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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SVMs, SVDD, SV Regression 

 Structured Output Learning 
B. Leibe 
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Topics of This Lecture 

• Recap: Extensions to Support Vector Machines 
 Kernel PCA 

 Support Vector Data Description (1-class SVMs) 

 Support Vector Regression 
 

• Structured Output Learning 

 From arbitrary inputs to arbitrary outputs 

 General structured prediction 

 Structured loss functions 

 Structured Output SVM 

 Cutting plane training 
 

3 
B. Leibe 
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Recap: Kernel-PCA 

• Kernel-PCA procedure 

 Given samples xn 2 X, kernel X × X ! R with an implicit 

feature map Á: X ! H. Perform PCA in the Hilbert space H. 

 Equivalently, we can use the  

eigenvectors e’k and eigenvalues  

¸k of the kernel matrix 

 

 

 
 

 Coordinate mapping:  
 

• Subtle issue: Centering 

 Subtracting the mean would require us to work in H with Á(x). 

 More elaborate procedure (! Bishop Ch. 12.3) 

 
4 
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u1u2

¹

x2

x1

xn 7! (
p

¸1e
0

1; :::;
p

¸Ke
0

K)

Slide credit: Christoph Lampert 
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Recap: One-Class SVMs 

• Objective function 

 Find the smallest ball (center c 2 H, radius R) that contains 

“most” of the samples. 
 

 Solve 

 
 

subject to  

 
 

where º 2 (0,1) upper bounds the number of outliers.  
 

 Sparse solution, can be written entirely in terms of kernel 

functions k(xn,xm). 

 Often used for outlier/anomaly detection. 

 

 
5 
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min
R2R; c2H; »n2R+

R +
1

ºN

NX

n=1

»n

for 

Slide adapted from Christoph Lampert 
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Recap: SV Regression 

• Obtaining sparse solutions 

 Define an ²-insensitive error function 

 

 
 

 Use for large-margin optimization 

 

 

 
 

 Optimization with slack variables 

 

 

 

 Support Vector Regression   

 

 

6 
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Recap: SV Regression – Primal Form 

• Lagrangian primal form 

 

 
 

  
 

 

• Solving for the variables  

7 
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Recap: SV Regression – Dual Form 

• From this, we can derive the dual form 

 Maximize 

 

 

 

 

 

 under the conditions 

 

 
 

 Predictions for new inputs are then made using 

8 
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Topics of This Lecture 

• Recap: Extensions to Support Vector Machines 
 Kernel PCA 

 Support Vector Data Description (1-class SVMs) 

 Support Vector Regression 
 

• Structured Output Learning 

 From arbitrary inputs to arbitrary outputs 

 General structured prediction 

 Structured loss functions 

 Structured Output SVM 

 Cutting plane training 
 

9 
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From Arbitrary Inputs to Arbitrary Outputs 

• With kernels, we can handle “arbitrary” input spaces: 

 We only need a pairwise similarity measure for objects: 

– Images:  e.g., Â2 kernel 

– Gene sequences:  e.g., string kernels 

– Graphs:  e.g., random walk kernels 
 

• We can learn mappings 

 
 

• What about arbitrary output spaces? 

 We know: kernels correspond to feature maps: Á : X ! H. 

 But: we cannot invert Á, there is no Á−1 : H ! X. 

 Kernels do not readily help us to construct 

10 
B. Leibe Slide credit: Christoph Lampert 

f : X !Ror 

f : X !Y with Y 6=R
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What Would We Like to Predict? 

• Natural Language Processing: 

 Automatic Translation (output: sentences) 

 Sentence Parsing (output: parse trees) 
 

• Bioinformatics: 

 Secondary Structure Prediction (output: bipartite graphs) 

 Enzyme Function Prediction (output: path in a tree) 
 

• Robotics: 

 Planning (output: sequence of actions) 
 

• Computer Vision 

 Image Segmentation (output: segmentation mask) 

 Human Pose Estimation (output: positions of body parts) 

 Image Retrieval (output: ranking of images in database) 
11 

B. Leibe Slide credit: Christoph Lampert 
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Example: Semantic Image Segmentation 

 

 

 

 

 
 

• Problem formulation 

 Input space :  X = {images} ´ [0,255]3¢M¢N 

 Output space:   Y = {segmentation masks} ´ {0,1}M¢N 

 (Structured) prediction function: f : X ! Y 

 

 Energy function 

12 
B. Leibe 

Input: images Output: segmentation masks 

Slide credit: Christoph Lampert Images from [M. Everingham et al., IJCV’10] 
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Example: Human Pose Estimation 

 

 

 

 

 
 

• Problem formulation 

 Input space :  X = {images} 

 Output space:   Y = {pos./angles of body parts} ´ R4K 

 (Structured) prediction function: f : X ! Y 

 

 Energy function 

 
13 

B. Leibe Images from [V. Ferrari et al., CVPR’08] Slide credit: Christoph Lampert 

Input: image Body model Output: model fit 
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Example: Object Localization 

 

 

 

 

 
 

• Problem formulation 

 Input space :  X = {images} 

 Output space:   Y = {bounding box coordinates} ´ R4 

 (Structured) prediction function: f : X ! Y 

 
 

 Scoring function                                    , where Á(x,y) = h(x|y) 

is a feature vector for an image region, e.g., bag-of-words. 

 

 

14 
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Input: image Output: object position 

(left, top, right, bottom) 

Slide credit: Christoph Lampert Images from [Blaschko & Lampert, ECCV’08] 
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Computer Vision Examples: Summary 

• Image Segmentation 

 

 

 

 

• Pose Estimation 

 

 

 

 

• Object Localization 

15 
B. Leibe Slide credit: Christoph Lampert 

y = argmax
y2R4

F(x;y)

y = argmin
y2R4K

E(x;y)

y = argmin
y2f0;1gN

E(x;y)
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Grand Unified View 

 

Predict structured output by maximization 

 

 

of a compatibility function 

 

 

that is linear in a parameter vector w. 

16 
B. Leibe Slide credit: Christoph Lampert 
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Generic Structured Prediction 

• A generic structured prediction problem 

 X: arbitrary input domain 

 Y: structured output domain, decompose y = (y1,...,yK)  

 Prediction function f : X ! Y given by 

 
 

 Compatibility function (or negative of “energy”) 

17 
B. Leibe Slide credit: Christoph Lampert 

unary terms 

binary terms 

higher-order terms 
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Generic Structured Prediction 

• Machine Learning lecture: How to solve argmaxy F(x,y)? 

 Loop-free graphs: Viterbi algorithm, max-sum BP 

 

 

 

 
 

 Loopy graphs: Graph Cuts, Loopy BP 

 

 

 

 
 

• This lecture 

 How to learn a good function F(x,y) from training data? 

 

 

 

18 
B. Leibe Slide credit: Christoph Lampert 

Chain Tree 

Arbitrary 

graph 
Grid 
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Parameter Learning in Structured Models 

• Problem statement 

 Given: parametric model (family): F(x,y) = hw, Á(x,y)i  

 Given: prediction method: f(x) = argmaxy2Y F(x,y) 

 Not given: parameter vector w (high-dimensional) 
 

• Supervised Training 

 Given: example pairs {(x1,y1), ..., (xn, yn)} ½ X × Y. 

 Typical inputs with “the right” outputs for them. 

 

 

 

 

 Task: determine „good“ w. 

19 
B. Leibe Slide credit: Christoph Lampert 
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Loss Function 

• What make a solution "good"? 

 Define a loss function 

 
 

such that       �      measures the loss/cost incurred by predicting            

y’ when y is correct. 

 

• The loss function is application dependent: 

20 
B. Leibe 

¢ : Y £Y !R+

Number of 

mislabeled pixels 
Total 

depth error 

Bounding box 

area overlap 
Number of 

wrong body parts 

Slide credit: Christoph Lampert 
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Some Popular Structured Loss Functions 

• Zero-one loss 

 Definition:   

 “Every prediction that is not identical to the intended one is 

considered a mistake, and all mistakes are penalized equally.” 

 Most common loss for multi-class problems. 

 Less frequently used for structured prediction tasks. 

 

 

• Hierarchical multi-class loss 

 Definition:  

where H is a hierarchy over the classes in Y and distH(y,y’) 

measures the distance of y and y’. 

 Common way to incorporate information about label hierarchies 

in multi-class prediction problems 

21 
B. Leibe Image from [Nowozin & Lampert, FTCGV’11] 
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Some Popular Structured Loss Functions 

• Hamming loss 

 Definition:  

 Frequently used loss for image segmentation and other tasks in 

which the output y consists of multiple part labels y1,...,ym. 

 Each part label is judged independently and the average number 

of labeling errors is determined. 

 

• Area overlap loss 

 Definition: 

 Standard loss in object localization, e.g., the PASCAL VOC 

detection challenges. 

 y and y’ are bounding box coordinates, and y Å y’ and y [ y’ 
are their intersection and union, respectively. 

22 
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Structured Output SVM 

• Two criteria for decision function f: 

1. Correctness: Ensure f(xn) = yn for training data, n = 1, ..., N. 

2. Robustness: f should also work if xn are perturbed. 

 

• Translated to structured prediction, this means 

 With f(x) = argmaxy2Y hw, Á(x, y)i: 

1. Ensure for n = 1, ..., N, 

 

 

 

 

2. Enforce large margin, minimize kwk2. 

23 
B. Leibe Slide credit: Christoph Lampert 
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Structured Output SVM 

• Slack formulation of S-SVM 
 

 Solve 

 

subject to 

 

 
 

• Interpreting the constraint terms: 

24 
B. Leibe 

min
w2RD; »n2R+

1

2
kwk2 +

C

N

NX

n=1

»n

Slide adapted from Christoph Lampert 

Score for output yn  

Score for any other output y 

Loss for predicting y when  

yn would be correct 

Slack, outliers may violate criterion 
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Structured Output SVM 

• Slack formulation of S-SVM 
 

 Solve 

 

subject to 

 

 
 

• Optimization problem very similar to normal SVM 

 Quadratic in w, linear in ». 

 Constraints linear in w and ». 

 Convex! 
 

 

• But there are N(|Y | − 1) constraints! 

 Numeric optimization needs some tricks, will be expensive. 
25 

B. Leibe 

min
w2RD; »n2R+

1

2
kwk2 +

C

N

NX

n=1

»n

Slide adapted from Christoph Lampert 
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Discussion 

• S-SVM formulation with slack variables 

 The constrained optimization problem has an elementary form 

and is jointly convex. 

 However, this advantage comes at the price of a large number of 

constraints: |Y | inequalities per training sample! 

 For most structured prediction problems, this is much larger 

than what software packages for constrained convex 

optimization can process in reasonable time. 

 Often not even possible to store all the constraints in memory! 
 

• However... 

 Weight vector has only D degrees of freedom.  

 Slack variables have only N degrees of freedom.  

 D+N constraints suffice to determine the optimal solution. 

 The question is only which of them are the essential ones... 
26 
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Solving S-SVM Training 

• Solving the S-SVM optimization 

 If we knew the set of relevant constraints in advance, we could  

solve the optimization efficiently. 

 Approximate the solution iteratively. 

 Cutting Plane training algorithm. 

 

• Cutting Plane training 

 Delayed constraint generation technique 

 Search for the best weight vector and the set of active 

constraints simultaneously in an iterative manner. 

 Approximate solution with much faster runtime. 

 

27 
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Cutting Plane Training 

• Cutting Plane algorithm 

1. Start from an empty working set. 

2. In each iteration, solve the optimization problem for (w*,»*) 

with only the constraints in the working set. 

3. Check for each sample if any of the |Y | constraints are violated. 

4. If not, we have found the optimal solution. 

5. Otherwise, add most violated constraints to the working set. 
 

• Speed-ups 

 To achieve faster convergence, choose a tolerance ² > 0 and 

require a constraint to be violated by at least ². 

 Possible to prove convergence after           steps with the 

guarantee that objective value at the solution differs only at 

most by ² from the global minimum. 

28 
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Cutting Plane Algorithm  

 

29 
B. Leibe Source: [Nowozin & Lampert, FTCGV’11] 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Cutting Plane: Most Expensive Steps 

• Solving the quadratic optimization problem 

 As long as the working set size is reasonable, this can be solved 

using general purpose quadratic program solvers, either in the 

primal or in the dual form. 

 Also possible to adapt existing SVM training methods (typically 

leads to much higher performance). 
 

• Identifying the most violated constraint 

 Loss-augmented prediction step 

 Need to solve N optimization problems of the form  

 
 

 Strong resemblance to the evaluation of 

 

 In many cases, ¢ can be rewritten to look like additional terms 

of the inner product.  reuse MAP prediction routines. 
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Summary for Today 

• We have motivated Structured Prediction 

 Ability to use a large set of more general loss functions... 

 ...while keeping the large-margin learning idea. 

 Possibility to design a loss function that directly optimizes the 

scoring function the final approach will be evaluated on. 
 

• Introduction to Structured SVMs 

 Formulation with slack variables 

 Cutting-plane training 
 

• What is still missing? 

 How to incorporate kernels? 

 How is this used in applications? 

 Next lecture... 
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References and Further Reading 

• Structured SVMs were first introduced here 

 I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large 

Margin Methods for Structured and Interdependent Output 

Variables, Journal of Machine Learning Research, Vol. 6, pp. 

1453-1484, 2005. 
 

• Additional details on Structured SVMs can be found in 

Chapter 6 of the following tutorial on Structured 

Learning 

 S. Nowozin, C. Lampert, Structured Learning and Prediction in 

Computer Vision, Foundations and Trends in Computer Graphics 

and Vision, Vol. 6(3-4), pp. 185-365, 2011. 
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