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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Recap: Towards Infinite Latent Factor Models 
 General formulation 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Inference 

 BPs for latent feature models 
 

• Application: Nonparametric Hidden Markov Models 
 Graphical Model view 

 HDP-HMM 

 BP-HMM 
3 
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Recap: Latent Factor Models 

• Mixture Models 

 Assume that each observation was generated by exactly one of 

K components. 

 The uncertainty is just about which component is responsible. 

 

• Latent Factor Models 

 Each observation is influenced by each of K components  

(factors or features) in a different way. 

 Sparse factor models: only a small subset of factors is active for 

each observation. 
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Recap: General Latent Factor Models 

• General formulation 

 Assume that the data are generated by a noisy weighted 

combination of latent factors 

 
 

 Mixture Models: DPs enforce that the main part of the 

probability mass is concentrated on few cluster components. 

 Latent Factor Models: enforce that each object is represented 

by a sparse subset of an unbounded number of features. 
 

• Incorporating sparsity 

 Decompose F into the product of two components: F = ZW, 

where  is the Hadamard product (element-wise product). 

– zmk is a binary mask variable indicating whether factor k is “on”. 

– wmk is a continuous weight variable. 

 Enforce sparsity by restricting the non-zero entries in Z. 

 

5 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: Finite Latent Feature Model 

 

 

 

 
 

• Probability model 

 Finite Beta-Bernoulli model 

 

 

 

 

 Each znk is independent of all other assignments conditioned on 

¼k and the ¼k are generated independently. 

 

 

 

 

10 
B. Leibe Image source: Erik Sudderth 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Towards Infinite Latent Feature Models 

• Our goal is to let K ! 1. Is this feasible with this model? 
 

• Effective number of entries 

 We have shown: The expectation of the number of non-zero 

entries of Z is bounded by N®, independent of K. 

 Z is extremely sparse, only a finite number of factors is active. 
 

• Probability for any particular matrix Z 

 We have derived 

 

 
 

 As K ! 1, the probability of any particular Z will go to zero. 
 

• Solution: Define equivalence classes of matrices 

14 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Recap: Equivalence Class of Binary Matrices 

 

 

 

 

 
 

• Equivalence class of binary matrices 

 Define a function lof(Z) that maps binary matrices into left-

ordered binary matrices by ordering the columns of Z by the 

magnitude of the binary number expressed by that column. 

 There is a unique left-ordered form for every binary matrix. 
 

 Two matrices Y and Z are equivalent iff lof(Y) = lof(Z). 

 The lof-equivalence class of Z is denoted [Z]. 

15 
B. Leibe Image source: Zoubin Ghahramani 
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Towards Infinite Latent Feature Models 

• Taking the limit K ! 1  

 Probability of a lof-equivalence class of binary matrices 

 

 

 

 Reordering the columns such that mk > 0 if k · K+, and mk = 0 

otherwise, we can derive (after several intermediate steps) 

 

 

 
 

 where HN is the Nth harmonic number HN = N
j=1 1/j. 

 Again, this distribution is exchangeable. 

17 
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Excursion: The Poisson Distribution 

• Motivation 

 Express the probability of a given  

number of events occurring in a fixed  

interval of time and/or space if these  

events occur with a known average  

rate ¸ and independently of the time  

since the last event. 
 

• Definition 

 Probability mass function for discrete Variable X  

 

 

 Properties 

 

 The Poisson distribution can be derived as the limit of a  

Binomial distribution. 

 

18 
B. Leibe Image source: Wikipedia 

E[x] = Var[x] = ¸
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Excursion: The Poisson Distribution 

• Derivation (Law of rare events) 

 Consider an interval (e.g., in time or space) in which events 

happen at random with known average number ¸. 

 Divide the interval in N subintervals I1,...,IN of equal size. 

 The probability that an event will fall into subinterval Ik is ¸/N. 

 Consider the occurrence of an event in Ik to be a Bernoulli trial. 

 The total number of events X will then be Binomial distributed 

with parameters N and ¸/N. 

 

 

 For large N, this can be approximated by a Poisson distribution 

19 
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Why Poisson? 

• Why are we interested in Poisson distributions? 

1. We have Bernoulli trials for the individual znk and are interested 

in the infinite limit the resulting model. 
 

2. Compare the result we just derived for the infinite latent 

feature model 

 

 
 

with the definition of a Poisson distribution 

 

 
 

 There is clearly some Poisson distributed component, but the 

exact connection is hard to grasp due to the complex notation. 

 We will see the connection more clearly in the following... 
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Topics of This Lecture 

• Recap: Towards Infinite Latent Factor Models 
 General formulation 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Inference 

 BPs for latent feature models 
 

• Application: Nonparametric Hidden Markov Models 
 Graphical Model view 

 HDP-HMM 

 BP-HMM 
21 
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The Indian Buffet Process 

 

 

 

 

 

 

 
 

 

“Many Indian restaurants in London  

offer lunchtime buffets with an 

apparently infinite number of dishes” 

                                   [Zoubin Ghahramani] 

22 
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The Indian Buffet Process 

 

 

 

 

• Analogy to Chinese Restaurant Process 

 Visualize feature assignment as a sequential process of 

customers sampling dishes from an (infinitely long) buffet. 

 1st customer starts at the left of the buffet, and takes a serving 

from each dish, stopping after a Poisson(®) number of dishes as 

her plate becomes overburdened. 

 The nth customer moves along the buffet, sampling dishes in 

proportion to their popularity, serving himself with probability 

mk/n, and trying a Poisson(®/n) number of new dishes. 

 The customer-dish matrix is our feature matrix, Z. 
23 
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Comparison: CRP vs. IBP 

 

 

 

 

 

 

 

 

Chinese Restaurant Process 

 Each customer is assigned  

to a single component. 

 Tables correspond to mixture 

components. 
24 
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Indian Buffet Process 

 Each customer can be assigned 

to multiple components. 

 Dishes correspond to latent 

factors/features. 

Image source: Yee Whye Teh 
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The Indian Buffet Process (IBP) 

• Analysis 

 Let K1
(n) indicate the number of new dishes sampled by 

customer n. It can be shown that the probability of any 

particular matrix Z being produced is 

 

 
 

 The matrices generated by the IBP are generally not in lof, but 

they are also not ordered arbitrarily, since new dishes are 

always added to the right.  

 If we only pay attention to the lof-equivalence class [Z], we 

obtain the exchangeable distribution  

 

 
 

 Same result as for the infinite latent feature model! 
25 
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The Indian Buffet Process (IBP) 

 

 

 

 

 

 

 

• Properties of the IBP 

 Generative process to create samples from an infinite latent 

feature model. 

 The IBP is infinitely exchangeable, up to a permutation of the 

order with which dishes are listed in the feature matrix. 

 The number of features sampled at least once is O(® log N). 
26 
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The Indian Buffet Process (IBP) 

• More properties 

1. The effective dimension of the model, K+, follows a 

Poisson(®HN) distribution. 

Proof: Easily shown, since K+ = n Poisson(®/n). 
 

2. The number of features possessed by each object follows a 

Poisson(®) distribution. 

Proof: The 1st customer chooses a Poisson(®) number of dishes. 

By exchangeability, this also holds for all other customers. 
 

3. The expected number of non-zero entries in Z is N®. 

Proof: This directly follows from the previous result. 
 

4. The number of non-zero entries in Z will follow a Poisson(N®) 

distribution. 

Proof: Follows from properties of sums of Poisson variables. 
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Topics of This Lecture 

• Recap: Towards Infinite Latent Factor Models 
 General formulation 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Inference 

 BPs for latent feature models 
 

• Application: Nonparametric Hidden Markov Models 
 Graphical Model view 

 HDP-HMM 

 BP-HMM 
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The Beta Process 

• IBP and Exchangeability 

 Since the IBP is infinitely exchangeable, De Finetti’s theorem 

states that it must have an underlying random measure. 

 The Beta Process is the De Finetti random measure for the IBP, 

just like the DP was the De Finetti random measure for the CRP. 

 

• Beta Processes 

 Just like the DP, the Beta Process is a distribution on 

distributions. 

 A formal definition would require an excursion into the theory 

of completely random measures, which is mostly beyond the 

scope of this lecture. 

 In the following, I will therefore only highlight its most 

important properties... 

29 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Excursion: Completely Random Measures 

• Measure 

 A measure on a set is a systematic way to assign a  

number to each suitable subset of that set.  
 

• Completely random means 

 The random variables obtained by evaluating the random 

measure on disjoint subsets of the probability space are 

mutually independent. 

 Draws from a completely random measure are discrete (up to a 

fixed deterministic component). 

 Thus, we can represent such a draw as a weighted collection of 

atoms on some probability space, as we did for the DP. 
 

• Sidenote 

 The DP is not a completely random measure, since its weights 

are constrained to sum to one. Thus, the independence 

assumption does not hold for the DP! 

 

 

 

30 
Image source: Wikipedia 
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Beta Process 

• Formal definition 

 A Beta Process B » BP(c, ®H) is a completely random discrete 

measure of the form 

 

 
 

where the points                                            are spikes in a 2D 

Poisson process with rate measure 

 

 

 The Beta Process with c = 1 is the De Finetti measure for the 

IBP. (For c  1, we get a 2-parameter generalization of the IBP). 
 

 

 

 
31 
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Beta Process 

• Less formal definition 

 Define the random measure B as a set of weighted atoms {µk
*}  

 

 
 

where ¹k 2 (0,1) and the atoms {µk
*} are drawn from a base 

measure H0 on £. 

 We define the Beta Process as a distribution on distributions 

(analogously to the DP) for random measures with weights 

between 0 and 1 and denote it by B » BP(®, H0). 
 

• Notes 

 The weights ¹k do not sum to 1  B is not a probability measure 

 A Beta Process does not have Beta distributed marginals! 

32 
B. Leibe Source: [Gershman & Blei, 2012] 
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Stick-Breaking Construction for BPs 

• Explicit construction of the BP 

 For c = 1, there is a closed-form Stick-Breaking Process 

 

 

 

 
 

 This is the complement of the Stick-Breaking Process for DPs! 

 

 

 

 

 
 

 As for the DP, we write this procedure as ¹k, µk
* » GEM(®, H0)  

33 
B. Leibe Slide adapted from Yee Whye Teh Image source: Yee Whye Teh 

DP weights 

BP  

weights 

... 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Stick-Breaking Construction for BPs 

 

 

 

 

 

• Interpretation 

 The DP weights can be thought off as portions broken off an 

initially unit-length stick. 

 The BP weights then correspond to the remaining stick length. 
 

• Properties 

 DP: stick lengths sum to one and are not monotonically 

decreasing (only on average). 

 BP: stick lengths do not sum to one and are decreasing. 
34 

B. Leibe 

DP weights 

BP  

weights 

... 

Image source: Yee Whye Teh Slide inspired by Francois Caron 
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Inference for Beta Processes 

• Goal 

 Infer the posterior distribution of the latent features 

 

 As for the DP, exact inference is intractable, since the norma-

lization requires a sum over all possible binary matrices Z. 
 

• Approximate Inference 

 Inference in BPs can be performed using either the IBP or the 

Stick-Breaking construction. 

 A number of algorithms have been proposed using MCMC or 

variational approximations. Since the BP is typically part of a 

larger model, many of those algorithms are however too 

complex to present here. 

 Given posterior samples of Z, one typically examines the 

highest-probability sample (the MAP estimate) to get a sense of 

the latent feature structure. 
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Gibbs Sampling for the IBP 

• Simple approach: Gibbs Sampling 

 In order to specify a Gibbs sampler, we need to derive the full 

conditional distribution 

 
 

where Z–(n,k) denotes the entries of Z other than znk. 
 

 The likelihood term p(X|Z) depends on the model chosen for 

the observed data. 
 

 The conditional assignments p(znk | z-n,k) can be derived from the 

exchangeable IBP. Choosing an ordering such that the nth object 

corresponds to the last customer, we obtain 

 
 

 Similarly, the number of new features associated with object n 

should be drawn from a Poisson(®/N) distribution. 

 
36 
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for any k such that m-n,k > 0. 

Source: [Ghahramani et al., 2006] 
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Topics of This Lecture 

• Recap: Towards Infinite Latent Factor Models 
 General formulation 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Inference 

 BPs for latent feature models 
 

• Application: Nonparametric Hidden Markov Models 
 Graphical Model view 

 HDP-HMM 

 BP-HMM 
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BPs and Latent Feature Models 

• Building a Latent Feature Model from the BP 

 Define a new random measure 

 

 
 

where znk » Bernoulli(¹k). 

 The random measure Xn is then said to be distributed according 

to a Bernoulli Process with the Beta Process as its base measure: 

Xn » BeP(B),   B » BP(®, H0). 

 A draw from the Bernoulli Process places unit mass on those 

atoms for which znk = 1; this defines, which latent features are 

“on” for the nth observation. 

 N draws from the Bernoulli Process yield an IBP-distributed 

binary matrix Z [Thibaux & Jordan, 2007]. 

38 
Source: [Gershman & Blei, 2012; Paisley & Carin, 2009]] 
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Application: BP Factor Analysis 

• Recap: Factor Analysis 

 Goal: Model a data matrix, X 2 RD£N, as the multiplication of 

two matrices, © 2 RD£K and (W  Z) 2 RK£N, plus an error 

matrix E. 

 
 

 Or written in vector notation for each observation xn  

 

 
 

• Basic idea of BP-FA 

 Model the matrices © and Z as N draws from a Bernoulli 

Process, parameterized by a Beta Process B » BP(®, H0) with a 

multivariate Normal distribution as its base measure H0. 

39 
Source: [Gershman & Blei, 2012; Paisley & Carin, 2009, 2010] 
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Application: BP Factor Analysis 

• Graphical Model 

 

 

 

• Possible BP-FA realization 

 Draw the weight vector wn from a  

Gaussian prior. 

 Draw the atoms Ák and their weights ¹k  

from the Beta Process (e.g., using the  

stick-breaking construction).  

 Construct each zn by turning on a  

subset of these atoms according to a  

draw from the Bernoulli Process. 

 Generate the noisy observation xn  

 40 
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Topics of This Lecture 

• Recap: Towards Infinite Latent Factor Models 
 General formulation 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Inference 

 BPs for latent feature models 
 

• Application: Nonparametric Hidden Markov Models 
 Graphical Model view 

 HDP-HMM 

 BP-HMM 
41 
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Hidden Markov Models (HMMs) 

• Probabilistic model for sequential data 

 Widely used in speech recognition, natural language modeling,  

handwriting recognition, financial forecasting,… 
 

• Traditional view:  

 Finite state machine 

 Elements:  

– State transition matrix A, 

– Production probabilities p(x | k). 
 

• Graphical model view 

 Dynamic latent variable model 

 Elements: 

– Observation at time n:  xn 

– Hidden state at time n: zn 

– Conditionals p(zn+1|zn), p(xn|zn)  
42 

B. Leibe Image source: C.M. Bishop, 2006 
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Hidden Markov Models (HMMs) 

• Traditional HMM learning 

 Each state has a distribution over 
observable outputs p(x | k),  

e.g., modeled as a Gaussian. 

 Learn the output distributions  

together with the transition  

probabilities using an EM algorithm. 
 

• Graphical Model view 

 Treat the HMM as a mixture model 

 Each state is a component (“mode”) 

in the mixture distribution. 

 From time step to time step, the  

responsible component switches 

according to the transition model. 

 Advantage: we can introduce priors! 
43 
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Modes 

Observations 

Dirichlet prior: Dir(®, H(¸)) 
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HMM: Mixture Model View 

 

44 
B. Leibe Slide credit: Erik Sudderth 
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HMM: Mixture Model View 

 

45 
B. Leibe Slide credit: Erik Sudderth 
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HMM: Mixture Model View 

 

46 
B. Leibe Slide credit: Erik Sudderth 
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HMM: Mixture Model View 

 

47 
B. Leibe Slide credit: Erik Sudderth 

Important issue: How many modes? 
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Hierarchical Dirichlet Process HMM 

 

 

 

 

 
 

• Dirichlet Process 

 Mode space of unbounded size 

 Model complexity adapts to 

observations 

• Hierarchical DP 

 Ties mode transition distributions 

 Shared sparsity 

48 
B. Leibe Slide credit: Erik Sudderth 

HDP HMM 

Infinite state space 
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Beta Process HMM 

• Goal: Transfer knowledge between related time series 

 E.g., activity recognition in  

video collections 

 Allow each system to switch  

between an arbitrarily large  

set of dynamical modes  

(“behaviors”). 

 Share behaviors across sequences. 
 

• Beta Processes enforce sparsity 

 HDPs would force all videos to have  

non-zero probability of displaying all  

behaviors. 

 Beta Processes allow a video to  

contain only a sparse subset of  

relevant behaviors. 
49 

B. Leibe Image source: Erik Sudderth [Hughes & Sudderth, 2012] 
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Unsupervised Discovery of Activity Patterns 

 

50 
B. Leibe Image source: Erik Sudderth Slide credit: Erik Sudderth 

CMU Kitchen dataset 
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Summary 

• Beta Processes 

 Powerful nonparametric framework for latent feature models 

 Much younger than the DP, so much is still in development. 

 E.g., stick-breaking construction was only shown in 2010. 

 Beta Processes and the IBP can be used in concert with different 

likelihood models in a variety of applications. 
 

• Many other applications being developed, e.g. 

 Infinite Independent Component Analysis 

 Matrix factorization for collaborative filtering (recommender 

systems) 

 Latent causal discovery for medical diagnosis 

 Protein complex discovery 

 ... 

51 
B. Leibe Slide credit: Yee Whye Teh 
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