Advanced Machine Learning Lecture 20

Structured Output Learning

21.01.2013

Bastian Leibe RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
- Regularization (Ridge, Lasso)
, Kernels (Kernel Ridge Regression)
, Gaussian Processes

- Bayesian Estimation \& Bayesian Non-Parametrics
, Prob. Distributions, Approx. Inference
, Mixture Models \& EM
, Dirichlet Processes
, Latent Factor Models

, Beta Processes
- SVMs and Structured Output Learning
, SVMs, SVDD, SV Regression

, Structured Output Learning

Topics of This Lecture

- Recap: Extensions to Support Vector Machines
, Kernel PCA
, Support Vector Data Description (1-class SVMs)
, Support Vector Regression
- Structured Output Learning
, From arbitrary inputs to arbitrary outputs
, General structured prediction
, Structured loss functions
, Structured Output SVM
, Cutting plane training

Recap: Kernel-PCA

- Kernel-PCA procedure
, Given samples $\mathbf{x}_{n} \in \mathcal{X}$, kernel $\mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with an implicit feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$. Perform PCA in the Hilbert space \mathcal{H}.
- Equivalently, we can use the eigenvectors e_{k} and eigenvalues λ_{k} of the kernel matrix

$$
\begin{aligned}
K & =\left(\left\langle\boldsymbol{\phi}\left(\mathbf{x}_{m}\right), \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right\rangle\right)_{m, n=1, \ldots, N} \\
& =\left(k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)\right)_{m, n=1, \ldots, N}
\end{aligned}
$$

, Coordinate mapping:

$$
\mathbf{x}_{n} \mapsto\left(\sqrt{\lambda_{1}} \mathbf{e}_{1}^{\prime}, \ldots, \sqrt{\lambda_{K}} \mathbf{e}_{K}^{\prime}\right)
$$

- Subtle issue: Centering
, Subtracting the mean would require us to work in \mathcal{H} with $\phi(\mathbf{x})$.
, More elaborate procedure (\rightarrow Bishop Ch. 12.3)

Recap: One-Class SVMs

- Objective function
, Find the smallest ball (center $\mathbf{c} \in \mathcal{H}$, radius R) that contains "most" of the samples.
, Solve

$$
\min _{R \in \mathbb{R}, \mathbf{c} \in \mathcal{H}, \xi_{n} \in \mathbb{R}^{+}} R+\frac{1}{\nu N} \sum_{n=1}^{N} \xi_{n}
$$

subject to

$$
\left\|\phi\left(\mathbf{x}_{n}\right)-\mathbf{c}\right\|^{2} \leq R^{2}+\xi_{n} \quad \text { for } n=1, \ldots, N
$$

where $\nu \in(0,1)$ upper bounds the number of outliers.
\Rightarrow Sparse solution, can be written entirely in terms of kernel functions $k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$.
\Rightarrow Often used for outlier/anomaly detection.

Recap: SV Regression

- Obtaining sparse solutions
, Define an ϵ-insensitive error function

$$
E_{\epsilon}(y(\mathbf{x})-t)= \begin{cases}0, & \text { if }|y(\mathbf{x})-t|<\epsilon \\ \mid y(\mathbf{x}-t \mid-\epsilon, & \text { otherwise }\end{cases}
$$

, Use for large-margin optimization

$$
C \sum_{n=1}^{N}\left[\left|y\left(\mathbf{x}_{n}\right)-t_{n}\right|-\epsilon\right]_{+}+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

, Optimization with slack variables

$$
C \sum_{n=1}^{N}\left(\xi_{n}+\widehat{\xi}_{n}\right)+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

\Rightarrow Support Vector Regression

R

Recap: SV Regression - Primal Form

- Lagrangian primal form

$$
\begin{aligned}
L_{p}= & C \sum_{n=1}^{N}\left(\xi_{n}+\widehat{\xi}_{n}\right)+\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N}\left(\mu_{n} \xi_{n}+\widehat{\mu}_{n} \widehat{\xi}_{n}\right) \\
& -\sum_{n=1}^{N} a_{n}\left(\epsilon+\xi_{n}+y_{n}-t_{n}\right)-\sum_{n=1}^{N} \widehat{a}_{n}\left(\epsilon+\widehat{\xi}_{n}-y_{n}+t_{n}\right)
\end{aligned}
$$

- Solving for the variables

$$
\begin{array}{ll}
\frac{\partial L}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N}\left(a_{n}-\widehat{a}_{n}\right) \phi\left(\mathbf{x}_{n}\right) & \frac{\partial L}{\partial \xi_{n}}=0 \Rightarrow a_{n}+\mu_{n}=C \\
\frac{\partial L}{\partial b}=0 \Rightarrow \sum_{n=1}^{N}\left(a_{n}-\widehat{a}_{n}\right)=0 & \frac{\partial L}{\partial \widehat{\xi}_{n}}=0 \Rightarrow \widehat{a}_{n}+\widehat{\mu}_{n}=C
\end{array}
$$

Recap: SV Regression - Dual Form

- From this, we can derive the dual form
, Maximize

$$
\begin{aligned}
L_{d}(\mathbf{a}, \widehat{\mathbf{a}})= & -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N}\left(a_{n}-\widehat{a}_{n}\right)\left(a_{m}-\widehat{a}_{m}\right) k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right) \\
& -\epsilon \sum_{n=1}^{N}\left(a_{n}+\widehat{a}_{n}\right)+\sum_{n=1}^{N}\left(a_{n}-\widehat{a}_{n}\right) t_{n}
\end{aligned}
$$

> under the conditions

$$
\begin{aligned}
& 0 \leq a_{n} \leq C \\
& 0 \leq \widehat{a}_{n} \leq C
\end{aligned}
$$

- Predictions for new inputs are then made using

$$
y(\mathbf{x})=\sum_{n=1}^{N}\left(a_{n}-\widehat{a}_{n}\right) k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b
$$

Topics of This Lecture

- Recap: Extensions to Support Vector Machines
, Kernel PCA
, Support Vector Data Description (1-class SVMs)
, Support Vector Regression
- Structured Output Learning
, From arbitrary inputs to arbitrary outputs
, General structured prediction
, Structured loss functions
, Structured Output SVM
, Cutting plane training

From Arbitrary Inputs to Arbitrary Outputs

- With kernels, we can handle "arbitrary" input spaces:
, We only need a pairwise similarity measure for objects:
- Images: e.g., χ^{2} kernel
- Gene sequences:
e.g., string kernels
- Graphs:
e.g., random walk kernels
- We can learn mappings

$$
f: \mathcal{X} \rightarrow\{-1,1\} \text { or } f: \mathcal{X} \rightarrow \mathbb{R}
$$

- What about arbitrary output spaces?
, We know: kernels correspond to feature maps: $\phi: \mathcal{X} \rightarrow \mathcal{H}$.
, But: we cannot invert ϕ, there is no $\phi^{-1}: \mathcal{H} \rightarrow \mathcal{X}$.
> Kernels do not readily help us to construct

$$
f: \mathcal{X} \rightarrow \mathcal{Y} \quad \text { with } \quad \mathcal{Y} \neq \mathbb{R}
$$

What Would We Like to Predict?

- Natural Language Processing:
, Automatic Translation (output: sentences)
, Sentence Parsing (output: parse trees)
- Bioinformatics:
, Secondary Structure Prediction (output: bipartite graphs)
, Enzyme Function Prediction (output: path in a tree)
- Robotics:
, Planning (output: sequence of actions)
- Computer Vision
, Image Segmentation (output: segmentation mask)
, Human Pose Estimation (output: positions of body parts)
, Image Retrieval (output: ranking of images in database)

Example: Semantic Image Segmentation

Input: images

Output: segmentation masks

- Problem formulation
, Input space:
, Output space:

$$
\mathcal{X}=\{\text { images }\} \equiv[0,255]^{3 \cdot M \cdot N}
$$

$$
\mathcal{Y}=\{\text { segmentation masks }\} \equiv\{0,1\}^{M \cdot N}
$$

, (Structured) prediction function: $f: \mathcal{X} \rightarrow \mathcal{Y}$
, Energy function

$$
f(\mathbf{x}):=\arg \min _{\mathbf{y} \in \mathcal{Y}} E(\mathbf{x}, \mathbf{y})
$$

$$
\begin{equation*}
E(\mathbf{x}, \mathbf{y})=\sum_{i} \mathbf{w}_{i}^{\top} \phi_{\text {unary }}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)+\sum_{i} \sum_{\substack{j \\ \text { Images from [M. Everingham et al., IJCV' } 10]}} \mathbf{w}_{i j}^{\top} \phi_{\text {pairwise }}\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right) \tag{12}
\end{equation*}
$$

Slide credit: Christoph Lampert

Example: Human Pose Estimation

Input: image

Body model

Output: model fit

- Problem formulation
, Input space:
, Output space:

$$
\mathcal{X}=\{\text { images }\}
$$

$\mathcal{Y}=\{$ pos./angles of body parts $\} \equiv \mathbb{R}^{4 K}$
, (Structured) prediction function: $f: \mathcal{X} \rightarrow \mathcal{Y}$

$$
f(\mathbf{x}):=\arg \min _{\mathbf{y} \in \mathcal{Y}} E(\mathbf{x}, \mathbf{y})
$$

. Energy function

$$
E(\mathbf{x}, \mathbf{y})=\sum_{i} \mathbf{w}_{i}^{\top} \boldsymbol{\phi}_{f i t}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)+\sum_{i} \sum_{j \text { B. Leibe }} \mathbf{w}_{i j}^{\top} \boldsymbol{\phi}_{\text {pose }}\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)
$$

Slide credit: Christoph Lampert

Example: Object Localization

Input: image

Output: object position (left, top, right, bottom)
, Input space:
, Output space:
, (Structured) prediction function: $f: \mathcal{X} \rightarrow \mathcal{Y}$

$$
f(\mathbf{x}):=\arg \max _{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y})
$$

, Scoring function $F(\mathbf{x}, \mathbf{y})=\mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}, \mathbf{y})$, where $\phi(\mathbf{x}, \mathbf{y})=h\left(\left.\mathbf{x}\right|_{\mathrm{y}}\right)$ is a feature vector for an image region, e.g., bag-of-words.

Computer Vision Examples: Summary

- Image Segmentation

$$
\begin{aligned}
\mathbf{y} & =\underset{\mathbf{y} \in\{0,1\}^{N}}{\operatorname{argmin}} E(\mathbf{x}, \mathbf{y}) \\
E(\mathbf{x}, \mathbf{y}) & =\sum_{i} \mathbf{w}_{i}^{\top} \boldsymbol{\phi}_{\text {unary }}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)+\sum_{i, j} \mathbf{w}_{i j}^{\top} \boldsymbol{\phi}_{\text {pairwise }}\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)
\end{aligned}
$$

- Pose Estimation

$$
\begin{aligned}
\mathbf{y} & =\underset{\mathbf{y} \in \mathbb{R}^{4} K}{\operatorname{argmin}} E(\mathbf{x}, \mathbf{y}) \\
E(\mathbf{x}, \mathbf{y}) & =\sum_{i} \mathbf{w}_{i}^{\top} \boldsymbol{\phi}_{f i t}\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)+\sum_{i, j} \mathbf{w}_{i j}^{\top} \boldsymbol{\phi}_{\text {pose }}\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)
\end{aligned}
$$

- Object Localization

$$
\begin{aligned}
\mathbf{y} & =\underset{\mathbf{y} \in \mathbb{R}^{4}}{\operatorname{argmax}} F(\mathbf{x}, \mathbf{y}) \\
F(\mathbf{x}, \mathbf{y}) & =\mathbf{w}^{\top} \boldsymbol{\phi}(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

Grand Unified View

Predict structured output by maximization

$$
\mathbf{y}=\arg \max _{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y})
$$

of a compatibility function

$$
F(\mathbf{x}, \mathbf{y})=\langle\mathbf{w}, \phi(\mathbf{x}, \mathbf{y})\rangle
$$

that is linear in a parameter vector \mathbf{w}.

Generic Structured Prediction

- A generic structured prediction problem
, \mathcal{X} : arbitrary input domain
, \mathcal{Y} : structured output domain, decompose $\mathbf{y}=\left(y_{1}, \ldots, y_{K}\right)$
, Prediction function $f: \mathcal{X} \rightarrow \mathcal{Y}$ given by

$$
f(\mathbf{x})=\arg \max _{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y})
$$

, Compatibility function (or negative of "energy")

$$
\begin{aligned}
F(\mathbf{x}, \mathbf{y}) & =\langle\mathbf{w}, \boldsymbol{\phi}(\mathbf{x}, \mathbf{y})\rangle & & \\
& =\sum_{i=1}^{K} \mathbf{w}_{i}^{\top} \boldsymbol{\phi}_{i}\left(y_{i}, \mathbf{x}\right) & & \text { unary terms } \\
& +\sum_{i, j=1}^{K} \mathbf{w}_{i j}^{\top} \boldsymbol{\phi}_{i j}\left(y_{i}, y_{j}, \mathbf{x}\right) & & \text { binary terms } \\
& +\ldots & & \text { higher-order terms }
\end{aligned}
$$

Generic Structured Prediction

- Machine Learning lecture: How to solve $\operatorname{argmax}_{\mathrm{y}} F(\mathbf{x}, \mathbf{y})$?
, Loop-free graphs: Viterbi algorithm, max-sum BP

Tree
, Loopy graphs: Graph Cuts, Loopy BP

Arbitrary graph

- This lecture
, How to learn a good function $F(\mathbf{x}, \mathbf{y})$ from training data?

Parameter Learning in Structured Models

- Problem statement
, Given: parametric model (family): $F(\mathbf{x}, \mathbf{y})=\langle\mathbf{w}, \phi(\mathbf{x}, \mathbf{y})\rangle$
, Given: prediction method: $f(\mathbf{x})=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y})$
> Not given: parameter vector w (high-dimensional)
- Supervised Training
, Given: example pairs $\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$.
, Typical inputs with "the right" outputs for them.

> Task: determine „good" w.

Loss Function

- What make a solution "good"?
, Define a loss function

$$
\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}
$$

such that $\Delta\left(\mathbf{y}, \mathbf{y}^{\prime}\right)$ measures the loss/cost incurred by predicting y^{\prime} when y is correct.

- The loss function is application dependent:

Number of mislabeled pixels

Total depth error

Number of
wrong body parts

Bounding box area overlap

Some Popular Structured Loss Functions

- Zero-one loss
, Definition: $\Delta\left(\mathbf{y}, \mathbf{y}^{\prime}\right)=\delta\left(\mathbf{y} \neq \mathbf{y}^{\prime}\right)$
, "Every prediction that is not identical to the intended one is considered a mistake, and all mistakes are penalized equally."
- Most common loss for multi-class problems.
, Less frequently used for structured prediction tasks.
- Hierarchical multi-class loss
, Definition: $\Delta\left(\mathbf{y}, \mathbf{y}^{\prime}\right)=\frac{1}{2} \operatorname{dist}_{H}\left(\mathbf{y}, \mathbf{y}^{\prime}\right)$
 where H is a hierarchy over the classes in \mathcal{Y} and $\operatorname{dist}_{H}\left(\mathbf{y}, \mathbf{y}^{\prime}\right)$ measures the distance of y and y^{\prime}.
, Common way to incorporate information about label hierarchies in multi-class prediction problems

Some Popular Structured Loss Functions

- Hamming loss
, Definition: $\Delta\left(\mathbf{y}, \mathbf{y}^{\prime}\right)=\frac{1}{m} \sum_{i=1}^{m} \delta\left(\mathbf{y}_{i} \neq \mathbf{y}_{i}^{\prime}\right)$
- Frequently used loss for image segmentation and other tasks in which the output y consists of multiple part labels $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$.
, Each part label is judged independently and the average number of labeling errors is determined.
- Area overlap loss
, Definition: $\Delta\left(\mathbf{y}, \mathbf{y}^{\prime}\right)=\frac{\operatorname{area}\left(\mathbf{y} \cap \mathbf{y}^{\prime}\right)}{\operatorname{area}\left(\mathbf{y} \cup \mathbf{y}^{\prime}\right)}$
, Standard loss in object localization, e.g., the PASCAL VOC detection challenges.
> \mathbf{y} and \mathbf{y}^{\prime} are bounding box coordinates, and $\mathbf{y} \cap \mathbf{y}^{\prime}$ and $\mathbf{y} \cup \mathbf{y}^{\prime}$ are their intersection and union, respectively.

Structured Output SVM

- Two criteria for decision function f :

1. Correctness: Ensure $f\left(\mathbf{x}_{n}\right)=\mathbf{y}_{n}$ for training data, $n=1, \ldots, N$.
2. Robustness: f should also work if \mathbf{x}_{n} are perturbed.

- Translated to structured prediction, this means
, With $f(\mathbf{x})=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}}\langle\mathbf{w}, \phi(\mathbf{x}, \mathbf{y})\rangle$:

1. Ensure for $n=1, \ldots, N$,

$$
\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}}\left\langle\mathbf{w}, \boldsymbol{\phi}\left(\mathbf{x}_{n}, \mathbf{y}\right)\right\rangle=\mathbf{y}_{n}
$$

$$
\Leftrightarrow\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\rangle \geq \epsilon+\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}\right)\right\rangle \quad \text { for all } \mathbf{y} \in \mathcal{Y} \backslash\left\{\mathbf{y}_{n}\right\}
$$

2. Enforce large margin, minimize $\|\mathbf{w}\|^{2}$.

Structured Output SVM

- Slack formulation of S-SVM
, Solve

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}, \xi_{n} \in \mathbb{R}^{+}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{n=1}^{N} \xi_{n}
$$

subject to

$$
\begin{gathered}
\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\rangle \geq \Delta\left(\mathbf{y}_{n}, \mathbf{y}\right)+\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}\right)\right\rangle-\xi_{n} \\
\text { for all } \mathbf{y} \in \mathcal{Y} \backslash\left\{\mathbf{y}_{n}\right\}
\end{gathered}
$$

- Interpreting the constraint terms:

$$
\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\rangle \quad \text { Score for output } \mathbf{y}_{n}
$$

$$
\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}\right)\right\rangle \quad \text { Score for any other output } \mathbf{y}
$$

$$
\Delta\left(\mathbf{y}_{n}, \mathbf{y}\right) \geq 0 \quad \text { Loss for predicting } \mathbf{y} \text { when }
$$ \mathbf{y}_{n} would be correct

ξ_{n}
Slack, outliers may violate criterion ${ }_{24}$
Slide adapted from Christoph Lampert
B. Leibe

Structured Output SVM

- Slack formulation of S-SVM
, Solve

$$
\min _{\mathbf{w} \in \mathbb{R}^{D}, \xi_{n} \in \mathbb{R}^{+}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{N} \sum_{n=1}^{N} \xi_{n}
$$

subject to

$$
\begin{gathered}
\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\rangle \geq \Delta\left(\mathbf{y}_{n}, \mathbf{y}\right)+\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}\right)\right\rangle-\xi_{n} \\
\text { for all } \mathbf{y} \in \mathcal{Y} \backslash\left\{\mathbf{y}_{n}\right\}
\end{gathered}
$$

- Optimization problem very similar to normal SVM
, Quadratic in w, linear in ξ.
> Constraints linear in w and ξ.
, Convex!
- But there are $N(|\mathcal{Y}|-1)$ constraints!
\Rightarrow Numeric optimization needs some tricks, will be expensive.

Discussion

- S-SVM formulation with slack variables
, The constrained optimization problem has an elementary form and is jointly convex.
> However, this advantage comes at the price of a large number of constraints: $|\mathcal{Y}|$ inequalities per training sample!
\Rightarrow For most structured prediction problems, this is much larger than what software packages for constrained convex optimization can process in reasonable time.
\Rightarrow Often not even possible to store all the constraints in memory!
- However...
, Weight vector has only D degrees of freedom.
, Slack variables have only N degrees of freedom.
$\Rightarrow D+N$ constraints suffice to determine the optimal solution.
\Rightarrow The question is only which of them are the essential ones...

Solving S-SVM Training

- Solving the S-SVM optimization
> If we knew the set of relevant constraints in advance, we could solve the optimization efficiently.
\Rightarrow Approximate the solution iteratively.
\Rightarrow Cutting Plane training algorithm.
- Cutting Plane training
, Delayed constraint generation technique
> Search for the best weight vector and the set of active constraints simultaneously in an iterative manner.
, Approximate solution with much faster runtime.

Cutting Plane Training

- Cutting Plane algorithm

1. Start from an empty working set.
2. In each iteration, solve the optimization problem for $\left(\mathbf{w}^{*}, \xi^{*}\right)$ with only the constraints in the working set.
3. Check for each sample if any of the $|\mathcal{Y}|$ constraints are violated.
4. If not, we have found the optimal solution.
5. Otherwise, add most violated constraints to the working set.

- Speed-ups
, To achieve faster convergence, choose a tolerance $\epsilon>0$ and require a constraint to be violated by at least ϵ.
\Rightarrow Possible to prove convergence after $\mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)$ steps with the guarantee that objective value at the solution differs only at most by ϵ from the global minimum.

Cutting Plane Algorithm

```
Algorithm 15 Cutting Plane S-SVM Training
    1: \(w^{*}=\operatorname{Cutting} P_{\text {lane }}(\varepsilon)\)
    Input:
        \(\varepsilon\) tolerance
    Output:
        \(w^{*} \in \mathbb{R}^{D}\) learned weight vector
    Algorithm:
    \(S \leftarrow \emptyset\)
    repeat
        \(\left(w_{c u r}, \xi_{c u r}\right) \leftarrow\) solution to (6.7) with constraints (6.8) from \(S\)
        for \(\mathrm{n}=1, \ldots, \mathrm{~N}\) do
            \(y^{*} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} H_{n}\left(y ; w_{c u r}, \xi_{c u r}\right)\)
            if \(H_{n}\left(y^{*} ; w_{c u r}, \xi_{c u r}\right)>\varepsilon\) then
                    \(S \leftarrow S \cup\left\{\left(x^{n}, y^{*}\right)\right\}\)
            end if
        end for
    16: until \(S\) did not change in this iteration
    17: \(w^{*} \leftarrow w_{\text {cur }}\)
where \(H_{n}(y ; w, \xi):=g\left(x^{n}, y, w\right)-g\left(x^{n}, y^{n}, w\right)+\Delta\left(y, y^{n}\right)-\xi^{n}\).
```


Cutting Plane: Most Expensive Steps

- Solving the quadratic optimization problem
, As long as the working set size is reasonable, this can be solved using general purpose quadratic program solvers, either in the primal or in the dual form.
, Also possible to adapt existing SVM training methods (typically leads to much higher performance).
- Identifying the most violated constraint
, Loss-augmented prediction step
> Need to solve N optimization problems of the form

$$
\operatorname{argmax}_{\mathbf{y}} \Delta\left(\mathbf{y}_{n}, \mathbf{y}\right)+\left\langle\mathbf{w}, \boldsymbol{\phi}\left(\mathbf{x}_{n}, \mathbf{y}\right)\right\rangle
$$

, Strong resemblance to the evaluation of

$$
f(\mathbf{x})=\operatorname{argmax}_{\mathbf{y}}\left\langle\mathbf{w}, \phi\left(\mathbf{x}_{n}, \mathbf{y}\right)\right\rangle
$$

, In many cases, Δ can be rewritten to look like additional terms of the inner product. \Rightarrow reuse MAP prediction routines.

Summary for Today

- We have motivated Structured Prediction
, Ability to use a large set of more general loss functions...
> ...while keeping the large-margin learning idea.
\Rightarrow Possibility to design a loss function that directly optimizes the scoring function the final approach will be evaluated on.
- Introduction to Structured SVMs
, Formulation with slack variables
, Cutting-plane training
- What is still missing?
, How to incorporate kernels?
, How is this used in applications?
\Rightarrow Next lecture...

References and Further Reading

- Structured SVMs were first introduced here
> I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large Margin Methods for Structured and Interdependent Output Variables, Journal of Machine Learning Research, Vol. 6, pp. 1453-1484, 2005.
- Additional details on Structured SVMs can be found in Chapter 6 of the following tutorial on Structured Learning
> S. Nowozin, C. Lampert, Structured Learning and Prediction in Computer Vision, Foundations and Trends in Computer Graphics and Vision, Vol. 6(3-4), pp. 185-365, 2011.

