Advanced Machine Learning Lecture 16

Beta Processes

19.12.2012

Bastian Leibe RWTH Aachen
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Announcement

- Exercise sheet 3 will be made available tonight
, Dirichlet Process Mixture Models
, Gibbs Sampling
, Finite Mixtures
, DPMM Sampling

This Lecture: Advanced Machine Learning

- Regression Approaches
, Linear Regression
- Regularization (Ridge, Lasso)
, Kernels (Kernel Ridge Regression)
, Gaussian Processes

- Bayesian Estimation \& Bayesian Non-Parametrics
, Prob. Distributions, Approx. Inference
, Mixture Models \& EM
, Dirichlet Processes
, Latent Factor Models

, Beta Processes
- SVMs and Structured Output Learning
, SV Regression, SVDD
, Large-margin Learning

Topics of This Lecture

- Latent Factor Models
, Recap
- Towards Infinite Latent Factor Models
, General formulation
, Priors on binary matrices
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Efficient Inference
- Applications

Recap: Latent Factor Models

- Mixture Models
- Assume that each observation was generated by exactly one of K components.
, The uncertainty is just about which component is responsible.
- Latent Factor Models
, Each observation is influenced by each of K components (factors or features) in a different way.
, Sparse factor models: only a small subset of factors is active for each observation.

Recap: Principal Component Analysis

- Find the projection that maximizes the variance
, Covariance matrix of the data

$$
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{T}
$$

, Optimal linear projection into a K-dimensional space is given by the first K eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$ of \mathbf{S}.

$$
\mathbf{y}_{n}=\mathbf{U}_{1 . . K} \mathbf{x}_{n}
$$

Recap: PCA for Whitening

- Whitening procedure
, Define for each data point the transformed value as

$$
\begin{aligned}
\mathbf{y}_{n}=\mathbf{L}^{-1 / 2} \mathbf{U}^{T}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right) & \mathbf{L} \\
& =\operatorname{diag}\left\{\lambda_{i}\right\} \\
\mathbf{U} & =\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{D}\right]
\end{aligned}
$$

\Rightarrow The transformed set $\left\{\mathbf{y}_{n}\right\}$ has zero mean and unit covariance.

Recap: Probabilistic PCA

- Graphical Model
, Introduce an explicit latent variable z corresponding to the principal component subspace.
, Define a Gaussian prior distribution

$$
p(\mathbf{z})=\mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I})
$$

, Conditional distribution also Gaussian

$$
p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mathbf{x} \mid \mathbf{W} \mathbf{z}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)
$$

, Because of this linear-Gaussian model,
 the marginal distribution will also be Gaussian

$$
p(\mathbf{x})=\int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) \mathrm{d} \mathbf{z}=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{C}), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{T}+\sigma^{2} \mathbf{I}
$$

, Posterior distribution (again Gaussian)

$$
p(\mathbf{z} \mid \mathbf{x})=\mathcal{N}\left(\mathbf{z} \mid \mathbf{M}^{-1} \mathbf{W}^{T}(\mathbf{x}-\boldsymbol{\mu}), \sigma^{2} \mathbf{M}^{-1}\right), \quad \mathbf{M}=\mathbf{W}^{T} \mathbf{W}+\sigma^{2} \mathbf{I}
$$

Recap: Interpretation of Probabilistic PCA

- Analysis
, Marginal distribution: $\quad p(\mathbf{x})=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{C})$,
, Covariance matrix: $\quad \mathbf{C}=\mathbf{W} \mathbf{W}^{T}+\sigma^{2} \mathbf{I}$
\Rightarrow The columns of \mathbf{W} define the principal subspace of PCA.
, Maximum Likelihood estimates

$$
\begin{aligned}
\boldsymbol{\mu}_{\mathrm{ML}} & =\overline{\mathbf{x}} \\
\mathbf{W}_{\mathrm{ML}} & =\mathbf{U}_{K}\left(\mathbf{L}_{K}-\sigma^{2} \mathbf{I}\right)^{1 / 2} \mathbf{R} \\
\sigma_{\mathrm{ML}}^{2} & =\frac{1}{D-K} \sum_{i=K+1}^{D} \lambda_{i}
\end{aligned}
$$

\Rightarrow The model correctly captures the variance of the data along the principal axes and approximates the variance in all remaining directions by σ^{2}, the average of the discarded eigenvalues.

Recap: Examples of Latent Factor Models

- Probabilistic PCA (pPCA)
, Linear-Gaussian model with isotropic covariance

$$
p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}\left(\mathbf{x} \mid \mathbf{W} \mathbf{z}+\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)
$$

- Factor Analysis (FA)
, Same linear-Gaussian model, but with diagonal covariance

$$
p(\mathbf{x} \mid \mathbf{z})=\mathcal{N}(\mathbf{x} \mid \mathbf{W} \mathbf{z}+\boldsymbol{\mu}, \mathbf{\Psi}) \quad \mathbf{\Psi}=\operatorname{diag}\left\{\psi_{i}\right\}
$$

- Independent Component Analysis (ICA)
, Observed variables are related linearly to the latent variables, but the latent distribution is non-Gaussian.
, Assumption: latent variables z_{j} are independent.

$$
p(\mathbf{z})=\prod_{j=1}^{K} p\left(z_{j}\right)
$$

Topics of This Lecture

- Latent Factor Models
, Recap
- Towards Infinite Latent Factor Models
, General formulation
, Priors on binary matrices
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Efficient Inference
- Applications

RW

Recap: General Latent Factor Models

- General formulation
, Assume that the data are generated by noisy weighted combination of latent factors

$$
\mathbf{x}_{n}=\mathbf{F} \mathbf{y}_{n}+\boldsymbol{\epsilon}
$$

- Mixture Models: DPs enforce that the main part of the probability mass is concentrated on few cluster components.
, Latent Factor Models: enforce that each object is represented by a sparse subset of an unbounded number of features.
- Incorporating sparsity
> Decompose \mathbf{F} into the product of two components: $\mathbf{F}=\mathbf{Z} \otimes \mathbf{W}$, where \otimes is the Hadamard product (element-wise product).
$-z_{m k}$ is a binary mask variable indicating whether factor k is "on".
- $w_{m k}$ is a continuous weight variable.
\Rightarrow Enforce sparsity by restricting the non-zero entries in \mathbf{Z}.

Priors on Latent Factor Models

- Defining suitable priors
, We will focus on defining a prior on Z, since the effective dimensionality of the latent feature model is determined by \mathbf{Z}.
, Assuming that \mathbf{Z} is sparse, we can define a prior for infinite latent feature models by defining a distribution over infinite binary matrices.
- Desiderata for such a distribution
, Objects should be exchangeable.
, Inference should be tractable.
- Procedure
- Start with a model that assumes a finite number of features and consider the limit as this number approaches infinity.

A Finite Feature Model

- Modeling assumptions
, We have N objects and K features.
, Binary variables $z_{n k}$ indicates that object n possesses feature k.
, Each object possesses feature k with probability π_{k} and features are generated independently.
\Rightarrow The probability of a matrix \mathbf{Z} given $\pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ is given by a Binomial distribution

$$
p(\mathbf{Z} \mid \boldsymbol{\pi})=\prod_{k=1}^{K} \prod_{n=1}^{N} p\left(z_{n k} \mid \pi_{k}\right)=\prod_{k=1}^{K} \pi_{k}^{m_{k}}\left(1-\pi_{k}\right)^{N-m_{k}}
$$

where $m_{k}=\sum_{n=1}^{N} z_{n k}$ is the number of objects possessing feature k.

A Finite Feature Model

- Defining a prior
, Define a prior on π by assuming that each π_{k} follows a Beta distribution (conjugate to the binomial):

$$
p\left(\pi_{k}\right)=\operatorname{Beta}\left(\pi_{k} ; r, s\right)=\frac{\pi_{k}^{r-1}\left(1-\pi_{k}\right)^{s-1}}{B(r, s)}
$$

where $B(r, s)$ is the beta function

$$
B(r, s)=\int_{0}^{1} \pi_{k}^{r-1}\left(1-\pi_{k}\right)^{s-1} \mathrm{~d} \pi_{k}=\frac{\Gamma(r) \Gamma(s)}{\Gamma(r+s)}
$$

, We set $r=\alpha / K$ and $s=1$, so this equation becomes

$$
B\left(\frac{\alpha}{K}, 1\right)=\frac{\Gamma\left(\frac{\alpha}{K}\right)}{\Gamma\left(1+\frac{\alpha}{K}\right)}=\frac{K}{\alpha}
$$

A Finite Feature Model

- Resulting probability model
, Finite Beta-Bernoulli model

$$
\begin{aligned}
\pi_{k} \mid \alpha & \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \\
z_{n k} \mid \pi_{k} & \sim \operatorname{Bernoulli}\left(\pi_{k}\right)
\end{aligned}
$$

, Each $z_{n k}$ is independent of all other assignments conditioned on π_{k} and the π_{k} are generated independently.

A Finite Feature Model

- We can now marginalize out π
, Marginal probability of the matrix Z:

$$
\begin{array}{rlr}
p(\mathbf{Z}) & =\prod_{k=1}^{K} \int\left(\prod_{n=1}^{N} p\left(z_{n k} \mid \pi_{k}\right)\right) p\left(\pi_{k}\right) \mathrm{d} \pi_{k} & \\
& =\prod_{k=1}^{K} \frac{B\left(m_{k}+\frac{\alpha}{K}, N-m_{k}+1\right)}{B\left(\frac{\alpha}{K}, 1\right)} \quad \begin{array}{l}
\text { conjugacy b/w } \\
\text { binomial and beta } \\
\end{array} & =\prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma\left(m_{k}+\frac{\alpha}{K}\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma\left(N+1+\frac{\alpha}{K}\right)}
\end{array}
$$

\Rightarrow This distribution depends only on the counts m_{k}.
\Rightarrow It is therefore exchangeable.

Important Property

- Bound on the number of entries
, Expectation of the number of non-zero entries in Z:

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}^{T} \mathbf{z}_{k} \mathbf{1}\right]= \mathbb{E}\left[\sum_{n=1}^{N} \sum_{k=1}^{K} z_{n k}\right]=K \mathbb{E}\left[\mathbf{1}^{T} \mathbf{z}_{k}\right] \begin{array}{r}
\begin{array}{r}
\text { (columr } \\
\mathbf{Z} \text { are } \\
\text { depend }
\end{array} \\
=
\end{array} \\
&=K \sum_{n=1}^{N} \mathbb{E}\left[z_{n k}\right]=K \sum_{n=1}^{N} \underbrace{}_{\begin{array}{c}
\text { Expectation of a } \operatorname{Beta}(r, s) \\
\text { random variable is } r /(r+s)
\end{array} \int_{0}^{1} \pi_{k} p\left(\pi_{k}\right) \mathrm{d} \pi_{k}}
\end{aligned}
$$

\Rightarrow For any K, the expectation of this number is bounded by $N \alpha$.

Topics of This Lecture

- Latent Factor Models
, Recap
- Towards Infinite Latent Factor Models
, General formulation
, Priors on binary matrices
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Efficient Inference
, Applications

Equivalence Class of Binary Matrices

- Equivalence class of binary matrices
, Define a function $\operatorname{lof}(\mathbf{Z})$ that maps binary matrices into leftordered binary matrices by ordering the columns of \mathbf{Z} by the magnitude of the binary number expressed by that column.
, There is a unique left-ordered form for every binary matrix.
, Two matrices \mathbf{Y} and \mathbf{Z} are equivalent iff $\operatorname{lof}(\mathbf{Y})=\operatorname{lof}(\mathbf{Z})$.
, The lof-equivalence class of \mathbf{Z} is denoted $[\mathbf{Z}]$.

Equivalence Class of Binary Matrices

- What is the cardinality of $[\mathbf{Z}]$?
, Columns of a binary matrix are not guaranteed to be unique:
- Since an object can possess multiple features, it is possible for two features to be possessed by exactly the same set of objects.
, The cardinality of $[\mathbf{Z}]$ is therefore reduced if \mathbf{Z} contains identical columns

$$
\binom{K}{K_{0}, \ldots, K_{2^{N}-1}}=\frac{K!}{\prod_{h=0}^{2^{N}-1} K_{h}!}
$$

where K_{h} is the number of columns with binary number h.

Towards Infinite Feature Models

- Taking the limit $K \rightarrow \infty$
, Probability of a lof-equivalence class of binary matrices

$$
p([\mathbf{Z}])=\sum_{\mathbf{Z} \in[\mathbf{Z}]} p(\mathbf{Z})=\frac{K!}{\prod_{h=0}^{2^{N}-1} K_{h}!} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma\left(m_{k}+\frac{\alpha}{K}\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma\left(N+1+\frac{\alpha}{K}\right)}
$$

, Reordering the columns such that $m_{k}>0$ if $k \leq K_{+}$, we can derive (after several intermediate steps)

$$
\lim _{K \rightarrow \infty} p([\mathbf{Z}])=\frac{\alpha^{K_{+}}}{\prod_{h=0}^{2^{N}-1} K_{h}!} \exp \left\{-\alpha H_{N}\right\} \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}
$$

, where H_{N} is the $N^{t h}$ harmonic number $H_{N}=\sum^{N}{ }_{j=1} 1 / j$.

Topics of This Lecture

- Latent Factor Models
, Recap
- Towards Infinite Latent Factor Models
, General formulation
, Priors on binary matrices
, Finite latent feature model
, Left-ordered binary matrices
, Indian Buffet Process
- Beta Processes
, Properties
, Stick-Breaking construction
, Efficient Inference
, Applications

The Indian Buffet Process

Dishes

"Many Indian restaurants in London offer lunchtime buffets with an apparently infinite number of dishes"
[Zoubin Ghahramani]

The Indian Buffet Process

Dishes

- Analogy to Chinese Restaurant Process
, Visualize feature assignment as a sequential process of customers sampling dishes from an (infinitely long) buffet
> $1^{\text {st }}$ customer starts at the left of the buffet, and takes a serving from each dish, stopping after a Poisson() number of dishes as her plate becomes overburdened.
, The $n^{\text {th }}$ customer moves along the buffet, sampling dishes in proportion to their popularity, serving himself with probability m_{k} / n, and trying a Poisson (α / n) number of new dishes.
, The customer-dish matrix is our feature matrix, Z.

The Indian Buffet Process (IBP)

Dishes

- Properties of the IBP
, Generative process to create samples from an infinite latent feature model.
, The IBP is exchangeable, up to a permutation of the order with which dishes are listed in the feature matrix.
, The number of features sampled at least once is $\mathcal{O}(\alpha \log N)$.

to be continued in 2013

References and Further Reading

- Tutorial papers for infinite latent factor models
, A good introduction to the topic
- Z. Ghahramani, T.L. Griffiths, P. Sollich, "Bayesian Nonparametric Latent Feature Models", Bayesian Statistics, 2006.

