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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SVMs, SVDD, SV Regression 

 Structured Output Learning 
B. Leibe 
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Topics of This Lecture 

• Recap: Extensions to Support Vector Machines 
 Kernel PCA 

 Support Vector Data Description (1-class SVMs) 

 Support Vector Regression 
 

• Structured Output Learning 

 From arbitrary inputs to arbitrary outputs 

 General structured prediction 

 Structured loss functions 

 Structured Output SVM 

 Cutting plane training 
 

3 
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Recap: Kernel-PCA 

• Kernel-PCA procedure 

 Given samples xn 2 X, kernel X × X ! R with an implicit 

feature map Á: X ! H. Perform PCA in the Hilbert space H. 

 Equivalently, we can use the  

eigenvectors e’k and eigenvalues  

¸k of the kernel matrix 

 

 

 
 

 Coordinate mapping:  
 

• Subtle issue: Centering 

 Subtracting the mean would require us to work in H with Á(x). 

 More elaborate procedure (! Bishop Ch. 12.3) 
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K)

Slide credit: Christoph Lampert 
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Recap: One-Class SVMs 

• Objective function 

 Find the smallest ball (center c 2 H, radius R) that contains 

“most” of the samples. 
 

 Solve 

 
 

subject to  

 
 

where º 2 (0,1) upper bounds the number of outliers.  
 

 Sparse solution, can be written entirely in terms of kernel 

functions k(xn,xm). 

 Often used for outlier/anomaly detection. 
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min
R2R; c2H; »n2R+

R +
1

ºN

NX

n=1

»n

for 

Slide adapted from Christoph Lampert 
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Recap: SV Regression 

• Obtaining sparse solutions 

 Define an ²-insensitive error function 

 

 
 

 Use for large-margin optimization 

 

 

 
 

 Optimization with slack variables 

 

 

 

 Support Vector Regression   
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Recap: SV Regression – Primal Form 

• Lagrangian primal form 

 

 
 

  
 

 

• Solving for the variables  

7 
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Recap: SV Regression – Dual Form 

• From this, we can derive the dual form 

 Maximize 

 

 

 

 

 

 under the conditions 

 

 
 

 Predictions for new inputs are then made using 

8 
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Topics of This Lecture 

• Recap: Extensions to Support Vector Machines 
 Kernel PCA 

 Support Vector Data Description (1-class SVMs) 

 Support Vector Regression 
 

• Structured Output Learning 

 From arbitrary inputs to arbitrary outputs 

 General structured prediction 

 Structured loss functions 

 Structured Output SVM 

 Cutting plane training 
 

9 
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From Arbitrary Inputs to Arbitrary Outputs 

• With kernels, we can handle “arbitrary” input spaces: 

 We only need a pairwise similarity measure for objects: 

– Images:  e.g., Â2 kernel 

– Gene sequences:  e.g., string kernels 

– Graphs:  e.g., random walk kernels 
 

• We can learn mappings 

 
 

• What about arbitrary output spaces? 

 We know: kernels correspond to feature maps: Á : X ! H. 

 But: we cannot invert Á, there is no Á−1 : H ! X. 

 Kernels do not readily help us to construct 

10 
B. Leibe Slide credit: Christoph Lampert 

f : X !Ror 

f : X !Y with Y 6=R



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

What Would We Like to Predict? 

• Natural Language Processing: 

 Automatic Translation (output: sentences) 

 Sentence Parsing (output: parse trees) 
 

• Bioinformatics: 

 Secondary Structure Prediction (output: bipartite graphs) 

 Enzyme Function Prediction (output: path in a tree) 
 

• Robotics: 

 Planning (output: sequence of actions) 
 

• Computer Vision 

 Image Segmentation (output: segmentation mask) 

 Human Pose Estimation (output: positions of body parts) 

 Image Retrieval (output: ranking of images in database) 
11 

B. Leibe Slide credit: Christoph Lampert 
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Example: Semantic Image Segmentation 

 

 

 

 

 
 

• Problem formulation 

 Input space :  X = {images} ´ [0,255]3¢M¢N 

 Output space:   Y = {segmentation masks} ´ {0,1}M¢N 

 (Structured) prediction function: f : X ! Y 

 

 Energy function 

12 
B. Leibe 

Input: images Output: segmentation masks 

Slide credit: Christoph Lampert Images from [M. Everingham et al., IJCV’10] 
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Example: Human Pose Estimation 

 

 

 

 

 
 

• Problem formulation 

 Input space :  X = {images} 

 Output space:   Y = {pos./angles of body parts} ´ R4K 

 (Structured) prediction function: f : X ! Y 

 

 Energy function 

 
13 

B. Leibe Images from [V. Ferrari et al., CVPR’08] Slide credit: Christoph Lampert 

Input: image Body model Output: model fit 
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Example: Object Localization 

 

 

 

 

 
 

• Problem formulation 

 Input space :  X = {images} 

 Output space:   Y = {bounding box coordinates} ´ R4 

 (Structured) prediction function: f : X ! Y 

 
 

 Scoring function                                    , where Á(x,y) = h(x|y) 

is a feature vector for an image region, e.g., bag-of-words. 

 

 

14 
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Input: image Output: object position 

(left, top, right, bottom) 

Slide credit: Christoph Lampert Images from [Blaschko & Lampert, ECCV’08] 
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Computer Vision Examples: Summary 

• Image Segmentation 

 

 

 

 

• Pose Estimation 

 

 

 

 

• Object Localization 

15 
B. Leibe Slide credit: Christoph Lampert 

y = argmax
y2R4

F(x;y)

y = argmin
y2R4K

E(x;y)

y = argmin
y2f0;1gN

E(x;y)
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Grand Unified View 

 

Predict structured output by maximization 

 

 

of a compatibility function 

 

 

that is linear in a parameter vector w. 

16 
B. Leibe Slide credit: Christoph Lampert 
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Generic Structured Prediction 

• A generic structured prediction problem 

 X: arbitrary input domain 

 Y: structured output domain, decompose y = (y1,...,yK)  

 Prediction function f : X ! Y given by 

 
 

 Compatibility function (or negative of “energy”) 

17 
B. Leibe Slide credit: Christoph Lampert 

unary terms 

binary terms 

higher-order terms 
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Generic Structured Prediction 

• Machine Learning lecture: How to solve argmaxy F(x,y)? 

 Loop-free graphs: Viterbi algorithm, max-sum BP 

 

 

 

 
 

 Loopy graphs: Graph Cuts, Loopy BP 

 

 

 

 
 

• This lecture 

 How to learn a good function F(x,y) from training data? 

 

 

 

18 
B. Leibe Slide credit: Christoph Lampert 

Chain Tree 

Arbitrary 

graph 
Grid 
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Parameter Learning in Structured Models 

• Problem statement 

 Given: parametric model (family): F(x,y) = hw, Á(x,y)i  

 Given: prediction method: f(x) = argmaxy2Y F(x,y) 

 Not given: parameter vector w (high-dimensional) 
 

• Supervised Training 

 Given: example pairs {(x1,y1), ..., (xn, yn)} ½ X × Y. 

 Typical inputs with “the right” outputs for them. 

 

 

 

 

 Task: determine „good“ w. 

19 
B. Leibe Slide credit: Christoph Lampert 
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Loss Function 

• What make a solution "good"? 

 Define a loss function 

 
 

such that       �      measures the loss/cost incurred by predicting            

y’ when y is correct. 

 

• The loss function is application dependent: 

20 
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¢ : Y £Y !R+

Number of 

mislabeled pixels 
Total 

depth error 

Bounding box 

area overlap 
Number of 

wrong body parts 

Slide credit: Christoph Lampert 
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Some Popular Structured Loss Functions 

• Zero-one loss 

 Definition:   

 “Every prediction that is not identical to the intended one is 

considered a mistake, and all mistakes are penalized equally.” 

 Most common loss for multi-class problems. 

 Less frequently used for structured prediction tasks. 

 

 

• Hierarchical multi-class loss 

 Definition:  

where H is a hierarchy over the classes in Y and distH(y,y’) 

measures the distance of y and y’. 

 Common way to incorporate information about label hierarchies 

in multi-class prediction problems 

21 
B. Leibe Image from [Nowozin & Lampert, FTCGV’11] 
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Some Popular Structured Loss Functions 

• Hamming loss 

 Definition:  

 Frequently used loss for image segmentation and other tasks in 

which the output y consists of multiple part labels y1,...,ym. 

 Each part label is judged independently and the average number 

of labeling errors is determined. 

 

• Area overlap loss 

 Definition: 

 Standard loss in object localization, e.g., the PASCAL VOC 

detection challenges. 

 y and y’ are bounding box coordinates, and y Å y’ and y [ y’ 
are their intersection and union, respectively. 

22 
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Structured Output SVM 

• Two criteria for decision function f: 

1. Correctness: Ensure f(xn) = yn for training data, n = 1, ..., N. 

2. Robustness: f should also work if xn are perturbed. 

 

• Translated to structured prediction, this means 

 With f(x) = argmaxy2Y hw, Á(x, y)i: 

1. Ensure for n = 1, ..., N, 

 

 

 

 

2. Enforce large margin, minimize kwk2. 

23 
B. Leibe Slide credit: Christoph Lampert 
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Structured Output SVM 

• Slack formulation of S-SVM 
 

 Solve 

 

subject to 

 

 
 

• Interpreting the constraint terms: 

24 
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min
w2RD; »n2R+

1

2
kwk2 +

C

N

NX

n=1

»n

Slide adapted from Christoph Lampert 

Score for output yn  

Score for any other output y 

Loss for predicting y when  

yn would be correct 

Slack, outliers may violate criterion 
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Structured Output SVM 

• Slack formulation of S-SVM 
 

 Solve 

 

subject to 

 

 
 

• Optimization problem very similar to normal SVM 

 Quadratic in w, linear in ». 

 Constraints linear in w and ». 

 Convex! 
 

 

• But there are N(|Y | − 1) constraints! 

 Numeric optimization needs some tricks, will be expensive. 
25 
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min
w2RD; »n2R+

1

2
kwk2 +

C

N

NX

n=1

»n

Slide adapted from Christoph Lampert 
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Discussion 

• S-SVM formulation with slack variables 

 The constrained optimization problem has an elementary form 

and is jointly convex. 

 However, this advantage comes at the price of a large number of 

constraints: |Y | inequalities per training sample! 

 For most structured prediction problems, this is much larger 

than what software packages for constrained convex 

optimization can process in reasonable time. 

 Often not even possible to store all the constraints in memory! 
 

• However... 

 Weight vector has only D degrees of freedom.  

 Slack variables have only N degrees of freedom.  

 D+N constraints suffice to determine the optimal solution. 

 The question is only which of them are the essential ones... 
26 
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Solving S-SVM Training 

• Solving the S-SVM optimization 

 If we knew the set of relevant constraints in advance, we could  

solve the optimization efficiently. 

 Approximate the solution iteratively. 

 Cutting Plane training algorithm. 

 

• Cutting Plane training 

 Delayed constraint generation technique 

 Search for the best weight vector and the set of active 

constraints simultaneously in an iterative manner. 

 Approximate solution with much faster runtime. 

 

27 
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Cutting Plane Training 

• Cutting Plane algorithm 

1. Start from an empty working set. 

2. In each iteration, solve the optimization problem for (w*,»*) 

with only the constraints in the working set. 

3. Check for each sample if any of the |Y | constraints are violated. 

4. If not, we have found the optimal solution. 

5. Otherwise, add most violated constraints to the working set. 
 

• Speed-ups 

 To achieve faster convergence, choose a tolerance ² > 0 and 

require a constraint to be violated by at least ². 

 Possible to prove convergence after           steps with the 

guarantee that objective value at the solution differs only at 

most by ² from the global minimum. 

28 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Cutting Plane Algorithm  

 

29 
B. Leibe Source: [Nowozin & Lampert, FTCGV’11] 
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Cutting Plane: Most Expensive Steps 

• Solving the quadratic optimization problem 

 As long as the working set size is reasonable, this can be solved 

using general purpose quadratic program solvers, either in the 

primal or in the dual form. 

 Also possible to adapt existing SVM training methods (typically 

leads to much higher performance). 
 

• Identifying the most violated constraint 

 Loss-augmented prediction step 

 Need to solve N optimization problems of the form  

 
 

 Strong resemblance to the evaluation of 

 

 In many cases, ¢ can be rewritten to look like additional terms 

of the inner product.  reuse MAP prediction routines. 
30 
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Summary for Today 

• We have motivated Structured Prediction 

 Ability to use a large set of more general loss functions... 

 ...while keeping the large-margin learning idea. 

 Possibility to design a loss function that directly optimizes the 

scoring function the final approach will be evaluated on. 
 

• Introduction to Structured SVMs 

 Formulation with slack variables 

 Cutting-plane training 
 

• What is still missing? 

 How to incorporate kernels? 

 How is this used in applications? 

 Next lecture... 
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References and Further Reading 

• Structured SVMs were first introduced here 

 I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large 

Margin Methods for Structured and Interdependent Output 

Variables, Journal of Machine Learning Research, Vol. 6, pp. 

1453-1484, 2005. 
 

• Additional details on Structured SVMs can be found in 

Chapter 6 of the following tutorial on Structured 

Learning 

 S. Nowozin, C. Lampert, Structured Learning and Prediction in 

Computer Vision, Foundations and Trends in Computer Graphics 

and Vision, Vol. 6(3-4), pp. 185-365, 2011. 
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