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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SVMs, SVDD, SV Regression 

 Structured Output Learning 
B. Leibe 
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Topics of This Lecture 

• Recap: Structured Output Learning 

 General structured prediction 

 Structured Output SVM 

 Cutting plane training 

 Limitations 

 One-slack formulation 
 

• Application: Multi-class SVMs 

 Crammer-Singer formulation 
 

• Kernels in S-SVMs 

 Joint kernel function 

 Kernelized S-SVM 

 Application examples 

3 
B. Leibe 
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Recap: Grand Unified View 

 

Predict structured output by maximization 

 

 

of a compatibility function 

 

 

that is linear in a parameter vector w. 

4 
B. Leibe Slide credit: Christoph Lampert 
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Recap: Generic Structured Prediction 

• A generic structured prediction problem 

 X: arbitrary input domain 

 Y: structured output domain, decompose y = (y1,...,yK)  

 Prediction function f : X ! Y given by 

 
 

 Compatibility function (or negative of “energy”) 

5 
B. Leibe Slide credit: Christoph Lampert 

unary terms 

binary terms 

higher-order terms 
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Recap: Learning in Structured Models 

• Problem statement 

 Given: parametric model (family): F(x,y) = hw, Á(x,y)i  

 prediction method: f(x) = argmaxy2Y F(x,y) 

 training example pairs {(x1,y1), ..., (xn, yn)} ½ X × Y. 

 Goal:  determine „good“ parameter vector w. 

 

• What make a solution "good"? 

 Define a loss function 

 
 

such that               measures the loss/cost incurred by predicting            

y’ when y is correct. 

6 
B. Leibe Slide credit: Christoph Lampert 

¢ : Y £Y !R+
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Recap: Popular Structured Loss Functions 

• Zero-one loss 

 Definition:   

 “Every prediction that is not identical to the intended one is 

considered a mistake, and all mistakes are penalized equally.” 

 Most common loss for multi-class problems. 

 Less frequently used for structured prediction tasks. 

 

 

• Hierarchical multi-class loss 

 Definition:  

where H is a hierarchy over the classes in Y and distH(y,y’) 

measures the distance of y and y’. 

 Common way to incorporate information about label hierarchies 

in multi-class prediction problems 

7 
B. Leibe Image from [Nowozin & Lampert, FTCGV’11] 
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Recap: Popular Structured Loss Functions 

• Hamming loss 

 Definition:  

 Frequently used loss for image segmentation and other tasks in 

which the output y consists of multiple part labels y1,...,ym. 

 Each part label is judged independently and the average number 

of labeling errors is determined. 

 

• Area overlap loss 

 Definition: 

 Standard loss in object localization, e.g., the PASCAL VOC 

detection challenges. 

 y and y’ are bounding box coordinates, and y Å y’ and y [ y’ 
are their intersection and union, respectively. 

8 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: Structured Output SVM 

• Slack formulation of S-SVM 
 

 Solve 

 

subject to 

 

 
 

• Optimization problem very similar to normal SVM 

 Quadratic in w, linear in ». 

 Constraints linear in w and ». 

 Convex! 
 

 

• But there are N(|Y | − 1) constraints! 

 Numeric optimization needs some tricks, will be expensive. 
9 

B. Leibe 

min
w2RD; »n2R+

1

2
kwk2 +

C

N

NX

n=1

»n

Slide adapted from Christoph Lampert 
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Recap: Solving S-SVM Training 

• Solving the S-SVM optimization 

 There are N(|Y | − 1) constraints! 

 But:  Weight vector has only D degrees of freedom.  

 Slack variables have only N degrees of freedom.  

 D+N constraints suffice to determine the optimal solution. 

 If we knew the set of relevant constraints in advance, we could  

solve the optimization efficiently. 

 Approximate the solution iteratively. 
 

• Cutting Plane training 

 Delayed constraint generation technique 

 Search for the best weight vector and the set of active 

constraints simultaneously in an iterative manner. 

 Approximate solution with much faster runtime. 

 10 
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Recap: Cutting Plane Training 

• Cutting Plane algorithm 

1. Start from an empty working set. 

2. In each iteration, solve the optimization problem for (w*,»*) 

with only the constraints in the working set. 

3. Check for each sample if any of the |Y | constraints are violated. 

4. If not, we have found the optimal solution. 

5. Otherwise, add most violated constraints to the working set. 
 

• Speed-ups 

 To achieve faster convergence, choose a tolerance ² > 0 and 

require a constraint to be violated by at least ². 

 Possible to prove convergence after           steps with the 

guarantee that objective value at the solution differs only at 

most by ² from the global minimum. 

11 
B. Leibe 
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Cutting Plane Training: Limitations  

• Cutting plane training  

 Attractive, since it allows us to reuse existing components: 

 Ordinary SVM solvers 

 Algorithms for (loss-adapted) MAP prediction 

 

• However... 

 Convergence rate can be unsatisfactory, in particular for large 

values of C. 

 Convergence after           steps means: for a value of ² = 0.1, we 

already need on the order of 100 steps... 

 This can be improved to          with the recently introduced one-

slack formulation. 

12 
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Back to S-SVMs 

• One-slack S-SVM formulation 
 

 Solve 

 

subject to  

 

 

 

• Equivalent to n-Slack S-SVM formulation 

 But only one common slack variable ». 

 We now have |Y |
N constraints, so even more than with n-slack. 

 However, cutting-plane optimization now achieves a solution 

²-close to the optimum in          steps. 

 Significant reduction in training time for practical problems. 
 

 

 
13 
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(w¤; »¤) = argmin
w2RD; »2R+
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Topics of This Lecture 

• Recap: Structured Output Learning 

 General structured prediction 

 Structured Output SVM 

 Cutting plane training 

 Limitations 

 One-slack formulation 
 

• Application: Multi-class SVMs 

 Crammer-Singer formulation 
 

• Kernels in S-SVMs 

 Joint kernel function 

 Kernelized S-SVM 

 Application examples 

14 
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Example: Crammer-Singer Multiclass SVM 

• Procedure 

 Define the joint feature space 

 

 

 

 

 

 Solve 

 
 

subject to , for n = 1, ..., N, 

 

 

 Classification:  

15 
B. Leibe Slide credit: Christoph Lampert 
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Topics of This Lecture 

• Recap: Structured Output Learning 

 General structured prediction 

 Structured Output SVM 

 Cutting plane training 

 Limitations 

 One-slack formulation 
 

• Application: Multi-class SVMs 

 Crammer-Singer formulation 
 

• Kernels in S-SVMs 

 Joint kernel function 

 Kernelized S-SVM 

 Application examples 
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Kernels in S-SVMs 

• Joint kernel function 

 The S-SVM formulation is based on a joint feature map Á(x,y)., 

i.e., on pairs of (input, output). 

 We can now also define a joint kernel function for such 

mappings k: (X £ Y) £ (X £ Y) ! R as follows 

 
 

 k measures similarities between (input, output) pairs. 
 

• Same advantages as for regular SVMs 

 One does not need an explicit expression for the feature map Á. 

 It suffices if we can evaluate the kernel function for arbitrary 

arguments. 

 Specifically advantageous if the feature map is very high-

dimensional. 
17 
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Joint Kernel Functions 

• What do joint kernel functions look like? 

 

 

 As in graphical models: easier if Á decomposes w.r.t. factors 

 
 

 Then the kernel k decomposes into a sum over factors 

 

 

 

 

 

 

 We can define kernels for each object type. 

18 
B. Leibe Slide credit: Christoph Lampert 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Example: Figure-Ground Segmentation 

• Task with a grid structure 

 

 

 
 

• Typical kernels: arbitrary in x, linear w.r.t. y: 

 Unary factors 

 
 

with k(xp, x’p) local image kernel, e.g. Â2 or hist. intersection. 
 

 Pairwise factors 

 

 More powerful than all-linear and argmax prediction still 

possible. 
19 

B. Leibe Slide credit: Christoph Lampert 
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Example: Object Localization 

• Object detection task 

 

 

 

 

 Only one factor that includes all x and y: 

 

 

with kimage the image kernel and x|y is image region within box y. 

 

 argmax-prediction is as difficult here as object localization with 

kimage-SVM! 

20 
B. Leibe Slide credit: Christoph Lampert 
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Kernelized S-SVM 

• Dual formulation with kernels 
 

 Solve 

 
 

subject to, for n = 1, ..., N, 

 

 
 

where  
 

and                                                    . 
 

 Decision function 

 

 
21 
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Discussion and Analysis 

• Analysis 

 Prediction function 

 

 

 

 In principle, this function might become infeasible to compute, 

since it contains a potentially exponential number of summands. 

 However, this is not a problem in practice, since the constraints 

enforce sparsity in the coefficients. 

 

 
 

 For every n =1,...,N, most coefficients ®ny for y2Y will be zero. 

 Possible to keep a working set over non-zero coefficients during 

optimization. 

 22 
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Summary 

• Given 

 Training set  f(x1, y1), ..., (xN, yN)g ! X £ Y 

 Loss function ¢ : Y £ Y ! R. 
 

• Task:  

 Learn parameter w for f(x) := argmaxy hw, Á(x, y)i that 

minimizes expected loss on future data. 
 

• S-SVM solution derived by maximum margin framework: 

 Enforce correct output to be better than others by a margin : 

 
 

 Convex optimization problem, but non-differentiable 

 Many equivalent formulations ! different training algorithms 

 Training needs repeated argmax prediction, no probabilistic 

inference 23 
B. Leibe Slide credit: Christoph Lampert 
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Learning 
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