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RWTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X - R
» Linear Regression l o | |

. Regularization (Ridge, Lasso) /) \/
- Kernels (Kernel Ridge Regression) h ! /I) B ‘
- Gaussian Processes S
e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
> SVMs, SVDD, SV Regression f : X — y

> Structured Output Learning
B. Leibe

(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<




(9|
-
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Topics of This Lecture

e Recap: Structured Output Learning
» General structured prediction
> Structured Output SVM
> Cutting plane training
> Limitations
> One-slack formulation

e Application: Multi-class SVMs

> Crammer-Singer formulation

e Kernels in S-SVMs

» Joint kernel function
> Kernelized S-SVM
~ Application examples

B. Leibe



Recap: Grand Unified View

Predict structured output by maximization

= arg max F'(x,
y = argmax F(x, y)

of a compatibility function

F(x,y) = (w,0(x,y))

that is linear in a parameter vector w.
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Slide credit: Christoph Lampert B. Leibe




RWTH
Recap: Generic Structured Prediction

e A generic structured prediction problem
> A arbitrary input domain
> ). structured output domain, decompose y = (y;,..,Yx)
» Prediction function f : X — ) given by

f(x) = argmax F'(x,y)
yey
> Compatibility function (or negative of “energy”)

F(x,y) = < ,P(X,y))

= Z w, ¢,(y;, X unary terms

™ Z W;;qbij(yi:yjax) binary terms
t,J=1
... higher-order terms

B. Leibe
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RWTH
Recap: Learning in Structured Models

e Problem statement
- Given: parametric model (family): F(x,y) = (w, ¢(x,y))
prediction method: f(x) = argmax, .y F(x,y)
training example pairs {(x;,y4), .-, (X, ¥,)} C X x ).
- Goal: determine ,good“ parameter vector w.

e What make a solution "good"?
~ Define a loss function

A:YxY—-RT

such that A(y, y’ ) measures the loss/cost incurred by predicting
y' when y is correct.
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RWTH
Recap: Popular Structured Loss Functions

e Zero-one loss

- Definition: A(y,y') =46y #y')
» “Every prediction that is not identical to the intended one is
considered a mistake, and all mistakes are penalized equally.”

> Most common loss for multi-class problems.
~ Less frequently used for structured prediction tasks.

car
vehicle <
bus
entity <

cat

e Hierarchical multi-class loss —
- Definition: A(y,y’) = 1disty(y,y’) dog
where H is a hierarchy over the classes in ) and dist ,(y,y’)
measures the distance of y and y'.

> Common way to incorporate information about label hierarchies
in multi-class prediction problems
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RWTH
Recap: Popular Structured Loss Functions

e Hamming loss

. Definition: A(y,y’)=L>"" 0(y; #y})
» Frequently used loss for image segmentation and other tasks in
which the output y consists of multiple part labels y,,...,y

- Each part label is judged independently and the average number
of labeling errors is determined.

m.

e Area overlap loss
e n _ area(ynNy')
- Definition: A(y,y’)=1- area(yUy")
~ Standard loss in object localization, e.g., the PASCAL VOC
detection challenges.

> y and y’ are bounding box coordinates,andy Ny andy U y’
are their intersection and union, respectively.

(9|
—
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

B. Leibe



Recap: Structured Output SVM

e Slack formulation of S-SVM

1 C <
> Solve min —llw 2 _ n
i I

subject to
<W9 qb(Xnv YTL)> Z A(an Y) + <W9 qb(Xnv Y)> T gn

for all y € Y\ {yn}

e Optimization problem very similar to normal SVM
> Quadratic in w, linear in .
» Constraints linear in w and €.
> Convex!

e But there are N(|)| — 1) constraints!
= Numeric optimization needs some tricks, will be expensive.
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Recap: Solving S-SVM Training

e Solving the S-SVM optimization
- There are N(|)Y| — 1) constraints!

» But: Weight vector has only D degrees of freedom.
Slack variables have only /NV degrees of freedom.
= D+ N constraints suffice to determine the optimal solution.

> If we knew the set of relevant constraints in advance, we could
solve the optimization efficiently.

= Approximate the solution iteratively.

e Cutting Plane training
~ Delayed constraint generation technique

~ Search for the best weight vector and the set of active
constraints simultaneously in an iterative manner.

~ Approximate solution with much faster runtime.

B. Leibe
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Recap: Cutting Plane Training

e Cutting Plane algorithm
1. Start from an empty working set.

2. In each iteration, solve the optimization problem for (w",£")
with only the constraints in the working set.

3. Check for each sample if any of the |)| constraints are violated.

4. If not, we have found the optimal solution.
5. Otherwise, add most violated constraints to the working set.

e Speed-ups
~ To achieve faster convergence, choose a tolerance ¢ > 0 and
require a constraint to be violated by at least «.

= Possible to prove convergence after O(=) steps with the
guarantee that objective value at the solution differs only at
most by € from the global minimum.

B. Leibe
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RWTH
Cutting Plane Training: Limitations

e Cutting plane training
~ Attractive, since it allows us to reuse existing components:
» Ordinary SVM solvers
» Algorithms for (loss-adapted) MAP prediction

e However...

~ Convergence rate can be unsatisfactory, in particular for large
values of C.

. Convergence after O(Z;) steps means: for a value of ¢ = 0.1, we
already need on the order of 100 steps...

- This can be improved to O(1)with the recently introduced one-
slack formulation.

12
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Back to S-SVMs

e One-slack S-SVM formulation

1
- Solve (w™, &™) = argmin _|lwl|]* + C
(w',€") = angmin_llw|]*+ C¢

subject to V(¥1,...,¥n) € YV :

Y AW Ta) + (W, d(xn, §n)) = (W, 0(Xn,¥0))] < NE

e Equivalent to n-Slack S-SVM formulation
» But only one common slack variable &.
- We now have |) |" constraints, so even more than with n-slack.

- However, cutting-plane optimization now achieves a solution
e-close to the optimum in O(1) steps.

=> Significant reduction in training time for practical problems.
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Topics of This Lecture

e Application: Multi-class SVMs

> Crammer-Singer formulation
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Example: Crammer-Singer Multiclass SVM

 Procedure
» Define the joint feature space

1 fory £y
=1{1.2..... K A o
=1 g (y:9) = {O otherwise
d(z,y) = ([['y =1]o(z), [y =2]o(z), .... [y = ff]]ﬂﬁ(;ﬂ))
> Solve 111111—||H‘||2 ¢ E :'5
w,& 2 ]
=

subjectto, forn =1, ..., N,
(w, o(2™.y")) — (w.o(x".y)) >1 =& forallye Y\ {y"}

- Classification: f(r) = argmax, .y (w. o(2.y))
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Topics of This Lecture

e Kernels in S-SVMs

> Joint kernel function
> Kernelized S-SVM
~ Application examples
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Kernels in S-SVMs

e Joint kernel function
» The S-SVM formulation is based on a joint feature map ¢(x,y).,
i.e., on pairs of (input, output).

> We can now also define a joint kernel function for such
mappings k: (X x )) x (X x )Y) — R as follows

k((xy), (x,y)) = (o(x,y), 0(x,¥"))

> k measures similarities between (input, output) pairs.

e Same advantages as for regular SVMs
» One does not need an explicit expression for the feature map ¢.

~ It suffices if we can evaluate the kernel function for arbitrary
arguments.

= Specifically advantageous if the feature map is very high-

dimensional.

17
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Joint Kernel Functions

e What do joint kernel functions look like?
E((x,y), (x,y") = (6(x,5),6(x,¥"))
» As in graphical models: easier if ¢ decomposes w.r.t. factors
P(X,y) = (¢F(XayF))FeJ-‘

» Then the kernel £ decomposes into a sum over factors
k ((Xa Y)a (X,a y,)) — <(¢F(Xa YF))FETa (¢F(X,7 y%))FE}—>

_ Z((gbp(x,yF))a(GbF(X',Y%)))

FeF

— Z kr((x,yr), (X', ¥F))

FcF
= We can define kernels for each object type.
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Example: Figure-Ground Segmentation

e Task with a grid structure

/‘.ﬂ .
';‘ % : Aoy - -
8 i A _51“ X "'
Wi L = =
Vi T S S
¥ S : [ horse
REnE 0 | 1 background

e Typical kernels: arbitrary in x, linear w.r.t. y:
> Unary factors

kp ((mz%yp)a (37;97?/2,9)) = k(zp, x;o)5(yp — ?/2,9)

with k(x ), =’ )) local image kernel, e.g. x* or hist. intersection.

> Pairwise factors

kpg ((Ups Ya)s (Ups ¥g)) = 0(yp = ¥,)0(yg = ¥g)
~ More powerful than all-linear and argmax prediction still

possible.
Slide credit: Christoph Lampert
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Example: Object Localization

left top

e Object detection task

image
right bottom

~ Only one factor that includes all x and y:

k ((Xa .Y)a (X’,y')) — kimage(x’yaxl|y’)

with £. the image kernel and x|yis image region within box y.

1mage

= argmax-prediction is as difficult here as object localization with
k -SVM!

1mage
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Kernelized S-SVM

e Dual formulation with kernels

N N N
Solve o 3 Ly yoei
a€Ry —1 =1 p’

n—= n=-mn =1
o~ yey y EY yey
i subject to, forn =1, ..., N,
s Sy < o

a [
o i N
= yeYy
c
S where K ' Ko, _ gnn g + K
:: Yy T ryayl. Vny’ Yy, Yy’
c /
— nn __ /
§ and Kyy’ _ k((X?’HY)ﬂ (Xn’aY))°
S
o > Decision function N
(&)

!/

& f(X) — argmax E E &ny’k ((Xna y )7 (Xv Y))
3 yeY ,
< n=1 Yy Ey

B. Leibe



Discussion and Analysis

e Analysis
> Prediction function
N
f(X) — argr;’lEaJ}){ Z Z Cl{ny’k ((Xna y,)v (X7 Y))
n=1ly’'e)y

> In principle, this function might become infeasible to compute,
since it contains a potentially exponential number of summands.

- However, this is not a problem in practice, since the constraints
enforce sparsity in the coefficients.

C
Dy < %

= For every n=1,...,N, most coefficients «,, for yc) will be zero.

= Possible to keep a working set over non-zero coefficients during
optimization.
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Summary

e Given
- Training set {(x{, y¥;), .-, (X5, Yn)} = A X Y
> Loss function A : Y x YV — R.

e Task:

- Learn parameter w for f(x) := argmax, (w, ¢(x, y)) that
minimizes expected loss on future data.

e S-SVM solution derived by maximum margin framework:

~ Enforce correct output to be better than by a margin :
(W, &(X,¥n)) > A(Yn,y) + (W, 0(x,,y)) forallye)

> Convex optimization problem, but non-differentiable
> Many equivalent formulations — different training algorithms

> Training needs repeated argmax prediction, no probabilistic

inference

Slide credit: Christoph Lampert B. Leibe
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RWTH
References and Further Reading

e Structured SVMs were first introduced here

> |. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large
Margin Methods for Structured and Interdependent Output
Variables, Journal of Machine Learning Research, Vol. 6, pp.
1453-1484, 2005.

e Additional details on Structured SVMs can be found in
Chapter 6 of the following tutorial on Structured
Learning

> S. Nowozin, C. Lampert, Structured Learning and Prediction in

Computer Vision, Foundations and Trends in Computer Graphics

and Vision, Vol. 6(3-4), pp. 185-365, 2011.

B. Leibe
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