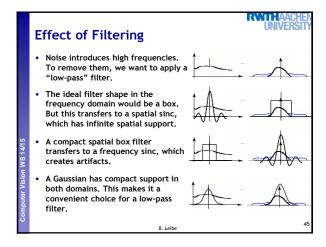
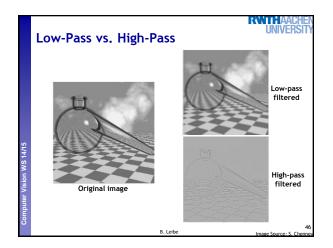
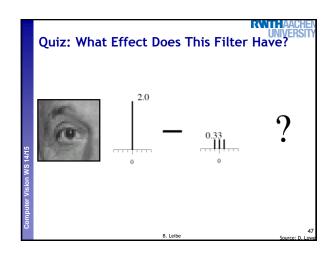
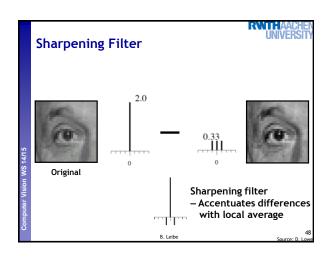


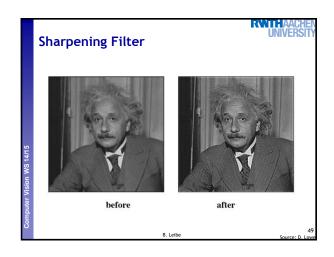
## Effect of Convolution • Convolving two functions in the image domain corresponds to taking the product of their transformed versions in the frequency domain. $f\star g \multimap \mathcal{F} \cdot \mathcal{G}$ • This gives us a tool to manipulate image spectra. • A filter attenuates or enhances certain frequencies through this effect.

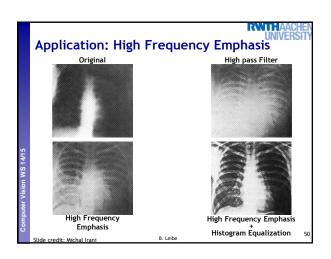


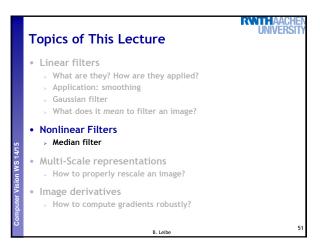


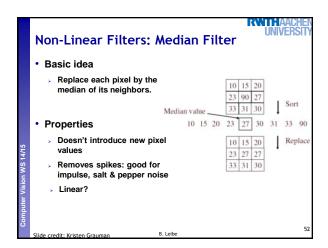


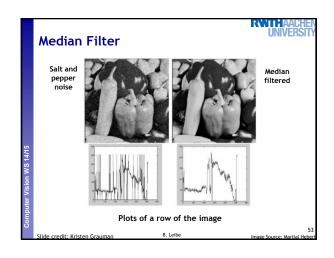


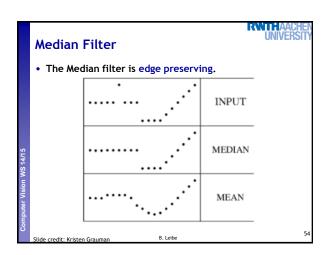


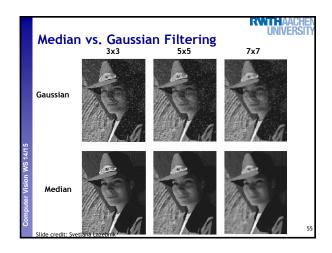


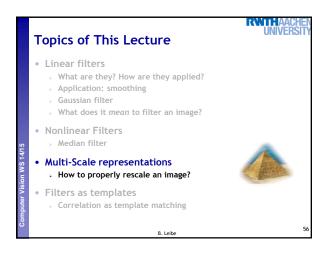


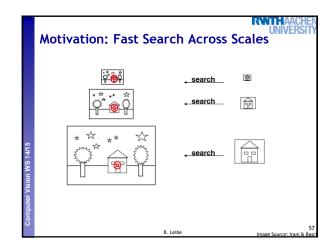


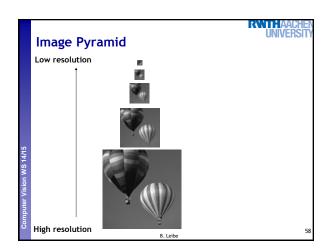


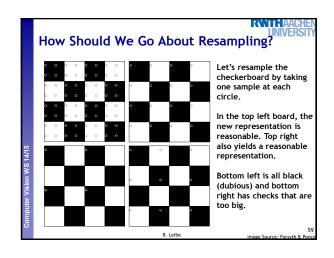


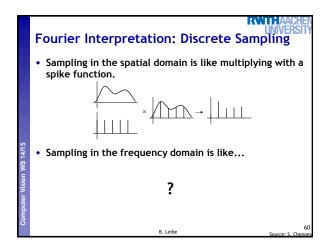


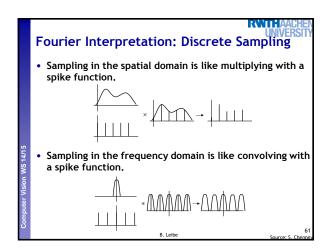


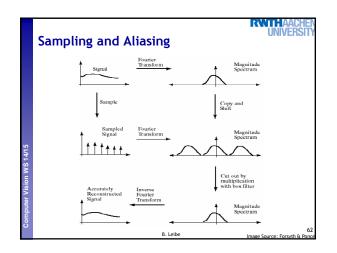


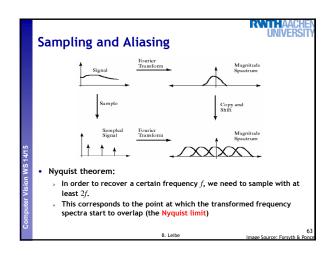


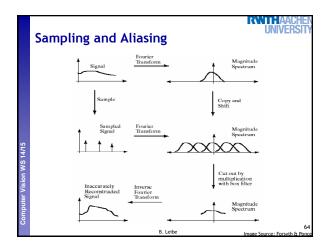


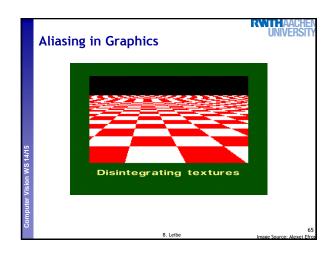


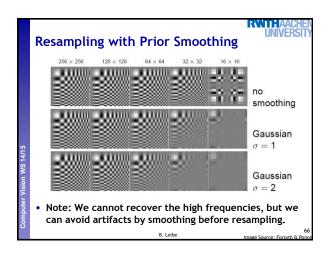


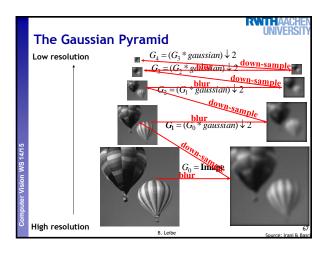


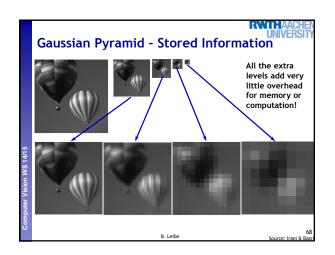


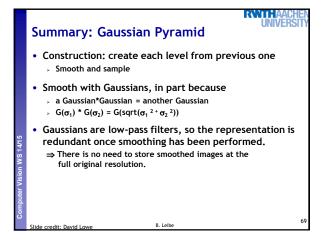


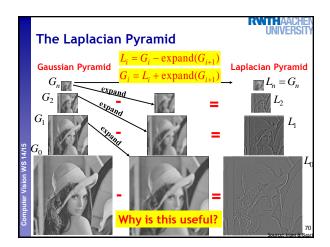


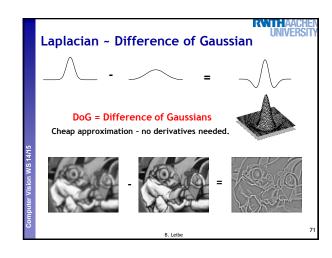


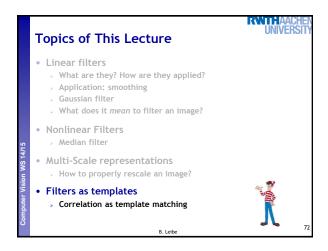


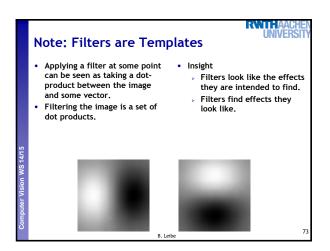


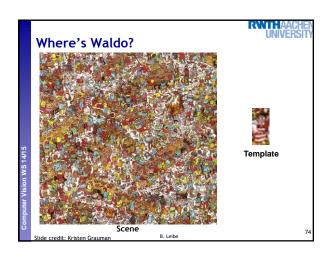


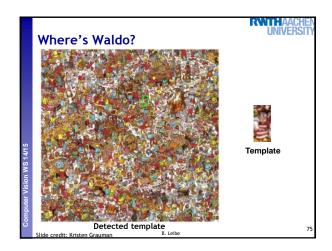


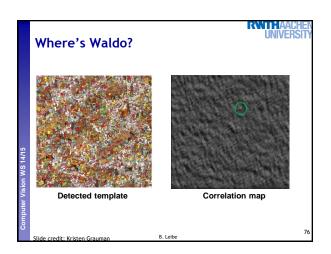


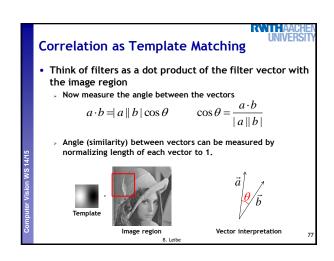


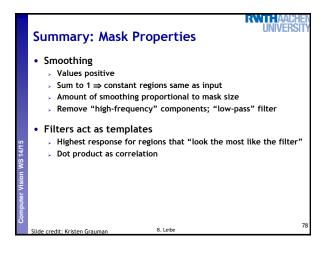


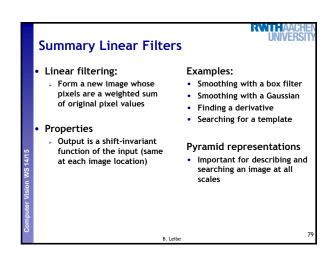












## **References and Further Reading**

- Background information on linear filters and their connection with the Fourier transform can be found in Chapters 7 and 8 of
  - D. Forsyth, J. Ponce, Computer Vision A Modern Approach. Prentice Hall, 2003



14