Advanced Machine Learning Lecture 17

Beta Processes II

$$
07.01 .2013
$$

Bastian Leibe RWTH Aachen
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
- Regularization (Ridge, Lasso)
, Kernels (Kernel Ridge Regression)
, Gaussian Processes

- Bayesian Estimation \& Bayesian Non-Parametrics
, Prob. Distributions, Approx. Inference
, Mixture Models \& EM
, Dirichlet Processes
, Latent Factor Models

, Beta Processes
- SVMs and Structured Output Learning
, SV Regression, SVDD
, Large-margin Learning

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
, General formulation
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Inference
> BPs for latent feature models
- Application: Nonparametric Hidden Markov Models
, Graphical Model view
, HDP-HMM
, BP-HMM

Recap: Latent Factor Models

- Mixture Models
- Assume that each observation was generated by exactly one of K components.
, The uncertainty is just about which component is responsible.
- Latent Factor Models
, Each observation is influenced by each of K components (factors or features) in a different way.
, Sparse factor models: only a small subset of factors is active for each observation.

RW

Recap: General Latent Factor Models

- General formulation
, Assume that the data are generated by a noisy weighted combination of latent factors

$$
\mathbf{x}_{n}=\mathbf{F} \mathbf{y}_{n}+\boldsymbol{\epsilon}
$$

- Mixture Models: DPs enforce that the main part of the probability mass is concentrated on few cluster components.
, Latent Factor Models: enforce that each object is represented by a sparse subset of an unbounded number of features.
- Incorporating sparsity
> Decompose \mathbf{F} into the product of two components: $\mathbf{F}=\mathbf{Z} \otimes \mathbf{W}$, where \otimes is the Hadamard product (element-wise product).
$-z_{m k}$ is a binary mask variable indicating whether factor k is "on".
- $w_{m k}$ is a continuous weight variable.
\Rightarrow Enforce sparsity by restricting the non-zero entries in \mathbf{Z}.

Recap: Finite Latent Feature Model

- Probability model
, Finite Beta-Bernoulli model

$$
\begin{aligned}
\pi_{k} \mid \alpha & \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \\
z_{n k} \mid \pi_{k} & \sim \operatorname{Bernoulli}\left(\pi_{k}\right)
\end{aligned}
$$

, Each $z_{n k}$ is independent of all other assignments conditioned on π_{k} and the π_{k} are generated independently.

Towards Infinite Latent Feature Models

- Our goal is to let $K \rightarrow \infty$. Is this feasible with this model?
- Effective number of entries
, We have shown: The expectation of the number of non-zero entries of \mathbf{Z} is bounded by $N \alpha$, independent of K.
$\Rightarrow \mathbf{Z}$ is extremely sparse, only a finite number of factors is active.
- Probability for any particular matrix Z
, We have derived

$$
p(\mathbf{Z} \mid \alpha)=\prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma\left(m_{k}+\frac{\alpha}{K}\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma\left(N+1+\frac{\alpha}{K}\right)}
$$

\Rightarrow As $K \rightarrow \infty$, the probability of any particular \mathbf{Z} will go to zero.

- Solution: Define equivalence classes of matrices

Recap: Equivalence Class of Binary Matrices

- Equivalence class of binary matrices
, Define a function $\operatorname{lof}(\mathbf{Z})$ that maps binary matrices into leftordered binary matrices by ordering the columns of \mathbf{Z} by the magnitude of the binary number expressed by that column.
, There is a unique left-ordered form for every binary matrix.
, Two matrices \mathbf{Y} and \mathbf{Z} are equivalent iff $\operatorname{lof}(\mathbf{Y})=\operatorname{lof}(\mathbf{Z})$.
, The lof-equivalence class of \mathbf{Z} is denoted $[\mathbf{Z}]$.

Towards Infinite Latent Feature Models

- Taking the limit $K \rightarrow \infty$
, Probability of a lof-equivalence class of binary matrices

$$
p([\mathbf{Z}] \mid \alpha)=\sum_{\mathbf{Z} \in[\mathbf{Z}]} p(\mathbf{Z} \mid \alpha)=\frac{K!}{\prod_{h=0}^{2^{N}-1} K_{h}!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma\left(m_{k}+\frac{\alpha}{K}\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma\left(N+1+\frac{\alpha}{K}\right)}
$$

, Reordering the columns such that $m_{k}>0$ if $k \leq K_{+}$, and $m_{k}=0$ otherwise, we can derive (after several intermediate steps)

$$
\lim _{K \rightarrow \infty} p([\mathbf{Z}] \mid \alpha)=\frac{\alpha^{K_{+}}}{\prod_{h=0}^{2^{N}-1} K_{h}!} \exp \left\{-\alpha H_{N}\right\} \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}
$$

, where H_{N} is the $N^{\text {th }}$ harmonic number $H_{N}=\sum^{N}{ }_{j=1} 1 / j$.

- Again, this distribution is exchangeable.

R n

Excursion: The Poisson Distribution

- Motivation
, Express the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate λ and independently of the time since the last event.

- Definition
, Probability mass function for discrete Variable X

$$
p(X=k)=\operatorname{Pois}(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad k=0,1,2, \ldots
$$

, Properties

$$
\mathbb{E}[x]=\operatorname{Var}[x]=\lambda
$$

, The Poisson distribution can be derived as the limit of a Binomial distribution.

R n

Excursion: The Poisson Distribution

- Derivation (Law of rare events)
, Consider an interval (e.g., in time or space) in which events happen at random with known average number λ.
, Divide the interval in N subintervals I_{1}, \ldots, I_{N} of equal size.
\Rightarrow The probability that an event will fall into subinterval I_{k} is λ / N.
, Consider the occurrence of an event in I_{k} to be a Bernoulli trial.
, The total number of events X will then be Binomial distributed with parameters N and λ / N.

$$
p(X=k)=\operatorname{Bin}(k ; N, \lambda / N)=\frac{N!}{k!(N-k)!}\left(\frac{\lambda}{N}\right)^{k}\left(1-\frac{\lambda}{N}\right)^{N-k}
$$

, For large N, this can be approximated by a Poisson distribution

$$
\begin{aligned}
\lim _{N \rightarrow \infty} p(X=k) & =\lim _{N \rightarrow \infty} \frac{N(N-1) \ldots(N-k+1)}{N^{k}} \frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{N}\right)^{N}\left(1-\frac{\lambda}{N}\right)^{-k} \\
& = \\
1 & \frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \cdot 1
\end{aligned}
$$

Why Poisson?

- Why are we interested in Poisson distributions?

1. We have Bernoulli trials for the individual $z_{n k}$ and are interested in the infinite limit the resulting model.
2. Compare the result we just derived for the infinite latent feature model

$$
\lim _{K \rightarrow \infty} p([\mathbf{Z}] \mid \alpha)=\frac{\alpha^{K_{+}}}{\prod_{h=0}^{2^{N}-1} K_{h}!} \exp \left\{-\alpha H_{N}\right\} \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}
$$

with the definition of a Poisson distribution

$$
\operatorname{Pois}(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

\Rightarrow There is clearly some Poisson distributed component, but the exact connection is hard to grasp due to the complex notation.
, We will see the connection more clearly in the following...

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
, General formulation
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Inference
, BPs for latent feature models
- Application: Nonparametric Hidden Markov Models

Graphical Model view
HDP-HMM
BP-HMM

The Indian Buffet Process

Dishes

"Many Indian restaurants in London offer lunchtime buffets with an apparently infinite number of dishes"
[Zoubin Ghahramani]

The Indian Buffet Process

Dishes

- Analogy to Chinese Restaurant Process
, Visualize feature assignment as a sequential process of customers sampling dishes from an (infinitely long) buffet.
- $1^{\text {st }}$ customer starts at the left of the buffet, and takes a serving from each dish, stopping after a Poisson (α) number of dishes as her plate becomes overburdened.
, The $n^{\text {th }}$ customer moves along the buffet, sampling dishes in proportion to their popularity, serving himself with probability m_{k} / n, and trying a Poisson (α / n) number of new dishes.
- The customer-dish matrix is our feature matrix, Z.

Comparison: CRP vs. IBP

Chinese Restaurant Process
, Each customer is assigned to a single component.
, Tables correspond to mixture components.

Indian Buffet Process
, Each customer can be assigned to multiple components.
, Dishes correspond to latent factors/features.

The Indian Buffet Process (IBP)

- Analysis
, Let $K_{1}{ }^{(n)}$ indicate the number of new dishes sampled by customer n. It can be shown that the probability of any particular matrix \mathbf{Z} being produced is

$$
p(\mathbf{Z} \mid \alpha)=\frac{\alpha^{K_{+}}}{\prod_{n=1}^{N} K_{1}^{(n)}!} \exp \left\{-\alpha H_{N}\right\} \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}
$$

, The matrices generated by the IBP are generally not in lof, but they are also not ordered arbitrarily, since new dishes are always added to the right.
, If we only pay attention to the lof-equivalence class [Z], we obtain the exchangeable distribution

$$
p([\mathbf{Z}] \mid \alpha)=\frac{\alpha^{K_{+}}}{\prod_{h=0}^{2^{N}-1} K_{h}!} \exp \left\{-\alpha H_{N}\right\} \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}
$$

\Rightarrow Same result as for the infinite latent feature model!

The Indian Buffet Process (IBP)

- Properties of the IBP
, Generative process to create samples from an infinite latent feature model.
, The IBP is infinitely exchangeable, up to a permutation of the order with which dishes are listed in the feature matrix.
, The number of features sampled at least once is $\mathcal{O}(\alpha \log N)$.

The Indian Buffet Process (IBP)

- More properties

1. The effective dimension of the model, K_{+}, follows a Poisson $\left(\alpha H_{N}\right)$ distribution.
Proof: Easily shown, since $K_{+}=\sum_{n} \operatorname{Poisson}(\alpha / n)$.
2. The number of features possessed by each object follows a Poisson (α) distribution.
Proof: The $1^{\text {st }}$ customer chooses a Poisson (α) number of dishes. By exchangeability, this also holds for all other customers.
3. The expected number of non-zero entries in \mathbf{Z} is $N \alpha$. Proof: This directly follows from the previous result.
4. The number of non-zero entries in \mathbf{Z} will follow a $\operatorname{Poisson}(N \alpha)$ distribution.
Proof: Follows from properties of sums of Poisson variables.

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
, General formulation
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Inference
, BPs for latent feature models
- Application: Nonparametric Hidden Markov Models
, Graphical Model view
, HDP-HMM
. BP-HMM

The Beta Process

- IBP and Exchangeability
, Since the IBP is infinitely exchangeable, De Finetti's theorem states that it must have an underlying random measure.
, The Beta Process is the De Finetti random measure for the IBP, just like the DP was the De Finetti random measure for the CRP.
- Beta Processes
, Just like the DP, the Beta Process is a distribution on distributions.
, A formal definition would require an excursion into the theory of completely random measures, which is mostly beyond the scope of this lecture.
, In the following, I will therefore only highlight its most important properties...

Excursion: Completely Random Measures

- Measure
- A measure on a set is a systematic way to assign a number to each suitable subset of that set.
- Completely random means

, The random variables obtained by evaluating the random measure on disjoint subsets of the probability space are mutually independent.
, Draws from a completely random measure are discrete (up to a fixed deterministic component).
\Rightarrow Thus, we can represent such a draw as a weighted collection of atoms on some probability space, as we did for the DP.
- Sidenote
, The DP is not a completely random measure, since its weights are constrained to sum to one. Thus, the independence assumption does not hold for the DP!

Beta Process

- Formal definition
- A Beta Process $B \sim \mathrm{BP}(c, \alpha H)$ is a completely random discrete measure of the form

$$
B=\sum_{k=1}^{\infty} \mu_{k} \delta_{\theta_{k}^{*}}
$$

where the points $P=\left\{\left(\theta_{1}^{*}, \mu_{1}\right),\left(\theta_{2}^{*}, \mu_{2}\right), \ldots\right\}$ are spikes in a 2D Poisson process with rate measure

$$
c \mu^{-1}(1-\mu)^{c-1} \mathrm{~d} \mu \alpha H(\mathrm{~d} \theta)
$$

, The Beta Process with $c=1$ is the De Finetti measure for the IBP. (For $c \neq 1$, we get a 2-parameter generalization of the IBP).

Beta Process

- Less formal definition
, Define the random measure B as a set of weighted atoms $\left\{\theta_{k}{ }^{*}\right\}$

$$
B=\sum_{k=1}^{\infty} \mu_{k} \delta_{\theta_{k}^{*}}
$$

where $\mu_{k} \in(0,1)$ and the atoms $\left\{\theta_{k}{ }^{*}\right\}$ are drawn from a base measure H_{0} on Θ.
, We define the Beta Process as a distribution on distributions (analogously to the DP) for random measures with weights between 0 and 1 and denote it by $B \sim \operatorname{BP}\left(\alpha, H_{0}\right)$.

- Notes
, The weights μ_{k} do not sum to $1 \Rightarrow B$ is not a probability measure
, A Beta Process does not have Beta distributed marginals!

R

Stick-Breaking Construction for BPs

- Explicit construction of the BP
, For $c=1$, there is a closed-form Stick-Breaking Process

$$
\begin{aligned}
& \beta_{k} \sim \operatorname{Beta}(1, \alpha) \\
& \mu_{k}=\left(1-\beta_{k}\right) \prod_{l=1}^{k-1}\left(1-\beta_{l}\right) \quad \theta_{k}^{*} \sim H_{0} \quad B=\sum_{k=1}^{\infty} \mu_{k} \delta_{\theta_{k}^{*}}
\end{aligned}
$$

, This is the complement of the Stick-Breaking Process for DPs!

, As for the DP, we write this procedure as $\mu_{k}, \theta_{k}{ }^{*} \sim \operatorname{GEM}\left(\alpha, H_{0}\right)$

R

Stick-Breaking Construction for BPs

- Interpretation
, The DP weights can be thought off as portions broken off an initially unit-length stick.
, The BP weights then correspond to the remaining stick length.
- Properties
, DP: stick lengths sum to one and are not monotonically decreasing (only on average).
- BP: stick lengths do not sum to one and are decreasing.

Inference for Beta Processes

- Goal
, Infer the posterior distribution of the latent features

$$
p(\mathbf{Z} \mid \mathbf{X}) \propto p(\mathbf{X} \mid \mathbf{Z}) p(\mathbf{Z})
$$

> As for the DP, exact inference is intractable, since the normalization requires a sum over all possible binary matrices \mathbf{Z}.

- Approximate Inference
, Inference in BPs can be performed using either the IBP or the Stick-Breaking construction.
, A number of algorithms have been proposed using MCMC or variational approximations. Since the BP is typically part of a larger model, many of those algorithms are however too complex to present here.
, Given posterior samples of \mathbf{Z}, one typically examines the highest-probability sample (the MAP estimate) to get a sense of the latent feature structure.

Gibbs Sampling for the IBP

- Simple approach: Gibbs Sampling
, In order to specify a Gibbs sampler, we need to derive the full conditional distribution

$$
p\left(z_{n k}=1 \mid \mathbf{Z}_{-(n, k)}, \mathbf{X}\right) \propto p(\mathbf{X} \mid \mathbf{Z}) p\left(z_{n k}=1 \mid \mathbf{Z}_{-(n, k)}\right)
$$

where $\mathbf{Z}_{-(n, k)}$ denotes the entries of \mathbf{Z} other than $z_{n k}$.
, The likelihood term $p(\mathbf{X} \mid \mathbf{Z})$ depends on the model chosen for the observed data.
, The conditional assignments $p\left(z_{n k} \mid \mathbf{z}_{-n, k}\right)$ can be derived from the exchangeable IBP. Choosing an ordering such that the $n^{\text {th }}$ object corresponds to the last customer, we obtain

$$
p\left(z_{n k}=1 \mid \mathbf{z}_{-n, k}\right)=\frac{m_{-n, k}}{N} \text { for any } k \text { such that } m_{-n, k}>0
$$

- Similarly, the number of new features associated with object n should be drawn from a Poisson (α / N) distribution.

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
, General formulation
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Inference
, BPs for latent feature models
- Application: Nonparametric Hidden Markov Models
, Graphical Model view
, HDP-HMM
. BP-HMM

BPs and Latent Feature Models

- Building a Latent Feature Model from the BP
, Define a new random measure

$$
X_{n}=\sum_{k=1}^{\infty} z_{n k} \delta_{\theta_{k}^{*}}
$$

where $z_{n k} \sim \operatorname{Bernoulli}\left(\mu_{k}\right)$.
> The random measure X_{n} is then said to be distributed according to a Bernoulli Process with the Beta Process as its base measure: $X_{n} \sim \operatorname{BeP}(B), \quad B \sim \operatorname{BP}\left(\alpha, H_{0}\right)$.
, A draw from the Bernoulli Process places unit mass on those atoms for which $z_{n k}=1$; this defines, which latent features are "on" for the $n^{\text {th }}$ observation.
> N draws from the Bernoulli Process yield an IBP-distributed binary matrix Z [Thibaux \& Jordan, 2007].

Application: BP Factor Analysis

- Recap: Factor Analysis
, Goal: Model a data matrix, $\mathbf{X} \in \mathbb{R}^{D \times N}$, as the multiplication of two matrices, $\boldsymbol{\Phi} \in \mathbb{R}^{D \times K}$ and $(\mathbf{W} \otimes \mathbf{Z}) \in \mathbb{R}^{K \times N}$, plus an error matrix E.

$$
\mathbf{X}=\mathbf{\Phi}(\mathbf{W} \otimes \mathbf{Z})+\mathbf{E}
$$

, Or written in vector notation for each observation \mathbf{x}_{n}

$$
\mathbf{x}_{n}=\boldsymbol{\Phi}\left(\mathbf{w}_{n} \otimes \mathbf{z}_{n}\right)+\boldsymbol{\epsilon}_{n}
$$

- Basic idea of BP-FA
, Model the matrices $\mathbf{\Phi}$ and \mathbf{Z} as N draws from a Bernoulli Process, parameterized by a Beta Process $B \sim \mathrm{BP}\left(\alpha, H_{0}\right)$ with a multivariate Normal distribution as its base measure H_{0}.

Application: BP Factor Analysis

- Graphical Model
- Possible BP-FA realization
, Draw the weight vector \mathbf{w}_{n} from a Gaussian prior.

$$
\mu_{k} \sim \operatorname{GEM}(\alpha)
$$

, Draw the atoms ϕ_{k} and their weights $\mu_{k} \quad \mu_{k} \sim \operatorname{GEM}(\alpha)$ from the Beta Process (e.g., using the stick-breaking construction).
, Construct each \mathbf{z}_{n} by turning on a subset of these atoms according to a draw from the Bernoulli Process.
, Generate the noisy observation \mathbf{x}_{n}

$$
\mathbf{w}_{n} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{w}^{2} \mathbf{I}\right)
$$

$$
\phi_{k} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})
$$

$z_{n k} \sim \operatorname{Bernoulli}\left(\mu_{k}\right)$ $\boldsymbol{\epsilon}_{n} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{n}^{2} \mathbf{I}\right)$

$$
\mathbf{x}_{n}=\boldsymbol{\Phi}\left(\mathbf{w}_{n} \otimes \mathbf{z}_{n}\right)+\boldsymbol{\epsilon}_{n}
$$

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
, General formulation
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Inference
, BPs for latent feature models
- Application: Nonparametric Hidden Markov Models
, Graphical Model view
, HDP-HMM
, BP-HMM

Hidden Markov Models (HMMs)

- Probabilistic model for sequential data
, Widely used in speech recognition, natural language modeling, handwriting recognition, financial forecasting,...
- Traditional view:
, Finite state machine
, Elements:
- State transition matrix A,
- Production probabilities $p(\mathbf{x} \mid k)$.

- Graphical model view
, Dynamic latent variable model
, Elements:
- Observation at time $n: \mathbf{x}_{n}$
- Hidden state at time $n: \mathbf{z}_{n}$

- Conditionals $p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right), p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)$

Hidden Markov Models (HMMs)

- Traditional HMM learning
, Each state has a distribution over observable outputs $p(\mathbf{x} \mid k)$, e.g., modeled as a Gaussian.
, Learn the output distributions together with the transition probabilities using an EM algorithm.

- Graphical Model view
, Treat the HMM as a mixture model
, Each state is a component ("mode") in the mixture distribution.
, From time step to time step, the responsible component switches according to the transition model.
, Advantage: we can introduce priors!
Dirichlet prior: $\operatorname{Dir}(\alpha, H(\lambda))$

Observations

HMM: Mixture Model View

Advanced Machine Learning Winter'12

Time

B. Leibe

HMM: Mixture Model View

HMM: Mixture Model View

HMM: Mixture Model View

B. Leibe

R

Hierarchical Dirichlet Process HMM

- Dirichlet Process
, Mode space of unbounded size
- Model complexity adapts to observations
- Hierarchical DP
, Ties mode transition distributions
, Shared sparsity

Beta Process HMM

- Goal: Transfer knowledge between related time series
, E.g., activity recognition in video collections
, Allow each system to switch between an arbitrarily large set of dynamical modes ("behaviors").
, Share behaviors across sequences.

- Beta Processes enforce sparsity
, HDPs would force all videos to have non-zero probability of displaying all behaviors.
, Beta Processes allow a video to contain only a sparse subset of

Features/Modes
 relevant behaviors.

Unsupervised Discovery of Activity Patterns

Summary

- Beta Processes
, Powerful nonparametric framework for latent feature models
- Much younger than the DP, so much is still in development.
, E.g., stick-breaking construction was only shown in 2010.
, Beta Processes and the IBP can be used in concert with different likelihood models in a variety of applications.
- Many other applications being developed, e.g.
, Infinite Independent Component Analysis
> Matrix factorization for collaborative filtering (recommender systems)
, Latent causal discovery for medical diagnosis
- Protein complex discovery
» ...

References and Further Reading

- Tutorial papers for infinite latent factor models
- A good introduction to the topic
- Z. Ghahramani, T.L. Griffiths, P. Sollich, "Bayesian Nonparametric Latent Feature Models", Bayesian Statistics, 2006.
- A tutorial on Hierarchical BNPs, including Beta Processes
- Y.W. Teh, M.I. Jordan, Hierarchical Bayesian Nonparametric Models with Applications. Bayesian Nonparametrics, Cambridge Univ. Press, 2010.
- Example applications of BPs
, BP Factor Analysis
- J. Paisley, F. Carin, Nonparametric Factor Analysis with Beta Process Priors, ICML 2009.
, BP-HMMs for discovery of activity patterns
- M.C. Hughes, E.B. Sudderth, Nonparametric Discovery of Activity Patterns from Video Collections. CVPR Workshop on Perceptual Organization in Computer Vision, 2012.

