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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SVMs, SVDD, SV Regression 

 Structured Output Learning 
B. Leibe 
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Topics of This Lecture 

• Recap: Structured Output Learning 

 General structured prediction 

 Structured Output SVM 

 Cutting plane training 

 Limitations 

 One-slack formulation 
 

• Application: Multi-class SVMs 

 Crammer-Singer formulation 
 

• Kernels in S-SVMs 

 Joint kernel function 

 Kernelized S-SVM 

 Application examples 

3 
B. Leibe 
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Recap: Grand Unified View 

 

Predict structured output by maximization 

 

 

of a compatibility function 

 

 

that is linear in a parameter vector w. 

4 
B. Leibe Slide credit: Christoph Lampert 
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Recap: Generic Structured Prediction 

• A generic structured prediction problem 

 X: arbitrary input domain 

 Y: structured output domain, decompose y = (y1,...,yK)  

 Prediction function f : X ! Y given by 

 
 

 Compatibility function (or negative of “energy”) 

5 
B. Leibe Slide credit: Christoph Lampert 

unary terms 

binary terms 

higher-order terms 
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Recap: Learning in Structured Models 

• Problem statement 

 Given: parametric model (family): F(x,y) = hw, Á(x,y)i  

 prediction method: f(x) = argmaxy2Y F(x,y) 

 training example pairs {(x1,y1), ..., (xn, yn)} ½ X × Y. 

 Goal:  determine „good“ parameter vector w. 

 

• What make a solution "good"? 

 Define a loss function 

 
 

such that               measures the loss/cost incurred by predicting            

y’ when y is correct. 

6 
B. Leibe Slide credit: Christoph Lampert 

¢ : Y £Y !R+
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Recap: Popular Structured Loss Functions 

• Zero-one loss 

 Definition:   

 “Every prediction that is not identical to the intended one is 

considered a mistake, and all mistakes are penalized equally.” 

 Most common loss for multi-class problems. 

 Less frequently used for structured prediction tasks. 

 

 

• Hierarchical multi-class loss 

 Definition:  

where H is a hierarchy over the classes in Y and distH(y,y’) 

measures the distance of y and y’. 

 Common way to incorporate information about label hierarchies 

in multi-class prediction problems 

7 
B. Leibe Image from [Nowozin & Lampert, FTCGV’11] 
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Recap: Popular Structured Loss Functions 

• Hamming loss 

 Definition:  

 Frequently used loss for image segmentation and other tasks in 

which the output y consists of multiple part labels y1,...,ym. 

 Each part label is judged independently and the average number 

of labeling errors is determined. 

 

• Area overlap loss 

 Definition: 

 Standard loss in object localization, e.g., the PASCAL VOC 

detection challenges. 

 y and y’ are bounding box coordinates, and y Å y’ and y [ y’ 
are their intersection and union, respectively. 

8 
B. Leibe 
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Recap: Structured Output SVM 

• Slack formulation of S-SVM 
 

 Solve 

 

subject to 

 

 
 

• Optimization problem very similar to normal SVM 

 Quadratic in w, linear in ». 

 Constraints linear in w and ». 

 Convex! 
 

 

• But there are N(|Y | − 1) constraints! 

 Numeric optimization needs some tricks, will be expensive. 
9 
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min
w2RD; »n2R+

1

2
kwk2 +

C

N

NX

n=1

»n

Slide adapted from Christoph Lampert 
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Recap: Solving S-SVM Training 

• Solving the S-SVM optimization 

 There are N(|Y | − 1) constraints! 

 But:  Weight vector has only D degrees of freedom.  

 Slack variables have only N degrees of freedom.  

 D+N constraints suffice to determine the optimal solution. 

 If we knew the set of relevant constraints in advance, we could  

solve the optimization efficiently. 

 Approximate the solution iteratively. 
 

• Cutting Plane training 

 Delayed constraint generation technique 

 Search for the best weight vector and the set of active 

constraints simultaneously in an iterative manner. 

 Approximate solution with much faster runtime. 

 10 
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Recap: Cutting Plane Training 

• Cutting Plane algorithm 

1. Start from an empty working set. 

2. In each iteration, solve the optimization problem for (w*,»*) 

with only the constraints in the working set. 

3. Check for each sample if any of the |Y | constraints are violated. 

4. If not, we have found the optimal solution. 

5. Otherwise, add most violated constraints to the working set. 
 

• Speed-ups 

 To achieve faster convergence, choose a tolerance ² > 0 and 

require a constraint to be violated by at least ². 

 Possible to prove convergence after           steps with the 

guarantee that objective value at the solution differs only at 

most by ² from the global minimum. 

11 
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Cutting Plane Training: Limitations  

• Cutting plane training  

 Attractive, since it allows us to reuse existing components: 

 Ordinary SVM solvers 

 Algorithms for (loss-adapted) MAP prediction 

 

• However... 

 Convergence rate can be unsatisfactory, in particular for large 

values of C. 

 Convergence after           steps means: for a value of ² = 0.1, we 

already need on the order of 100 steps... 

 This can be improved to          with the recently introduced one-

slack formulation. 

12 
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Back to S-SVMs 

• One-slack S-SVM formulation 
 

 Solve 

 

subject to  

 

 

 

• Equivalent to n-Slack S-SVM formulation 

 But only one common slack variable ». 

 We now have |Y |
N constraints, so even more than with n-slack. 

 However, cutting-plane optimization now achieves a solution 

²-close to the optimum in          steps. 

 Significant reduction in training time for practical problems. 
 

 

 
13 
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(w¤; »¤) = argmin
w2RD; »2R+

1

2
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Topics of This Lecture 

• Recap: Structured Output Learning 

 General structured prediction 

 Structured Output SVM 

 Cutting plane training 

 Limitations 

 One-slack formulation 
 

• Application: Multi-class SVMs 

 Crammer-Singer formulation 
 

• Kernels in S-SVMs 

 Joint kernel function 

 Kernelized S-SVM 

 Application examples 

14 
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Example: Crammer-Singer Multiclass SVM 

• Procedure 

 Define the joint feature space 

 

 

 

 

 

 Solve 

 
 

subject to , for n = 1, ..., N, 

 

 

 Classification:  

15 
B. Leibe Slide credit: Christoph Lampert 
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Topics of This Lecture 

• Recap: Structured Output Learning 

 General structured prediction 

 Structured Output SVM 

 Cutting plane training 

 Limitations 

 One-slack formulation 
 

• Application: Multi-class SVMs 

 Crammer-Singer formulation 
 

• Kernels in S-SVMs 

 Joint kernel function 

 Kernelized S-SVM 

 Application examples 

16 
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Kernels in S-SVMs 

• Joint kernel function 

 The S-SVM formulation is based on a joint feature map Á(x,y)., 

i.e., on pairs of (input, output). 

 We can now also define a joint kernel function for such 

mappings k: (X £ Y) £ (X £ Y) ! R as follows 

 
 

 k measures similarities between (input, output) pairs. 
 

• Same advantages as for regular SVMs 

 One does not need an explicit expression for the feature map Á. 

 It suffices if we can evaluate the kernel function for arbitrary 

arguments. 

 Specifically advantageous if the feature map is very high-

dimensional. 
17 
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Joint Kernel Functions 

• What do joint kernel functions look like? 

 

 

 As in graphical models: easier if Á decomposes w.r.t. factors 

 
 

 Then the kernel k decomposes into a sum over factors 

 

 

 

 

 

 

 We can define kernels for each object type. 

18 
B. Leibe Slide credit: Christoph Lampert 
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Example: Figure-Ground Segmentation 

• Task with a grid structure 

 

 

 
 

• Typical kernels: arbitrary in x, linear w.r.t. y: 

 Unary factors 

 
 

with k(xp, x’p) local image kernel, e.g. Â2 or hist. intersection. 
 

 Pairwise factors 

 

 More powerful than all-linear and argmax prediction still 

possible. 
19 

B. Leibe Slide credit: Christoph Lampert 
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Example: Object Localization 

• Object detection task 

 

 

 

 

 Only one factor that includes all x and y: 

 

 

with kimage the image kernel and x|y is image region within box y. 

 

 argmax-prediction is as difficult here as object localization with 

kimage-SVM! 

20 
B. Leibe Slide credit: Christoph Lampert 
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Kernelized S-SVM 

• Dual formulation with kernels 
 

 Solve 

 
 

subject to, for n = 1, ..., N, 

 

 
 

where  
 

and                                                    . 
 

 Decision function 

 

 
21 
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Discussion and Analysis 

• Analysis 

 Prediction function 

 

 

 

 In principle, this function might become infeasible to compute, 

since it contains a potentially exponential number of summands. 

 However, this is not a problem in practice, since the constraints 

enforce sparsity in the coefficients. 

 

 
 

 For every n =1,...,N, most coefficients ®ny for y2Y will be zero. 

 Possible to keep a working set over non-zero coefficients during 

optimization. 

 22 
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Summary 

• Given 

 Training set  f(x1, y1), ..., (xN, yN)g ! X £ Y 

 Loss function ¢ : Y £ Y ! R. 
 

• Task:  

 Learn parameter w for f(x) := argmaxy hw, Á(x, y)i that 

minimizes expected loss on future data. 
 

• S-SVM solution derived by maximum margin framework: 

 Enforce correct output to be better than others by a margin : 

 
 

 Convex optimization problem, but non-differentiable 

 Many equivalent formulations ! different training algorithms 

 Training needs repeated argmax prediction, no probabilistic 

inference 23 
B. Leibe Slide credit: Christoph Lampert 
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