

Original Image

47

ide credit: Kristen Grauman
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RWTH/ACHEN
Thresholding with a Lower Threshold
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49
ide credit; Kristen Grauman B. Leibe
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Thresholding with a Higher Threshold

RWTH/CET
Canny Edge Detector

¢ Probably the most widely used edge detector in
computer vision

¢ Theoretical model: step-edges corrupted by additive
Gaussian noise

¢ Canny has shown that the first derivative of the
Gaussian closely approximates the operator that
optimizes the product of signal-to-noise ratio and

= o N .

B 3 localization.

3 3

1% o

2 2

= =

2 S

@ 7

> >

g g J. Canny, A Computational Approach To Edge Detection, IEEE Trans.

g 5 Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

o o

S 50 S 51
ide credit: Kristen Grauman B. Leibe B. Leibe Source: Li Fei-Feil
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Canny Edge Detector The Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
Define two thresholds: low and high
Use the high threshold to start edge curves and the low

n wn

§ threshold to continue them §

1 1

= =

§ e MATLAB: §

> >> edge (image, ‘canny’); >

g >> help edge g

g E Original image (Lena)

o ) 5 ® 53

B. Leibe Source: D. Lowe, L. Fei-Fei ide credit: Kristen Grauman B. Leibe
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The Canny Edge Detector The Canny Edge Detector

How to turn
these thick
regions of

the gradient
into curves?

e
- - Triesnol

e

ide credit; Kristen Grauman LA

2
S
12
=
=
S
3
S
g
é. Gradient magnitude
o

o

Computer Vision WS 14/15

ide credit; Kristen Grauman B. Leibe



http://www.graphics.pku.edu.cn/members/chenyisong/lectures/readings/Canny86pami.pdf

Non-Maximum Suppression

¢ Check if pixel is local maximum along gradient direction,
select single max across width of the edge
» Requires checking interpolated pixels p and r
= Linear interpolation based on gradient direction

Computer Vision WS 14/15
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8. Leibe Source: Forsyth & Ponce
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Solution: Hysteresis Thresholding

¢ Hysteresis: A lag or momentum factor
* Idea: Maintain two thresholds k,; and &,
» Use ky;q, to find strong edges to start edge chain
» Use ky,, to find weak edges which continue edge chain
* Typical ratio of thresholds is roughly
khigh / Koy =2

Computer Vision WS 14/15

B. Leibe

59
Source: D. Lowe, S. SeitZ]

Object Boundaries vs. Edges
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Background Texture Shadows

ide credit; Kristen Grauman B. Leibe

The Canny Edge Detector

Thinning

Computer Vision WS 14/15

lide credit: Kristen Grauman B. Leibe

Problem: pixels
along this edge
didn’t survive
the thresholding.

(non-maximum suppression)

Hysteresis Thresholding

Original image

High threshold
(strong edges)

Low threshold
(weak edges)

Computer Vision WS 14/15

B. Leibe

courtesy of G. Loy

Hysteresis threshold

60

Source: L, Fei-Fei

Edge Detection is Just the Beginning...

Image Human segmentation

¢ Berkeley segmentation database:
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B. Leibe

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Gradient magnitude

62
Source: L. Lazebnik
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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References and Further Reading

¢ Background information on linear filters and their
connection with the Fourier transform can be found in
Chapter 7 of F&P. Additional information on edge
detection is available in Chapter 8.
» D. Forsyth, J. Ponce,

Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision

A MODERN APPROACH
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