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Linear Filters
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Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

You Can Do It At Home...

Accessing a webcam in Matlab:

function out = webcam

% uses "Image Acquisition Toolbox,
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObjl= videoinput (adaptorName, 1, vidFormat) ;
set (vidObjl, 'ReturnedColorSpace', 'rgb');
set(vidObjl, 'FramesPerTrigger',6 1);

out = vidObjl ;

cam = webcam() ;
img=getsnapshot (cam) ;
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Motivation

¢ Noise reduction/image restoration

B. Leibe

Demo “Haribo Classification”
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Code available on the class website...

B. Leibe

Course Outline

¢ Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction
» Color

¢ Segmentation
¢ Local Features & Matching
¢ Object Recognition and Categorization

¢ 3D Reconstruction

Computer Vision WS 14/15

¢ Motion and Tracking

B. Leibe

Topics of This Lecture

¢ Linear filters

. What are they? How are they applied? o H
» Application: smoothing
» Gaussian filter

» What does it mean to filter an image?

Nonlinear Filters
» Median filter

Multi-Scale representations
» How to properly rescale an image?

¢ Filters as templates
» Correlation as template matching
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Common Types of Noise Gaussian Noise

¢ Salt & pepper noise

> Random occurrences of
black and white pixels

¢ Impulse noise

> Random occurrences of
white pixels

0 . . 0
=l ¢ Gaussian noise K
— . . : : .. —
» » Variations in intensity drawn o
E from a Gaussian (“Normal”) E
IS distribution. =
o @
5 . . 5 s :“';;T':%«t+N«’ﬁ s Gaussian i.i.d. (“white") noise:
=l ¢ Basic Assumption 2 e ) n(z,y) ~ N, @)
(=3 Q N N N N
£ > Noise is i.i.d. (independent & ¥ ¥ L 3 >> noise = randn(size(im)).*sigma;
o identically distributed) Impulse noise Gaussian noise © >> output = im + noise;
B. Leibe
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Image Source: Martial Hebers

First Attempt at a Solution Moving Average in 2D

¢ Assumptions:
» Expect pixels to be like their neighbors

» Expect noise processes to be independent from pixel to pixel
(“i.i.d. = independent, identically distributed”)

Flz,y] Glz, y]

s Let’s try to replace each pixel with an average of all the
values in its neighborhood...
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Slide credit; Kristen Grauman B. Leibe B. Leibe ource: S, Seit

Moving Average in 2D Moving Average in 2D

Flx,y] Glz,y] Flx,y] Glz,y]
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Moving Average in 2D

Flz,y]

8
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Moving Average in 2D

Flz,y]
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Correlation Filtering

k k
Gli,j1= > > Hluv]F[i+u,j+v]

u=—kv=—k

o This is called cross-correlation, denoted G = H ® F'

¢ Filtering an image

» Replace each pixel by a i 2| (00
weighted combination of H
its neighbors. 4
The filter “kernel” or “mask” F
is the prescription for the
weights in the linear
combination. Ll
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ide credit; Kristen Grauman LA
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Moving Average in 2D

Flz,y]
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Correlation Filtering

e Say the averaging window size is 2k+1 x 2k+1:

Glidl = 5 + Gz 2 Z > Fli4u,j+0]
—kv=—k
%(—/
Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F[i,j]

¢ Now generalize to allow different weights depending on
neighboring pixel’s relative position:
k

Gligl= 3 D HluwulFli+ g+l
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u=—kv=—
\ﬁ_/
Non-uniform weights W
ide credit: Kristen Grauman B. Leibe
RWTHACHEN
Convolution

¢ Convolution:
» Flip the filter in both dimensions (bottom to top, right to left)
» Then apply cross-correlation

Gli, 7] = Z Z H[uv]F[zfujfv]

u=—kv=—k
v B (0,0)
G=HxF H
z Y
Notation for F
convolution
operator

(NN)|

ide credit; Kristen Grauman LA




Correlation vs. Convolution

¢ Correlation .

Note the difference!
¢ Convolution

Matlab:
u . . filter2
Glijl= Y. Y HuwolFli+ui+o] S5
u=—kv=—k
G=H®F

v k k
s i il = ; : Matlab:
= Gligl= Y. > HluwlFli—u,j—v] Matlab;
‘£ u=—kv=—k
-
& G=HxF
s
&
= * Note
E
3 > If H[-u,-v] = H[u,V], then correlation = convolution.
ide credit; Kristen Grauman B. Leibe 20

Properties of Convolution

¢ Linear & shift invariant

e Commutative: fxg=gxf

* Associative: (fxg)xh=fx(g«h)

(((ax by) x by) x bs)
» This is equivalent to applying one filter: a x (b; x b, x b;)

» Often apply several filters in sequence:

2 * ldentity: frxe=f

E » for unit impulse e =[..., 0,0, 1,0,0, ...].
g

| e Differentiation: 0 _of

: G *9) =5 %9

o

Slide credit; Kristen Grauman B. Leibe

Smoothing by Averaging

depicts box filter:
< white = high value, black = low value

Filtered

Original

“Ringing” artifacts!
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ide credit; Kristen Grauman LA Jmage Source: Forsyth & Pon

cd
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Shift Invariant Linear System

¢ Shift invariant:

» Operator behaves the same everywhere, i.e. the value of the
output depends on the pattern in the image neighborhood, not
the position of the neighborhood.

e Linear:
» Superposition:

h*(fi+f)=h*f)+ (h*f)
h*(kf)=k(h* /)

» Scaling:

lide credit: Kristen Grauman B. Leibe

RWTH CHE
Averaging Filter '

« What values belong in the kernel H[u,v] for the moving
average example?

Flz,y] ® Hlu,v] = G[:E,y]
50 J50 0 | 0] 9 i) a uwzoa{E]
90 [0 90 [0 o0 = EREIE
90 [90] 00| % 9 o
% 9 [ 90 | 90 1111
90|90 |90 [ 90 [ o0
50 “box filter”
G=HQF
il 23
ide credit: Kristen Grauman B. Leibe
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Smoothing with a Gaussian

Filtered

Original

B. Leibe

lmage Source: Forsvth & Poncd
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Smoothing with a Gaussian - Comparison

Original Filtered

B. Leibe
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Image Source: Forsvth & Pony

Gaussian Smoothing

¢ What parameters matter here?

¢ Variance o of Gaussian
» Determines extent of smoothing

o = 2 with 30x30 o =5 with 30x30
kernel kernel
. 28
Slide credit: Kristen Grauman B. Leibe

Gaussian Smoothing in Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

-

g

>> imagesc (h) ; B

>> mesh (h) ;

>> outim = imfilter (im, h);
>> imshow (outim) ;

ide credit; Kristen Grauman LA
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Gaussian Smoothing

¢ Gaussian kernel

24,2

1 (= +§

o= e 20
2mo?

¢ Rotationally symmetric
¢ Weights nearby pixels more

than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

'\

¢ A Gaussian gives a good model
of a fuzzy blob

7

2
Image Source: Forsvth & Ponc

B. Leibe

Gaussian Smoothing

¢ What parameters matter here?

¢ Size of kernel or mask

» Gaussian function has infinite support, but discrete filters use
finite kernels

o =5 with 10x10
kernel

o =5 with 30x30
kernel

> Rule of thumb: set filter half-width to about 3c!

ide credit; Kristen Grauman B. Leibe

Effect of Smoothing

More noise >
0=0.05 o=0.1

& 13u19y Sulyjoows JSpIM

31

ide credit; Kristen Grauman LA Jmage Source: Forsvth & Poncd
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Efficient Implementation

* Both, the BOX filter and the Gaussian filter are
separable:
~ First convolve each row with a 1D filter Co H—

1 5 5
g(x)= Toro exp(—x" /(267)) |

» Then convolve each column with a 1D filter I
9y

3 1 2 prm 2 ©
s §(y)=———exp(-y" /(20")) I
» N2ro
2
s
i Remember:
T » Convolution is linear - associative and commutative
5
g gx*gy*I:gac*(gy*I):(g:c*gy)*l
o
S 32
ide credit: Bernt Schiele B. Leibe
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
> Methods: -
- Clip filter (black)

- Wrap around
- Copy edge
- Reflect across edge 3
34

B. Leibe
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ource; 5. Marschner

Topics of This Lecture

e Linear filters
» What are they? How are they applied?
» Application: smoothing
» Gaussian filter
» What does it mean to filter an image?
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Filtering: Boundary Issues

¢ What is the size of the output?
e MATLAB: filter2 (g, £, shape)
» shape = ‘full’: output size is sum of sizes of f and g
» shape = ‘same’: output size is same as f
» shape = ‘valid’: output size is difference of sizes of f and g

same valid
= g g
5 9 9
%)
=
S f f
)
2
g
H g g g
z 9
3
33
lide credit: Svetlana Lazebnik B. Leibe
RWTHACHEN

Filtering: Boundary Issues

¢ How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods (MATLAB):
- Clip filter (black): imfilter (f,g,0)
- Wrap around: imfilter(f,qg, ‘circular’)
- Copy edge: imfilter (f,g, ‘replicate’)
- Reflect across edge: imfilter (f,g, ‘symmetric’)

Computer Vision WS 14/15

35

Source; S, Marschner
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Why Does This Work?

¢ A small excursion into the Fourier transform to talk
about spatial frequencies...

N A

3cos(x) A

+1lcos(3x) B T /\/\/\/\/\ A+B
[\/V\/\A/\N\A+B+C

A+B+C+D

+.. 37
B. Leibe

+0800s(5x) C VIINANANAN

104cos(T) D VVVVANAAAAS
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The Fourier Transform in Cartoons

¢ A small excursion into the Fourier transform to talk
about spatial frequencies... “high” “T” “high”
1 ‘ ‘ L1y

Frequencyl spectrum

Jeosy A 7

VA Ve VvV
B

+ 1 cos(3x)

Hogcossx) ¢ IV AIAIANANAN

+[0.4|cos(7x) IR AYAYAAAVAVAVAVAVY
A+B+C+D

- | Frequency coefficients B. Leibe

ource: Michal lran|
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Fourier Transforms of Important Functions

¢ Sine and cosine transform to “frequency spikes”

¢ A Gaussian transforms to...

AN

-~

40

B. Leibe Image Source; S, Chenne:
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RWTH/ACHE
Fourier Transforms of Important Functions

¢ Sine and cosine transform to “frequency spikes”

W

¢ A Gaussian transforms to a Gaussian

All of this is
i ‘ symmetric!

¢ A box filter transforms to a sinc

. sinx
- sinc(x) =——
X
42
B. Leibe

lmage Source: S, Chepne:
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RWTHACHE
Fourier Transforms of Important Functions

¢ Sine and cosine transform to...

H .
B. Leibe Image Source: S, Chenne:

Fourier Transforms of Important Functions

¢ Sine and cosine transform to “frequency spikes”

¢ A Gaussian transforms to a Gaussian

PAANGVAAN

¢ A box filter transforms to...

4

B. Leibe Image Source: S, Chenne:
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RWTH ACHET
Duality

¢ The better a function is localized in one domain, the
worse it is localized in the other.

¢ This is true for any function

E B 43
B. Leibe




RWTHAACHET RWTHAACHEN
UNIVERSITY, UNIVERSITY,

Effect of Convolution Effect of Filtering

¢ Convolving two functions in the image domain
corresponds to taking the product of their transformed
versions in the frequency domain.

* Noise introduces high frequencies.

To remove them, we want to apply a /J‘\ /-F

“low-pass” filter.

The ideal filter shape in the
frequency domain would be a box.
But this transfers to a spatial sinc, |
which has infinite spatial support.
* A compact spatial box filter .
transfers to a frequency sinc, which
creates artifacts. 5
* A Gaussian has compact support in

both domains. This makes it a
convenient choice for a low-pass i

filter.

fxg—F-G

¢ This gives us a tool to manipulate image spectra.

» A filter attenuates or enhances certain frequencies through this
effect.

Computer Vision WS 14/15
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44

45
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RWTH/CHET RWTH/CHET]
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Low-Pass vs. High-Pass Quiz: What Effect Does This Filter Have?
Low-
fitered 20
- 0.33 ?
1 3 [
3 ) 3
S High-pass 5
@ o — filtered G
S Original image S
= B. Leib 46 = B. Leib a7
. Letbe Image Source: S, Chenne . Leibe ource: D. Lo\
RWTH/ACHET RWTH/ACHET]
. . UNIVERSITY] . . UNIVERSITY]
Sharpening Filter Sharpening Filter
20
£ Original g
é Sharpening filter E
g — Accentuates differences g before after
g L with local average =
S . 48 o § 49
B. Leibe qurce: D lowd B. Leibe ource: D Lowd




Application: High Frequency Emphasis

Original

Topics of This Lecture

High pass Filter

¢ Nonlinear Filters
» Median filter

g g
3 3
E £
= =
S S
2 2
S ; S
5 e &
5 , 5
E High Frequency High Frequency Emphasis E
S Emphasis + 38
Histogram Equalization 50 51
ide credit: Michal Irani B. Leibe B. Leibe
. . 0 0 i I 0 . ’ i I
Non-Linear Filters: Median Filter Median Filter
* Basic idea
Median
» Replace each pixel by the olis1% filtered
median of its neighbors. 10]1° ‘[’
2319027
> 2 Sort
Median value 33[31]30] l
* Properties 10 |< 30 31 33 90
- » Doesn’t introduce new pixel [1ol1s[20] I Replace -
< values Fsalaalanl B
3 2312712/ 3
g » Removes spikes: good for [33]31 m‘ g
= impulse, salt & pepper noise =
S S
g » Linear? E
g g
5 5
=8 =N
E E Plots of a row of the image
S S
52 53
Slide credit: Kristen Grauman B. Leibe ide credit: Kristen Grauman B. Leibe Jmage Source: Martial Hebe:
. . - b T 0 . . .
Median Filter Median vs. Gaussian Filtering
3x3 5x5
¢ The Median filter is edge preserving. t
. .
caens wmm . INPUT Gaussian
.
sees
.
0 tessssnns o MEDIAN s
3 o g
g PR g
s * s
g see*ttt, . MEAN E Median
g . . s
2 Teaet =
£ £
[} s (s}
ide credit; Kristen Grauman B. Leibe




RWTHAACHE

Topics of This Lecture Motivation: Fast Search Across Scales

search (&)

Gel o m
Tl - [E
A

B. Leibe

* Multi-Scale representations g
» How to properly rescale an image? 9 -

B. Leibe

Computer Vision WS 14/15
Computer Vision WS 14/15

Image Source: lrani & Basr]
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Image Pyramid How Should We Go About Resampling?

Low resolution B
3 _at

Let’s resample the
checkerboard by taking
one sample at each
circle.

In the top left board, the
new representation is
reasonable. Top right
also yields a reasonable
representation.

Bottom left is all black
(dubious) and bottom
right has checks that are
too big.

Computer Vision WS 14/15
Computer Vision WS 14/15

High resolution 58

" 59
B. Leibe

Image Source; Forsvth & Ponce

B. Leibe
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Fourier Interpretation: Discrete Sampling

RWTH/ACHEN
Fourier Interpretation: Discrete Sampling

e Sampling in the spatial domain is like multiplying with a

spike function.
- [

¢ Sampling in the spatial domain is like multiplying with a

spike function.
-
1 \

/SN

¢ Sampling in the frequency domain is like... e Sampling in the frequency domain is like convolving with

a spike function.

-~

|1 -

B. Leibe
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Sampling and Aliasing

Fourier
“Transform
e

Magnitude

A Spectrum

Sumple Capy and
Shill

B. Leibe

Sampled Fourier

Signal Iransform Magnitude

_— Spectrum

o
2 tht
=
S
5 Cut out by
2 multiplication
g Aceurately Inverse with box filter
> Reconstructed Fourier
o} Signal “Transform
3 Magnitude
g N — Spectrum
=
<]
(8]

Image Source: Forsvth & Pony

Sampling and Aliasing

Fourier
Transform
.

Magnitude

/-R Spectrum

Sampled TFourier

Sample Copy and
Shirl

i 2 Magnitude
Si Transfo =

i ransform Mogritu
3 I ,Lﬂ[m.
=
3 1
=
2
c Cut out by
o multiplication
4 Inaccurately Inverse with box filter
2> Reconsiructed  Fourier
5] Signal “Transform
E Magmitude
= L Spectrum
=
S T
o

B. Leibe

64

Image Source; Forsvth & Ponc

Resampling with Prior Smoothing

256 x 256 128 x 128

32 x 32 16 x 16

ALLLLLSE I ALY
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B. Leibe

¢ Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.

no
smoothing

Gaussian
oc=1

Gaussian
o=

lmage Source: Forsvth & Poncd

Signal
lsampk‘

Sampled

[ Signal

¢ Nyquist theorem:

least 2f.

Computer Vision WS 14/15

Sampling and Aliasing

Fourier
Transform Magnitude
f Spectrum
Copy and
Shifl
TFourier

Magnitude

l Spectrum

Transform

8. Leibe |2z

» In order to recover a certain frequency f, we need to sample with at

» This corresponds to the point at which the transformed frequency
spectra start to overlap (the Nyquist limit)

63
ource: Forsvth & Ponc

p—
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Aliasing in Graphics

e e
_ﬁd_r_-—:__d

e

AR N

Disintegrating textures

B. Leibe

Image Source; Alexej Efros
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Low resolution
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High resolution

The Gaussian Pyramid

G, = (G, * gaussian) { 2 4

own-samp]

B. Leibe

ource: lrani & Ba:
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. . . UNIVERSITY
Gaussian Pyramid - Stored Information

All the extra
levels add very
little overhead
for memory or
computation!

Computer Vision WS 14/15

B. Leibe

ource: lrani & Ba:

UNIVERSITY
The Laplacian Pyramid

L; = G; —expand(G,,,)
G, = L; +expand(G,,;)

Gaussian Pyramid Laplacian Pyramid

- I-nan

-

L

Computer Vision WS 14/15

Why is this useful?
BNy b4

RWTH/ACHET
. . UNIVERSITY
Topics of This Lecture

¢ Filters as templates
» Correlation as template matching
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B. Leibe
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Summary: Gaussian Pyramid

¢ Construction: create each level from previous one
» Smooth and sample

* Smooth with Gaussians, in part because
» a Gaussian*Gaussian = another Gaussian
+ G(o) * G(a;) = G(sqrt(o; 2* 0, 2)

¢ Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

RWTH//CHEN
UNIVERSITY,

ide credit: David Lowe B. Leibe

RWTH/ACHEN
UNIVERSITY}

Laplacian ~ Difference of Gaussian

NE

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.

B. Leibe
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RWTH/ACHET]
. UNIVERSITY
Note: Filters are Templates

* Applying a filter at some point
can be seen as taking a dot-
product between the image
and some vector.

¢ Filtering the image is a set of
dot products.

¢ Insight
- Filters look like the effects
they are intended to find.

» Filters find effects they
look like.

B. Leibe
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RWTHAACHET
UNIVERSITY] UNIVERSITY]

0 0
= Template = Template
3 3
12 [
2 2
= =
2 S
2] [Z}
b S
g g
5 5
=3 (=8 o
g E R A L ~
© 74 o Detected template 75
ide credit; Kristen Grauman B. Leibe ide credit; Kristen Grauman B. Leibe
RWTH/CHET RWTH/CHET]
UNIVERSITY} UNIVERSITY}
’
Where’s Waldo?

Correlation as Template Matching

¢ Think of filters as a dot product of the filter vector with
the image region
» Now measure the angle between the vectors

a-b
a-b=alb|coség cosé =
lallb]
» Angle (similarity) between vectors can be measured by
0 0 normalizing length of each vector to 1.
3 3
: R = a
2 o ) a -
> Detected template Correlation map > ] . g, b
%_ 'ngi Template
: :
o 7 o Image region Vector interpretation 77
Slide credit; Kristen Grauman B. Leibe B Leibe
RWTH/ACHER
. UNIVERSITY] . . UNIVERSITY]
Summary: Mask Properties Summary Linear Filters
¢ Smoothing e Linear filtering: Examples:
» Values positive . Form a new image whose « Smoothing with a box filter
> Sum to 1 = constant regions same as input pixels are a weighted sum « Smoothing with a Gaussian

» Amount of smoothing proportional to mask size
» Remove “high-frequency” components; “low-pass” filter

of original pixel values « Finding a derivative

* Searching for a template
¢ Properties

e Filters act as templates . Output is a shift-invariant

. Highest response for regions that “look the most like the filter” function of the input (same Pyramid representations

. Dot product as correlation at each image location) * Important for describing and
searching an image at all
scales
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References and Further Reading

¢ Background information on linear filters and their
connection with the Fourier transform can be found in
Chapters 7 and 8 of
» D. Forsyth, J. Ponce,

Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision

A MODERN APPROACH

B. Leibe
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