

Advanced Machine Learning Lecture 21

Structured Output Learning II

23.01.2013

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

Bayesian Estimation & Bayesian Non-Parametrics

- Prob. Distributions, Approx. Inference
- » Mixture Models & EM
- Dirichlet Processes
- Latent Factor Models
- » Beta Processes

Learning Winter'12

Advanced Machine

- SVMs and Structured Output Learning
 - SVMs, SVDD, SV Regression
 - Structured Output Learning B. Leibe

 $f: \mathcal{X} \to \mathcal{Y}$

Topics of This Lecture

• Recap: Structured Output Learning

- General structured prediction
- Structured Output SVM
- Cutting plane training
- Limitations
- > One-slack formulation
- Application: Multi-class SVMs
 - Crammer-Singer formulation
- Kernels in S-SVMs
 - Joint kernel function
 - Kernelized S-SVM
 - Application examples

Recap: Grand Unified View

Predict structured output by maximization

$$\mathbf{y} = \arg \max_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y})$$

of a compatibility function

$$F(\mathbf{x}, \mathbf{y}) = \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}) \rangle$$

that is linear in a parameter vector w.

Slide credit: Christoph Lampert

4

Recap: Generic Structured Prediction

- A generic structured prediction problem
 - > \mathcal{X} : arbitrary input domain
 - > \mathcal{Y} : structured output domain, decompose $\mathbf{y} = (y_1, \dots, y_K)$
 - > Prediction function $f: \mathcal{X} \to \mathcal{Y}$ given by

+...

$$f(\mathbf{x}) = \arg \max_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y})$$

Compatibility function (or negative of "energy") \geq

$$egin{aligned} F(\mathbf{x},\mathbf{y}) &= \langle \mathbf{w}, oldsymbol{\phi}(\mathbf{x},\mathbf{y})
angle \ &= \sum_{\substack{i=1 \ K}}^{K} \mathbf{w}_{i}^{ op} oldsymbol{\phi}_{i}(y_{i},\mathbf{x}) & ext{unary terms} \ &+ \sum_{\substack{i,j=1 \ K}}^{K} \mathbf{w}_{ij}^{ op} oldsymbol{\phi}_{ij}(y_{i},y_{j},\mathbf{x}) & ext{binary terms} \ &+ \dots & ext{higher-order terms} \end{aligned}$$

Recap: Learning in Structured Models

- Problem statement
 - Solution Given: parametric model (family): $F(\mathbf{x}, \mathbf{y}) = \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}) \rangle$ prediction method: $f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y})$ training example pairs $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_n, \mathbf{y}_n)\} \subset \mathcal{X} \times \mathcal{Y}.$
 - Goal: determine "good" parameter vector w.
- What make a solution "good"?
 - Define a loss function

 $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$

such that $\Delta(y,y')$ measures the loss/cost incurred by predicting y' when y is correct.

Recap: Popular Structured Loss Functions

• Zero-one loss

- > Definition: $\Delta(\mathbf{y},\mathbf{y}') = \delta(\mathbf{y}
 eq \mathbf{y}')$
- "Every prediction that is not identical to the intended one is considered a mistake, and all mistakes are penalized equally."
- Most common loss for multi-class problems.
- Less frequently used for structured prediction tasks.

- Hierarchical multi-class loss
 - > Definition: $\Delta(\mathbf{y}, \mathbf{y}') = \frac{1}{2} dist_H(\mathbf{y}, \mathbf{y}')$ where H is a hierarchy over the classes in \mathcal{Y} and $dist_H(\mathbf{y}, \mathbf{y}')$ measures the distance of \mathbf{y} and \mathbf{y}' .
 - Common way to incorporate information about label hierarchies in multi-class prediction problems

Recap: Popular Structured Loss Functions

• Hamming loss

- > Definition: $\Delta(\mathbf{y}, \mathbf{y}') = \frac{1}{m} \sum_{i=1}^{m} \delta(\mathbf{y}_i \neq \mathbf{y}'_i)$
- > Frequently used loss for image segmentation and other tasks in which the output y consists of multiple part labels $y_1, ..., y_m$.
- Each part label is judged independently and the average number of labeling errors is determined.

• Area overlap loss

- > Definition: $\Delta(\mathbf{y}, \mathbf{y}') = 1 \frac{\operatorname{area}(\mathbf{y} \cap \mathbf{y}')}{\operatorname{area}(\mathbf{y} \cup \mathbf{y}')}$
- Standard loss in object localization, e.g., the PASCAL VOC detection challenges.
- > y and y' are bounding box coordinates, and $y \cap y'$ and $y \cup y'$ are their intersection and union, respectively.

Recap: Structured Output SVM

- Slack formulation of S-SVM
 - > Solve $\min_{\mathbf{w}\in\mathbb{R}^{D},\,\xi_{n}\in\mathbb{R}^{+}} \frac{1}{2} \|\mathbf{w}\|^{2} + \frac{C}{N} \sum_{n=1}^{N} \xi_{n}$

subject to

$$egin{aligned} \langle \mathbf{w}, oldsymbol{\phi}(\mathbf{x}_n, \mathbf{y}_n)
angle \ & \geq \ \Delta(\mathbf{y}_n, \mathbf{y}) + \langle \mathbf{w}, oldsymbol{\phi}(\mathbf{x}_n, \mathbf{y})
angle - \xi_n \ & ext{for all } \mathbf{y} \in \mathcal{Y} \setminus \{\mathbf{y}_n\} \end{aligned}$$

- Optimization problem very similar to normal SVM
 - > Quadratic in w, linear in ξ .
 - > Constraints linear in ${f w}$ and ${f \xi}$.
 - Convex!
- But there are $N(|\mathcal{Y}| 1)$ constraints!
 - \Rightarrow Numeric optimization needs some tricks, will be expensive.

Slide adapted from Christoph Lampert

Recap: Solving S-SVM Training

- Solving the S-SVM optimization
 - > There are $N(|\mathcal{Y}| 1)$ constraints!
 - > But: Weight vector has only D degrees of freedom. Slack variables have only N degrees of freedom.
 - \Rightarrow D+N constraints suffice to determine the optimal solution.
 - If we knew the set of relevant constraints in advance, we could solve the optimization efficiently.
 - \Rightarrow Approximate the solution iteratively.
- Cutting Plane training
 - Delayed constraint generation technique
 - Search for the best weight vector and the set of active constraints simultaneously in an iterative manner.
 - Approximate solution with much faster runtime.

Recap: Cutting Plane Training

- Cutting Plane algorithm
 - 1. Start from an empty working set.
 - 2. In each iteration, solve the optimization problem for (\mathbf{w}^*, ξ^*) with only the constraints in the working set.
 - 3. Check for each sample if any of the $|\mathcal{Y}|$ constraints are violated.
 - 4. If not, we have found the optimal solution.
 - 5. Otherwise, add most violated constraints to the working set.

• Speed-ups

- > To achieve faster convergence, choose a tolerance $\epsilon > 0$ and require a constraint to be violated by at least ϵ .
- ⇒ Possible to prove convergence after $\mathcal{O}(\frac{1}{\epsilon^2})$ steps with the guarantee that objective value at the solution differs only at most by ϵ from the global minimum.

Cutting Plane Training: Limitations

- Cutting plane training
 - > Attractive, since it allows us to reuse existing components:
 - > Ordinary SVM solvers
 - Algorithms for (loss-adapted) MAP prediction
 - However...
 - > Convergence rate can be unsatisfactory, in particular for large values of C.
 - > Convergence after $\mathcal{O}(\frac{1}{\epsilon^2})$ steps means: for a value of $\epsilon = 0.1$, we already need on the order of 100 steps...
 - > This can be improved to $O(\frac{1}{\epsilon})$ with the recently introduced one-slack formulation.

Back to S-SVMs

One-slack S-SVM formulation

Solve
$$(\mathbf{w}^*, \xi^*) = \underset{\mathbf{w} \in \mathbb{R}^D, \, \xi \in \mathbb{R}_+}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2 + C\xi$$

subject to $\forall (\bar{\mathbf{y}}_1, ..., \bar{\mathbf{y}}_N) \in \mathcal{Y}^N$:
 $\sum_{i=1}^N [\Delta(\mathbf{w}, \bar{\mathbf{w}}_i) + \langle \mathbf{w}, \phi(\mathbf{w}, \bar{\mathbf{w}}_i) \rangle - \langle \mathbf{w}, \phi(\mathbf{w}, \mathbf{w}_i) \rangle]$

$$\sum_{n=1} \left[\Delta(\mathbf{y}_n, \bar{\mathbf{y}}_n) + \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_n, \bar{\mathbf{y}}_n) \rangle - \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_n, \mathbf{y}_n) \rangle \right] \leq N \boldsymbol{\xi}$$

- Equivalent to n-Slack S-SVM formulation
 - > But only one common slack variable ξ .
 - > We now have $|\mathcal{Y}|^N$ constraints, so even more than with n-slack.
 - > However, cutting-plane optimization now achieves a solution ϵ -close to the optimum in $\mathcal{O}(\frac{1}{\epsilon})$ steps.
 - \Rightarrow Significant reduction in training time for practical problems.

Topics of This Lecture

- Recap: Structured Output Learning
 - > General structured prediction
 - > Structured Output SVM
 - Cutting plane training
 - > Limitations
 - > One-slack formulation

• Application: Multi-class SVMs

- Crammer-Singer formulation
- Kernels in S-SVMs
 - > Joint kernel function
 - Kernelized S-SVM
 - > Application examples

Example: Crammer-Singer Multiclass SVM

- Procedure
 - > Define the joint feature space

$$\mathcal{Y} = \{1, 2, \dots, K\}, \quad \Delta(y, y') = \begin{cases} 1 & \text{for } y \neq y' \\ 0 & \text{otherwise} \end{cases}$$
$$\phi(x, y) = \left(\llbracket y = 1 \rrbracket \phi(x), \ \llbracket y = 2 \rrbracket \phi(x), \ \dots, \ \llbracket y = K \rrbracket \phi(x)\right)$$
$$\Rightarrow \text{ Solve } \qquad \min_{w, \xi} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^N \xi^n$$

subject to , for n = 1, ..., N, $\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \ge 1 - \xi^n$ for all $y \in \mathcal{Y} \setminus \{y^n\}$

> Classification: $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$

Advanced Machine Learning Winter'12

B. Leibe

Topics of This Lecture

- Recap: Structured Output Learning
 - > General structured prediction
 - > Structured Output SVM
 - Cutting plane training
 - > Limitations
 - > One-slack formulation
- Application: Multi-class SVMs
 - > Crammer-Singer formulation
- Kernels in S-SVMs
 - Joint kernel function
 - Kernelized S-SVM
 - Application examples

RWTHAACHEN UNIVERSITY

Kernels in S-SVMs

- Joint kernel function
 - > The S-SVM formulation is based on a joint feature map $\phi(\mathbf{x}, \mathbf{y})$., i.e., on pairs of (*input*, *output*).
 - > We can now also define a joint kernel function for such mappings $k: (\mathcal{X} \times \mathcal{Y}) \times (\mathcal{X} \times \mathcal{Y}) \to \mathbb{R}$ as follows

 $k\left((\mathbf{x},\mathbf{y}),(\mathbf{x}',\mathbf{y}')\right) = \langle \phi(\mathbf{x},\mathbf{y}),\phi(\mathbf{x}',\mathbf{y}') \rangle$

- > k measures similarities between (*input*, *output*) pairs.
- Same advantages as for regular SVMs
 - \succ One does not need an explicit expression for the feature map $\phi.$
 - It suffices if we can evaluate the kernel function for arbitrary arguments.
 - \Rightarrow Specifically advantageous if the feature map is very highdimensional.

Joint Kernel Functions

• What do joint kernel functions look like?

$$k\left((\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')\right) = \langle \phi(\mathbf{x}, \mathbf{y}), \phi(\mathbf{x}', \mathbf{y}') \rangle$$

- > As in graphical models: easier if ϕ decomposes w.r.t. factors $\phi({f x},{f y})=(\phi_F({f x},{f y}_F))_{F\in{\cal F}}$
- > Then the kernel k decomposes into a sum over factors $k((\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')) = \langle (\phi_F(\mathbf{x}, \mathbf{y}_F))_{F \in \mathcal{F}}, (\phi_F(\mathbf{x}', \mathbf{y}'_F))_{F \in \mathcal{F}} \rangle$

$$= \sum_{F \in \mathcal{F}} \langle (\phi_F(\mathbf{x}, \mathbf{y}_F)), (\phi_F(\mathbf{x}', \mathbf{y}'_F)) \rangle$$

$$= \sum_{F \in \mathcal{F}} k_F((\mathbf{x}, \mathbf{y}_F), ((\mathbf{x}', \mathbf{y}'_F))$$

 \Rightarrow We can define kernels for each object type.

RWTHAACHEN UNIVERSITY Example: Figure-Ground Segmentation

Task with a grid structure

- Typical kernels: arbitrary in \mathbf{x} , linear w.r.t. \mathbf{y} :
 - > Unary factors

$$k_p((x_p, y_p), (x'_p, y'_p)) = k(x_p, x'_p)\delta(y_p = y'_p)$$

with $k(x_p,\,x'_p)$ local image kernel, e.g. χ^2 or hist. intersection.

Pairwise factors

$$k_{pq}\left((y_p, y_q), (y'_p, y'_q)\right) = \delta(y_p = y'_p)\delta(y_q = y'_q)$$

More powerful than all-linear and argmax prediction still possible.

Slide credit: Christoph Lampert

Example: Object Localization

• Object detection task

> Only one factor that includes all $\mathbf x$ and $\mathbf y$:

$$k((\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')) = k_{image}(\mathbf{x}|_{\mathbf{y}}, \mathbf{x}'|_{\mathbf{y}'})$$

with k_{image} the image kernel and $\mathbf{x}|_{\mathbf{y}}$ is image region within box \mathbf{y} .

\Rightarrow argmax-prediction is as difficult here as object localization with $k_{image}\text{-}\text{SVM!}$

Slide credit: Christoph Lampert

Kernelized S-SVM

Dual formulation with kernels

Solve
$$\alpha^* = \underset{\alpha \in \mathbb{R}^{N \times \mathcal{Y}}_+}{\operatorname{arg\,max}} \sum_{\substack{n=1 \ \mathbf{y} \in \mathcal{Y}}}^N \alpha_{n\mathbf{y}} - \frac{1}{2} \sum_{\substack{n=1 \ \mathbf{y}' \in \mathcal{Y}}}^N \sum_{\substack{n'=1 \ \mathbf{y}' \in \mathcal{Y}}}^N \alpha_{n\mathbf{y}} \alpha_{n'\mathbf{y}'} \overline{K}_{\mathbf{y}\mathbf{y}'}^{nn'}$$

subject to for $n-1$.

subject to, for n=1, ..., N,

$\sum_{n \in \mathcal{N}} \alpha_{n \mathbf{y}}$	\leq	$\frac{C}{N}$
$\mathbf{y}{\in}\mathcal{Y}$		

where
$$\overline{K}_{yy'}^{nn'} = K_{y_ny'_{n'}}^{nn'} - K_{y_ny'}^{nn'} - K_{yy'_n}^{nn'} + K_{yy'}^{nn'}$$

and
$$K_{\mathbf{y}\mathbf{y}'}^{nn} = k\left((\mathbf{x}_n, \mathbf{y}), (\mathbf{x}_{n'}, \mathbf{y'})\right)$$
.

> Decision function $f(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \sum_{n=1}^{N} \sum_{\mathbf{y}' \in \mathcal{Y}} \alpha_{n\mathbf{y}'} k\left((\mathbf{x}_n, \mathbf{y}'), (\mathbf{x}, \mathbf{y})\right)$

B. Leibe

Discussion and Analysis

- Analysis
 - > Prediction function

$$f(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \sum_{n=1}^{N} \sum_{\mathbf{y}' \in \mathcal{Y}} \alpha_{n\mathbf{y}'} k\left((\mathbf{x}_n, \mathbf{y}'), (\mathbf{x}, \mathbf{y})\right)$$

- In principle, this function might become infeasible to compute, since it contains a potentially exponential number of summands.
- However, this is not a problem in practice, since the constraints enforce sparsity in the coefficients.

$$\sum_{\mathbf{y}\in\mathcal{Y}}\alpha_{n\mathbf{y}} \leq \frac{C}{N}$$

 \Rightarrow For every $n\!=\!1,\!...,\!N$, most coefficients $\alpha_{n\mathbf{y}}$ for $\mathbf{y}\!\in\!\mathcal{Y}$ will be zero.

⇒ Possible to keep a working set over non-zero coefficients during optimization.

Summary

- Given
 - ▶ Training set $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\} \rightarrow \mathcal{X} \times \mathcal{Y}$
 - \succ Loss function $\Delta:\mathcal{Y} imes\mathcal{Y}
 ightarrow\mathbb{R}$.

• Task:

- > Learn parameter w for $f(\mathbf{x}) := \operatorname{argmax}_{\mathbf{v}} \langle \mathbf{w}, \phi(\mathbf{x}, \mathbf{y}) \rangle$ that minimizes expected loss on future data.
- S-SVM solution derived by maximum margin framework:
 - Enforce correct output to be better than others by a margin :

 $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_n, \mathbf{y}_n) \rangle \ \geq \ \Delta(\mathbf{y}_n, \mathbf{y}) + \langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}_n, \mathbf{y})
angle \quad ext{for all } \mathbf{y} \in \mathcal{Y}$

- Convex optimization problem, but non-differentiable
- Many equivalent formulations \rightarrow different training algorithms ≻
- **Training needs repeated** argmax **prediction**, **no probabilistic** inference

Slide credit: Christoph Lampert

References and Further Reading

- Structured SVMs were first introduced here
 - I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, <u>Large</u> <u>Margin Methods for Structured and Interdependent Output</u> <u>Variables</u>, Journal of Machine Learning Research, Vol. 6, pp. 1453-1484, 2005.
- Additional details on Structured SVMs can be found in Chapter 6 of the following tutorial on Structured Learning
 - S. Nowozin, C. Lampert, <u>Structured Learning and Prediction in</u> <u>Computer Vision</u>, Foundations and Trends in Computer Graphics and Vision, Vol. 6(3-4), pp. 185-365, 2011.