

Advanced Machine Learning Lecture 17

Beta Processes II

07.01.2013

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

- Bayesian Estimation & Bayesian Non-Parametrics
 - Prob. Distributions, Approx. Inference
 - » Mixture Models & EM
 - Dirichlet Processes
 - Latent Factor Models
 - » Beta Processes
- SVMs and Structured Output Learning
 - SV Regression, SVDD
 - Large-margin Learning

Topics of This Lecture

• Recap: Towards Infinite Latent Factor Models

- General formulation
- Finite latent feature model
- Left-ordered binary matrices
- Indian Buffet Process

Beta Processes

- > Properties
- Stick-Breaking construction
- Inference
- » BPs for latent feature models

• Application: Nonparametric Hidden Markov Models

- Graphical Model view
- > HDP-HMM
- > BP-HMM

4

Recap: Latent Factor Models

- Mixture Models
 - > Assume that each observation was generated by *exactly* one of K components.
 - > The uncertainty is just about which component is responsible.
- Latent Factor Models
 - Each observation is influenced by *each* of K components (factors or features) in a different way.
 - Sparse factor models: only a small subset of factors is active for each observation.

Recap: General Latent Factor Models

- General formulation
 - Assume that the data are generated by a noisy weighted combination of latent factors

$$\mathbf{x}_n = \mathbf{F}\mathbf{y}_n + oldsymbol{\epsilon}$$

- Mixture Models: DPs enforce that the main part of the probability mass is concentrated on few cluster components.
- Latent Factor Models: enforce that each object is represented by a sparse subset of an unbounded number of features.
- Incorporating sparsity
 - > Decompose \mathbf{F} into the product of two components: $\mathbf{F} = \mathbf{Z} \otimes \mathbf{W}$, where \otimes is the Hadamard product (element-wise product).
 - z_{mk} is a binary mask variable indicating whether factor k is "on".
 - w_{mk} is a continuous weight variable.
 - \Rightarrow Enforce sparsity by restricting the non-zero entries in Z.

Recap: Finite Latent Feature Model

Probability model

Finite Beta-Bernoulli model

$$\pi_k | \alpha \sim \operatorname{Beta}(\frac{\alpha}{K}, 1)$$

 $z_{nk} | \pi_k \sim \operatorname{Bernoulli}(\pi_k)$

> Each z_{nk} is independent of all other assignments conditioned on π_k and the π_k are generated independently.

RWITHAACHEN UNIVERSITY Towards Infinite Latent Feature Models

- Our goal is to let $K \rightarrow \infty$. Is this feasible with this model?
- Effective number of entries
 - > We have shown: The expectation of the number of non-zero entries of Z is bounded by $N\alpha$, independent of K.
 - \Rightarrow Z is extremely sparse, only a finite number of factors is active.
- Probability for any particular matrix **Z**
 - > We have derived

$$p(\mathbf{Z}|\alpha) = \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

 \Rightarrow As $K \rightarrow \infty$, the probability of any particular ${f Z}$ will go to zero.

• Solution: Define equivalence classes of matrices

RWTHAACHEN UNIVERSITY Recap: Equivalence Class of Binary Matrices

- Equivalence class of binary matrices
 - > Define a function $lof(\mathbf{Z})$ that maps binary matrices into leftordered binary matrices by ordering the columns of \mathbf{Z} by the magnitude of the binary number expressed by that column.
 - > There is a unique left-ordered form for every binary matrix.
 - > Two matrices ${f Y}$ and ${f Z}$ are equivalent iff $lof({f Y}) = lof({f Z})$.
 - > The lof-equivalence class of ${f Z}$ is denoted $[{f Z}]$.

Towards Infinite Latent Feature Models

- Taking the limit $K \to \infty$
 - \succ Probability of a lof-equivalence class of binary matrices

$$p([\mathbf{Z}]|\alpha) = \sum_{\mathbf{Z}\in[\mathbf{Z}]} p(\mathbf{Z}|\alpha) = \frac{K!}{\prod_{h=0}^{2^N-1} K_h!} \prod_{k=1}^K \frac{\frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

> Reordering the columns such that $m_k > 0$ if $k \le K_+$, and $m_k = 0$ otherwise, we can derive (after several intermediate steps)

$$\lim_{K \to \infty} p([\mathbf{Z}] | \alpha) = \frac{\alpha^{K_+}}{\prod_{h=0}^{2^N - 1} K_h!} \exp\{-\alpha H_N\} \prod_{k=1}^{K_+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

- where H_N is the N^{th} harmonic number H_N = $\sum_{j=1}^N 1/j$.
- > Again, this distribution is exchangeable.

Excursion: The Poisson Distribution

- **Motivation**
 - Express the probability of a given \geq number of events occurring in a fixed interval of time and/or space if these $\frac{1}{2}$ 0.20 events occur with a known average rate λ and independently of the time since the last event.

18

- Definition
 - Probability mass function for discrete Variable X \geq

$$p(X = k) = \text{Pois}(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

Properties \succ

$$\mathbb{E}[x] = \operatorname{Var}[x] = \lambda$$

The Poisson distribution can be derived as the limit of a ≻ **Binomial distribution.** B. Leibe Image source: Wikipedia

Excursion: The Poisson Distribution

- Derivation (Law of rare events)
 - > Consider an interval (e.g., in time or space) in which events happen at random with known average number λ .
 - > Divide the interval in N subintervals $I_1, ..., I_N$ of equal size.
 - \Rightarrow The probability that an event will fall into subinterval I_k is λ/N .
 - > Consider the occurrence of an event in I_k to be a Bernoulli trial.
 - > The total number of events X will then be Binomial distributed with parameters N and λ/N .

$$p(X = k) = \operatorname{Bin}(k; N, \lambda/N) = \frac{N!}{k!(N-k)!} \left(\frac{\lambda}{N}\right)^k \left(1 - \frac{\lambda}{N}\right)^{N-k}$$

 $\begin{array}{l} & \text{For large } N \text{, this can be approximated by a Poisson distribution} \\ & \lim_{N \to \infty} p(X = k) \ = \lim_{N \to \infty} \frac{N(N-1)...(N-k+1)}{N^k} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{N}\right)^N \left(1 - \frac{\lambda}{N}\right)^{-k} \\ & = 1 \quad \cdot \quad \frac{\lambda^k}{k!} \ \cdot \ e^{-\lambda} \quad \cdot \quad 1 \qquad _{19} \end{array}$

Why Poisson?

- Why are we interested in Poisson distributions?
 - 1. We have Bernoulli trials for the individual z_{nk} and are interested in the infinite limit the resulting model.
 - 2. Compare the result we just derived for the infinite latent feature model

$$\lim_{K \to \infty} p([\mathbf{Z}] | \alpha) = \frac{\alpha^{K_+}}{\prod_{h=0}^{2^N - 1} K_h!} \exp\{-\alpha H_N\} \prod_{k=1}^{K_+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

with the definition of a Poisson distribution

$$\operatorname{Pois}(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- \Rightarrow There is clearly some Poisson distributed component, but the exact connection is hard to grasp due to the complex notation.
- > We will see the connection more clearly in the following...

Topics of This Lecture

• Recap: Towards Infinite Latent Factor Models

- General formulation
- Finite latent feature model
- Left-ordered binary matrices
- > Indian Buffet Process

Beta Processes

- > Properties
- > Stick-Breaking construction
- Inference
- > BPs for latent feature models
- Application: Nonparametric Hidden Markov Models
 - > Graphical Model view
 - > HDP-HMM
 - > BP-HMM

The Indian Buffet Process

"Many Indian restaurants in London offer lunchtime buffets with an apparently infinite number of dishes" [Zoubin Ghahramani]

The Indian Buffet Process

Analogy to Chinese Restaurant Process

- > Visualize feature assignment as a sequential process of customers sampling dishes from an (infinitely long) buffet.
- > 1st customer starts at the left of the buffet, and takes a serving from each dish, stopping after a $Poisson(\alpha)$ number of dishes as her plate becomes overburdened.
- > The $n^{\rm th}$ customer moves along the buffet, sampling dishes in proportion to their popularity, serving himself with probability m_k/n , and trying a ${\rm Poisson}(\alpha/n)$ number of new dishes.
- \succ The customer-dish matrix is our feature matrix, ${f Z}.$

Comparison: CRP vs. IBP

Chinese Restaurant Process

- Each customer is assigned to a single component.
- *Tables* correspond to mixture components.

Indian Buffet Process

- Each customer can be assigned to multiple components.
- Dishes correspond to latent factors/features.

The Indian Buffet Process (IBP)

- Analysis
 - > Let $K_1^{(n)}$ indicate the number of new dishes sampled by customer n. It can be shown that the probability of any particular matrix Z being produced is

$$p(\mathbf{Z}|\alpha) = \frac{\alpha^{K_{+}}}{\prod_{n=1}^{N} K_{1}^{(n)}!} \exp\{-\alpha H_{N}\} \prod_{k=1}^{K_{+}} \frac{(N-m_{k})!(m_{k}-1)!}{N!}$$

- The matrices generated by the IBP are generally not in lof, but they are also not ordered arbitrarily, since new dishes are always added to the right.
- > If we only pay attention to the ${\rm lof}\text{-equivalence class}~[\mathbf{Z}]$, we obtain the exchangeable distribution

$$p([\mathbf{Z}]|\alpha) = \frac{\alpha^{K_+}}{\prod_{h=0}^{2^N-1} K_h!} \exp\{-\alpha H_N\} \prod_{k=1}^{K_+} \frac{(N-m_k)!(m_k-1)!}{N!}$$

 \Rightarrow Same result as for the infinite latent feature model!

The Indian Buffet Process (IBP)

Properties of the IBP

- Generative process to create samples from an infinite latent feature model.
- > The IBP is infinitely exchangeable, up to a permutation of the order with which dishes are listed in the feature matrix.
- > The number of features sampled at least once is $\mathcal{O}(\alpha \log N)$.

26

The Indian Buffet Process (IBP)

- More properties
 - 1. The effective dimension of the model, K_+ , follows a $Poisson(\alpha H_N)$ distribution.

Proof: Easily shown, since $K_{+} = \sum_{n} \operatorname{Poisson}(\alpha/n)$.

2. The number of features possessed by each object follows a $Poisson(\alpha)$ distribution.

Proof: The 1st customer chooses a $Poisson(\alpha)$ number of dishes. By exchangeability, this also holds for all other customers.

- **3.** The expected number of non-zero entries in \mathbb{Z} is $N\alpha$. Proof: This directly follows from the previous result.
- 4. The number of non-zero entries in Z will follow a $Poisson(N\alpha)$ distribution.

Proof: Follows from properties of sums of Poisson variables.

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
 - > General formulation
 - Finite latent feature model
 - > Left-ordered binary matrices
 - > Indian Buffet Process

Beta Processes

- > Properties
- Stick-Breaking construction
- Inference
- » BPs for latent feature models
- Application: Nonparametric Hidden Markov Models
 - > Graphical Model view
 - > HDP-HMM
 - > BP-HMM

The Beta Process

- IBP and Exchangeability
 - Since the IBP is infinitely exchangeable, De Finetti's theorem states that it must have an underlying random measure.
 - The Beta Process is the De Finetti random measure for the IBP, just like the DP was the De Finetti random measure for the CRP.

Beta Processes

- Just like the DP, the Beta Process is a distribution on distributions.
- A formal definition would require an excursion into the theory of completely random measures, which is mostly beyond the scope of this lecture.
- In the following, I will therefore only highlight its most important properties...

Excursion: Completely Random Measures

• Measure

A measure on a set is a systematic way to assign a number to each suitable subset of that set.

Completely random means

- The random variables obtained by evaluating the random measure on disjoint subsets of the probability space are mutually independent.
- Draws from a completely random measure are discrete (up to a fixed deterministic component).
- \Rightarrow Thus, we can represent such a draw as a weighted collection of atoms on some probability space, as we did for the DP.

• Sidenote

The DP is not a completely random measure, since its weights are constrained to sum to one. Thus, the independence assumption does not hold for the DP!

30

0

Beta Process

- Formal definition
 - > A Beta Process $B \sim {\rm BP}(c, \, \alpha H)$ is a completely random discrete measure of the form $\underline{\infty}$

$$B = \sum_{k=1} \mu_k \delta_{\theta_k^*}$$

where the points $P = \{(\theta_1^*, \mu_1), (\theta_2^*, \mu_2), ...\}$ are spikes in a 2D Poisson process with rate measure

 $c\mu^{-1}(1-\mu)^{c-1}\mathrm{d}\mu\,\alpha H(\mathrm{d}\theta)$

> The Beta Process with c=1 is the De Finetti measure for the IBP. (For $c \neq 1$, we get a 2-parameter generalization of the IBP).

Beta Process

- Less formal definition
 - > Define the random measure B as a set of weighted atoms $\{\theta_k^*\}$

$$B = \sum_{k=1}^{\infty} \mu_k \delta_{\theta_k^*}$$

where $\mu_k \in (0,1)$ and the atoms $\{\theta_k^*\}$ are drawn from a base measure H_0 on Θ .

> We define the Beta Process as a distribution on distributions (analogously to the DP) for random measures with weights between 0 and 1 and denote it by $B \sim BP(\alpha, H_0)$.

• Notes

- > The weights μ_k do not sum to $1 \Rightarrow B$ is not a probability measure
- A Beta Process does not have Beta distributed marginals!

Stick-Breaking Construction for BPs

- Explicit construction of the BP
 - > For c = 1, there is a closed-form Stick-Breaking Process

$$\beta_k \sim \text{Beta}(1,\alpha)$$

$$\mu_k = (1 - \beta_k) \prod_{l=1}^{k-1} (1 - \beta_l) \qquad \theta_k^* \sim H_0 \qquad B = \sum_{k=1}^{\infty} \mu_k \delta_{\theta_k^*}$$

This is the complement of the Stick-Breaking Process for DPs!

Advanced Machine Learning Winter'12

Stick-Breaking Construction for BPs

Interpretation

- The DP weights can be thought off as portions broken off an initially unit-length stick.
- > The BP weights then correspond to the remaining stick length.

Properties

- DP: stick lengths sum to one and are not monotonically decreasing (only on average).
- > BP: stick lengths do not sum to one and are decreasing.

Inference for Beta Processes

• Goal

Infer the posterior distribution of the latent features

 $p(\mathbf{Z}|\mathbf{X}) \propto p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})$

> As for the DP, exact inference is intractable, since the normalization requires a sum over all possible binary matrices ${f Z}$.

Approximate Inference

- Inference in BPs can be performed using either the IBP or the Stick-Breaking construction.
- A number of algorithms have been proposed using MCMC or variational approximations. Since the BP is typically part of a larger model, many of those algorithms are however too complex to present here.
- Given posterior samples of Z, one typically examines the highest-probability sample (the MAP estimate) to get a sense of the latent feature structure.

Gibbs Sampling for the IBP

- Simple approach: Gibbs Sampling
 - In order to specify a Gibbs sampler, we need to derive the full conditional distribution

$$p(z_{nk} = 1 | \mathbf{Z}_{-(n,k)}, \mathbf{X}) \propto p(\mathbf{X} | \mathbf{Z}) p(z_{nk} = 1 | \mathbf{Z}_{-(n,k)})$$

where $\mathbf{Z}_{-(n,k)}$ denotes the entries of \mathbf{Z} other than z_{nk} .

- > The likelihood term $p(\mathbf{X}|\mathbf{Z})$ depends on the model chosen for the observed data.
- > The conditional assignments $p(z_{nk} | \mathbf{z}_{-n,k})$ can be derived from the exchangeable IBP. Choosing an ordering such that the n^{th} object corresponds to the last customer, we obtain

$$p(z_{nk}=1|\mathbf{z}_{-n,k}) = rac{m_{-n,k}}{N}$$
 for any k such that $m_{-n,k} > 0$.

> Similarly, the number of new features associated with object n should be drawn from a $\mathrm{Poisson}(\alpha/N)$ distribution.

Source: [Ghahramani et al., 2006]

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
 - > General formulation
 - Finite latent feature model
 - > Left-ordered binary matrices
 - Indian Buffet Process

Beta Processes

- > Properties
- Stick-Breaking construction
- Inference
- » BPs for latent feature models
- Application: Nonparametric Hidden Markov Models
 - > Graphical Model view
 - > HDP-HMM
 - > BP-HMM

BPs and Latent Feature Models

- Building a Latent Feature Model from the BP
 - > Define a new random measure

$$X_n = \sum_{k=1}^{\infty} z_{nk} \delta_{\theta_k^*}$$

 ∞

where $z_{nk} \sim \operatorname{Bernoulli}(\mu_k)$.

- > The random measure X_n is then said to be distributed according to a Bernoulli Process with the Beta Process as its base measure: $X_n \sim \text{BeP}(B)$, $B \sim \text{BP}(\alpha, H_0)$.
- > A draw from the Bernoulli Process places unit mass on those atoms for which $z_{nk} = 1$; this defines, which latent features are "on" for the n^{th} observation.
- N draws from the Bernoulli Process yield an IBP-distributed binary matrix Z [Thibaux & Jordan, 2007].

Advanced Machine Learning Winter'12

Application: BP Factor Analysis

- Recap: Factor Analysis
 - Soal: Model a data matrix, $\mathbf{X} \in \mathbb{R}^{D \times N}$, as the multiplication of two matrices, $\mathbf{\Phi} \in \mathbb{R}^{D \times K}$ and $(\mathbf{W} \otimes \mathbf{Z}) \in \mathbb{R}^{K \times N}$, plus an error matrix \mathbf{E} .

$$\mathbf{X} = \mathbf{\Phi}(\mathbf{W} \otimes \mathbf{Z}) + \mathbf{E}$$

> Or written in vector notation for each observation \mathbf{x}_n

$$\mathbf{x}_n = \mathbf{\Phi}(\mathbf{w}_n \otimes \mathbf{z}_n) + oldsymbol{\epsilon}_n$$

- Basic idea of BP-FA
 - > Model the matrices Φ and Z as N draws from a Bernoulli Process, parameterized by a Beta Process $B \sim BP(\alpha, H_0)$ with a multivariate Normal distribution as its base measure H_0 .

Application: BP Factor Analysis

Graphical Model

- Possible BP-FA realization
 - > Draw the weight vector \mathbf{w}_n from a Gaussian prior.
 - > Draw the atoms ϕ_k and their weights μ_k from the Beta Process (e.g., using the stick-breaking construction).
 - Construct each z_n by turning on a subset of these atoms according to a draw from the Bernoulli Process.
 - > Generate the noisy observation \mathbf{x}_n

 $\mathbf{x}_n = \mathbf{\Phi}(\mathbf{w}_n \otimes \mathbf{z}_n) + oldsymbol{\epsilon}_n$

$$\begin{split} \mathbf{w}_n &\sim \mathcal{N}(\mathbf{0}, \sigma_w^2 \mathbf{I}) \\ \mu_k &\sim \operatorname{GEM}(\alpha) \\ \boldsymbol{\phi}_k &\sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \end{split}$$

$$z_{nk} \sim \text{Bernoulli}(\mu_k)$$

$$\boldsymbol{\epsilon}_n~\sim~\mathcal{N}(\mathbf{0},\sigma_n^2\mathbf{I})$$

Topics of This Lecture

- Recap: Towards Infinite Latent Factor Models
 - > General formulation
 - Finite latent feature model
 - > Left-ordered binary matrices
 - > Indian Buffet Process

Beta Processes

- > Properties
- Stick-Breaking construction
- Inference
- > BPs for latent feature models

Application: Nonparametric Hidden Markov Models

- Graphical Model view
- HDP-HMM
- > BP-HMM

Hidden Markov Models (HMMs)

- Probabilistic model for sequential data
 - Widely used in speech recognition, natural language modeling, handwriting recognition, financial forecasting,...

B. Leibe

- Traditional view:
 - Finite state machine
 - > Elements:
 - State transition matrix A,
 - Production probabilities $p(\mathbf{x} \mid k)$.
- Graphical model view
 - Dynamic latent variable model
 - Elements:
 - Observation at time n: \mathbf{x}_n
 - Hidden state at time n: \mathbf{z}_n
 - Conditionals $p(\mathbf{z}_{n+1}|\mathbf{z}_n)$, $p(\mathbf{x}_n|\mathbf{z}_n)$

42 Image source: C.M. Bishop, 2006

Hidden Markov Models (HMMs)

- Traditional HMM learning
 - Each state has a distribution over observable outputs p(x | k),
 e.g., modeled as a Gaussian.
 - Learn the output distributions together with the transition probabilities using an EM algorithm.
- Graphical Model view
 - Treat the HMM as a mixture model
 - Each state is a component ("mode") α in the mixture distribution.
 - From time step to time step, the responsible component switches according to the transition model.
 - Advantage: we can introduce priors!

Important issue: How many modes?

B. Leibe

Hierarchical Dirichlet Process HMM

- **Dirichlet Process**
 - Mode space of unbounded size \succ
 - Model complexity adapts to ≻ observations
- Hierarchical DP
 - Ties mode transition distributions ≻
 - Shared sparsity \geq

Infinite state space

 $\mathbf{2}$

1

RWTHAACHEN UNIVERSITY

Beta Process HMM

- Goal: Transfer knowledge between related time series
 - E.g., activity recognition in video collections
 - Allow each system to switch between an arbitrarily large set of dynamical modes ("behaviors").
 - Share behaviors across sequences.
- Beta Processes enforce sparsity
 - > HDPs would force all videos to have non-zero probability of displaying all behaviors.
 - Beta Processes allow a video to contain only a sparse subset of relevant behaviors.

[Hughes & Sudderth, 2012]

Advanced Machine Learning Winter'12

RWTHAACHER UNIVERSITY UNIVERSITY Unsupervised Discovery of Activity Patterns

Summary

Beta Processes

- > Powerful nonparametric framework for latent feature models
- > Much younger than the DP, so much is still in development.
- > E.g., stick-breaking construction was only shown in 2010.
- Beta Processes and the IBP can be used in concert with different likelihood models in a variety of applications.
- Many other applications being developed, e.g.
 - Infinite Independent Component Analysis
 - Matrix factorization for collaborative filtering (recommender systems)
 - Latent causal discovery for medical diagnosis
 - Protein complex discovery

> •••

References and Further Reading

- Tutorial papers for infinite latent factor models
 - A good introduction to the topic
 - Z. Ghahramani, T.L. Griffiths, P. Sollich, "<u>Bayesian Nonparametric</u> <u>Latent Feature Models</u>", Bayesian Statistics, 2006.
 - A tutorial on Hierarchical BNPs, including Beta Processes
 - Y.W. Teh, M.I. Jordan, <u>Hierarchical Bayesian Nonparametric Models</u> <u>with Applications</u>. Bayesian Nonparametrics, Cambridge Univ. Press, 2010.
- Example applications of BPs
 - » BP Factor Analysis
 - J. Paisley, F. Carin, <u>Nonparametric Factor Analysis with Beta</u> <u>Process Priors</u>, ICML 2009.
 - » BP-HMMs for discovery of activity patterns
 - M.C. Hughes, E.B. Sudderth, <u>Nonparametric Discovery of Activity</u> <u>Patterns from Video Collections</u>. CVPR Workshop on Perceptual Organization in Computer Vision, 2012. B. Leibe