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RWTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X - R
» Linear Regression l o | |

. Regularization (Ridge, Lasso) /) \/
- Kernels (Kernel Ridge Regression) h ! /I) B ‘
- Gaussian Processes S
e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
> SVMs, SVDD, SV Regression f : X — y

> Structured Output Learning
B. Leibe
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Topics of This Lecture

e Recap: Extensions to Support Vector Machines
> Kernel PCA
» Support Vector Data Description (1-class SVMs)
> Support Vector Regression

e Structured Output Learning
> From arbitrary inputs to arbitrary outputs
» General structured prediction
> Structured loss functions
> Structured Output SVM
> Cutting plane training
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Recap: Kernel-PCA

e Kernel-PCA procedure

- Given samples x, € A&, kernel &' X X — R with an implicit
feature map ¢: X — H. Perform PCA in the Hilbert space .

» Equivalently, we can use the 2

U9 u;

eigenvectors e', and eigenvalues ’
A, of the kernel matrix ”
K = (<¢(Xm), (b(xn)))m,n:l,...,N

— (k(xma Xn))m,nzl,...,N

x1

» Coordinate mapping: X, — (\/Alell, ey V/ )\Ke,}{)

e Subtle issue: Centering
- Subtracting the mean would require us to work in H with ¢(x).
~ More elaborate procedure (— Bishop Ch. 12.3)
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Slide credit: Christoph Lampert B. Leibe



Recap: One-Class SVMs

e Objective function

> Find the smallest ball (center c € H, radius R) that contains
“most” of the samples.

> Solve
min R—l— — E En
RER, ceH, &, ERT

subject to
lé(xn) —c|°< R? + &, for n=1,...,.N

where v € (0,1) upper bounds the number of outliers.

= Sparse solution, can be written entirely in terms of kernel
functions k(x,,x, ).

= Often used for outlier/anomaly detection.
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Slide adapted from Christoph Lampert B. Leibe



Recap: SV Regression

e Obtaining sparse solutions
> Define an e-insensitive error function

[0 if y(x) —t[ <e
Ee(y(x) — t) — { ‘y(x — t‘ — €, otherwise

N —
:’a‘_:, ~ Use for large-margin optimization u(z)} e
= .
; al ]- 2 £ f} j—e
g C Y lly(xa) = tal =€l + 5wl .
E n=1 p g>0
3
2 - Optimization with slack variables z”
[
S >
= 2 g’n -
C + —||W —~
g Z gn gn H || é-n Z 0
©
é = Support Vector Regressmn

B. Leibe



Recap: SV Regression - Primal Form

. Lagrangian primal form
N

L,= CZ (€0 + &) + wa > (b + finkn)
n=1

N N —~
:§ _Zan(€+£n+yn_tn)_zan(E_'_‘Sn_yn_l'tn)
é n=1 n=1
4| « Solving for the variables
o
SN 0L OL
: B i —Z S I
(8)
=
i 0 g: oL 0 = |ap +n =C
S — =V = = — = An + n =
é 0b — O,

B. Leibe



RWNTH
Recap: SV Regression - Dual Form

e From this, we can derive the dual form
> Maximize

Li(a,a) = —— Z Z m — O ) k(X Xom)

nlml

E N N

3 (on+ )+ 3 (e

i n=1 n=1

E > under the conditions

g 0 <a,< C

m A~

= 0 <@, < C

(8)

= » Predictions for new inputs are then made using
f: N

g AN

S y(x) = > (an — Bn)k(x,x,) + b
2 "n,:]_

B. Leibe



Topics of This Lecture

e Structured Output Learning
> From arbitrary inputs to arbitrary outputs
» General structured prediction
> Structured loss functions
> Structured Output SVM
> Cutting plane training
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RWTH
From Arbitrary Inputs to Arbitrary Outputs

e With kernels, we can handle “arbitrary” input spaces:
> We only need a pairwise similarity measure for objects:

- Images: e.g., x? kernel
- Gene sequences: e.g., string kernels
- Graphs: e.g., random walk kernels

e We can learn mappings
f: X—>{-11}or f: X =R

e What about arbitrary output spaces?
> We know: kernels correspond to feature maps: ¢ : X — H.
» But: we cannot invert ¢, thereisno ¢! : H — AX.
~ Kernels do not readily help us to construct

FiX =Y with V#£R

Slide credit: Christoph Lampert B. Leibe
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What Would We Like to Predict?

e Natural Language Processing:
> Automatic Translation (output: sentences)
> Sentence Parsing (output: parse trees)

e Bioinformatics:
> Secondary Structure Prediction (output: bipartite graphs)
> Enzyme Function Prediction (output: path in a tree)

e Robotics:
> Planning (output: sequence of actions)

e Computer Vision
> Image Segmentation (output: segmentation mask)
> Human Pose Estimation (output: positions of body parts)
> Image Retrieval (output: ranking of images in database)

Slide credit: Christoph Lampert B. Leibe
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RWTH
Example: Semantic Image Segmentation

—
' 1 horse
2R “‘r\‘, F‘X{I’j i [ background
Input: images Output: segmentation masks
e Problem formulation
- Input space : X = {images} = [0,255]>M-N
» Output space: Y = {segmentation masks} = {0,1}M¥

> (Structured) prediction function: f: X — Y

f(x) := arg min E(x, )
.
> Energy function Y

E(x,y) = Z W@Tqbumry(xi, yi) + Z Z W£¢pa¢rwise(Yia Y;j)

() 9 12
Images from [M. Everingham et al., 1JCV’10]
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Example: Human Pose Estimation

Input: image | Body model Output: model flt

e Problem formulation
> Input space : X = {images}
» Output space: Y = {pos./angles of body parts} = R*&

> (Structured) prediction function: f: X — Y

f(x) := arg min E(x, )
.
> Energy function Y

ZWT¢ﬁt Xis Yi _I_ZZW pose Y’LaYJ)
13

B. Leibe Images from [V. Ferrari et al., CVPR’08]
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: it P
Input: image utput: object position
(left, top, right, bottom)

=
B

e Problem formulation
> Input space : X = {images}
> Output space: Y = {bounding box coordinates} = R*
> (Structured) prediction function: f: X — Y

= F(x,
f(x) := argmax F'(x, y)

. Scoring function F(x,y) = w ' ¢(x,y), where ¢(x,y) = h(x],)
is a feature vector for an image region, e.g., bag-of-words.

(9|
-
.
Q
wid
=
(@))
IE
c
-
®
Q
—
Q
£
N e
(&)
1+
=
©
Q
(&)
c
(1
>
©
<

14
B. Leibe Images from [Blaschko & Lampert, ECCV’08]

Slide credit: Christoph Lampert
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RWNTH
Computer Vision Examples: Summary

° Image Segmentation
y =argmin F(X,y
rye{oll}N ( )

E ,W unary X’Hy'b _I_E :sz pazrwzse(y’wy.?)

,]
e Pose Estimation

y = argmin E(x,y)

E(X7 y) — Z W, qbﬁt (X’in YZ) T Z W;g'¢pose (yzn YJ)
g 2]

e Object Localization

= argmax F’
y = argmax F(x,y)

F(x,y) =w'¢(x,y)

15

Slide credit: Christoph Lampert B. Leibe
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Grand Unified View

Predict structured output by maximization

= arg max F'(x,
y = argmax F(x, y)

of a compatibility function

F(x,y) = (w,0(x,y))

that is linear in a parameter vector w.
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Generic Structured Prediction

e A generic structured prediction problem
> A arbitrary input domain
> ). structured output domain, decompose y = (y;,..,Yx)
» Prediction function f : X — ) given by

f(x) = argmax F'(x,y)
yey
> Compatibility function (or negative of “energy”)

F(x,y) = < ,P(X,y))

= Z W, yz, unary terms

™ Z W;;qbij(yiaijx) binary terms
t,J=1
+... higher-order terms

B. Leibe
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Slide credit: Christoph Lampert
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Generic Structured Prediction

* Machine Learning lecture: How to solve argmax, F(x,y)?
- Loop-free graphs: Viterbi algorithm, max-sum BP

~ Loopy graphs: Graph Cuts, Loopy BP

Grid {{j@/@ A;bri:;iry

e This lecture
- How to learn a good function F(x,y) from training data?

18

Slide credit: Christoph Lampert B. Leibe



RWTH
Parameter Learning in Structured Models

e Problem statement
- Given: parametric model (family): F(x,y) = (w, ¢(x,y))
- Given: prediction method: f(x) = argmax, .y F(x,y)
~ Not given: parameter vector w (high-dimensional)

e Supervised Training

- Given: example pairs {(x,y,), ..., (X,, ¥,)} C X x ).
~ Typical inputs with “the right” outputs for them.

-
s
L
£
=
O
=
£
©
Q
-
o
=
=
o
©
=
©
3 .
= » Task: determine ,,good* w.
>

©

<
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Slide credit: Christoph Lampert B. Leibe



Loss Function

e What make a solution "good"?
» Define a loss function

A:YxY—-RT

such that A(y? y’)measures the loss/cost incurred by predicting
y' when y is correct.

e The loss function is application dependent:

Number of Total Number of Bounding box
mislabeled pixels depth error  wrong body parts area overlap
20
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RWTH
Some Popular Structured Loss Functions

e Zero-one loss

- Definition: A(y,y') =46y #y')
» “Every prediction that is not identical to the intended one is
considered a mistake, and all mistakes are penalized equally.”

> Most common loss for multi-class problems.
~ Less frequently used for structured prediction tasks.

car
vehicle <
bus
entity <

cat

e Hierarchical multi-class loss —
- Definition: A(y,y’) = 1disty(y,y’) dog
where H is a hierarchy over the classes in ) and dist ,(y,y’)
measures the distance of y and y'.

> Common way to incorporate information about label hierarchies
in multi-class prediction problems
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Image from [Nowozin & Lampert, FTCGV’11]
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RWTH
Some Popular Structured Loss Functions

e Hamming loss

. Definition: A(y,y’)=L>"" 0(y; #y})
» Frequently used loss for image segmentation and other tasks in
which the output y consists of multiple part labels y,,...,y

- Each part label is judged independently and the average number
of labeling errors is determined.

m.

e Area overlap loss
area(ynNy’)

- Definition: A(y,y’) = area(yUy")
~ Standard loss in object localization, e.g., the PASCAL VOC
detection challenges.

> y and y’ are bounding box coordinates,andy Ny andy U y’
are their intersection and union, respectively.
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Structured Output SVM

e Two criteria for decision function f:
1. Correctness: Ensure f(x, ) =y, for training data, n = 1, ..., N.
2. Robustness: f should also work if x, are perturbed.

 Translated to structured prediction, this means

> With f(x) = argmax ), (w, ¢(x, y)):
1. Ensure forn =1, ..., N,

argmax (w, ¢(X,,y)) = ¥n
yey

& (W, 0(Xn,¥n)) = €+ (W, 0(X,,Y)) for ally € Y\ {yn}

2. Enforce large margin, minimize ||w/||2.
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Structured Output SVM

e Slack formulation of S-SVM

1 C <
> Solve min —llw 2 _ n
i I

subject to
<W9 qb(Xnv YTL)> Z A(an Y) + <W9 qb(Xnv Y)> T gn

for all y € Y\ {yn}

e Interpreting the constraint terms:

(W, (X, ¥n)) Score for output y,
(W, p(x,,y)) Score for any other output y
A(yn,y) >0 Loss for predicting y when

y,, would be correct
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En Slack, outliers may violate criteriog
B. Leibe
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Structured Output SVM

e Slack formulation of S-SVM

1 C <
> Solve min —llw 2 _ n
i I

subject to
<W9 qb(Xnv YTL)> Z A(an Y) + <W9 qb(Xnv Y)> T gn

for all y € Y\ {yn}

e Optimization problem very similar to normal SVM
> Quadratic in w, linear in .
» Constraints linear in w and €.
> Convex!

e But there are N(|)| — 1) constraints!
= Numeric optimization needs some tricks, will be expensive.

Slide adapted from Christoph Lampert B. Leibe
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Discussion

e S-SVM formulation with slack variables

> The constrained optimization problem has an elementary form
and is jointly convex.

- However, this advantage comes at the price of a large number of
constraints: |)| inequalities per training sample!

= For most structured prediction problems, this is much larger
than what software packages for constrained convex
optimization can process in reasonable time.

= Often not even possible to store all the constraints in memory!

e However...
» Weight vector has only D degrees of freedom.
» Slack variables have only /V degrees of freedom.
= D+ N constraints suffice to determine the optimal solution.
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=> The question is only which of them are the essential ones...
B. Leibe
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Solving S-SVM Training

e Solving the S-SVM optimization

> If we knew the set of relevant constraints in advance, we could
solve the optimization efficiently.

= Approximate the solution iteratively.
= Cutting Plane training algorithm.

e Cutting Plane training
- Delayed constraint generation technique

~ Search for the best weight vector and the set of active
constraints simultaneously in an iterative manner.

> Approximate solution with much faster runtime.

B. Leibe
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Cutting Plane Training

e Cutting Plane algorithm
1. Start from an empty working set.

2. In each iteration, solve the optimization problem for (w",£")
with only the constraints in the working set.

4. If not, we have found the optimal solution.
5. Otherwise, add most violated constraints to the working set.

e Speed-ups
~ To achieve faster convergence, choose a tolerance ¢ > 0 and
require a constraint to be violated by at least «.

= Possible to prove convergence after O(=) steps with the
guarantee that objective value at the solution differs only at
most by € from the global minimum.
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B. Leibe

3. Check for each sample if any of the |)| constraints are violated.
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Cutting Plane Algorithm

Algorithm 15 Cutting Plane S-SVM Training

1: w* = CUTTINGPLANE(¢)
2: Input:
3: ¢ tolerance
4: Output:
~ 5 w* € R learned weight vector
S 6: Algorithm:
..g 7. 5«0
E 8: repeat
=2 9:  (Weyr &'Cw) < solution to (6.7) with constraints (6.8) from S
= 10:  for n=1,... N do
o 11: Yt argmaxyey Hy (y; weur, Ecur)
:', 12: if Ho(y™; weur, Ecur) > € then
.E 13: S+ Su{(z",y*)}
o 14: end if
= 15:  end for
° 16: until S did not change in this iteration
% 17 W™ = W oy
é where H,(y;w, &) == g(a™, y, w) — g™, y", w) + Ay, y™) — ™.

. 29
B. Leibe Source: [Nowozin & Lampert, FTCGV’11]
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RWTH
Cutting Plane: Most Expensive Steps

e Solving the quadratic optimization problem

~ As long as the working set size is reasonable, this can be solved
using general purpose quadratic program solvers, either in the
primal or in the dual form.

> Also possible to adapt existing SVM training methods (typically
leads to much higher performance).

e |dentifying the most violated constraint
» Loss-augmented prediction step
» Need to solve NV optimization problems of the form

argmaxy A(yn,y) + (W, ¢(xn,¥))
~ Strong resemblance to the evaluation of
f(x) = argmaxy, (W, 9(x,,¥))
> In many cases, A can be rewritten to look like additional terms

of the inner product. = reuse MAP prediction routines.
B. Leibe
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Summary for Today

e We have motivated Structured Prediction
~ Ability to use a large set of more general loss functions...
- ...while keeping the large-margin learning idea.

= Possibility to design a loss function that directly optimizes the
scoring function the final approach will be evaluated on.

e Introduction to Structured SVMs
> Formulation with slack variables
> Cutting-plane training

e What is still missing?
» How to incorporate kernels?
» How is this used in applications?
= Next lecture...

B. Leibe
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RWTH
References and Further Reading

e Structured SVMs were first introduced here

> |. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large
Margin Methods for Structured and Interdependent Output
Variables, Journal of Machine Learning Research, Vol. 6, pp.
1453-1484, 2005.

o Additional details on Structured SVMs can be found in
Chapter 6 of the following tutorial on Structured
Learning

> S. Nowozin, C. Lampert, Structured Learning and Prediction in

Computer Vision, Foundations and Trends in Computer Graphics

and Vision, Vol. 6(3-4), pp. 185-365, 2011.

B. Leibe
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http://luthuli.cs.uiuc.edu/~daf/courses/learning/StructureLearning/tsochantaridis05a.pdf
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