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Announcement 

• Exercise sheet 3 will be made available tonight 

 Dirichlet Process Mixture Models 

 Gibbs Sampling 

 Finite Mixtures 

 DPMM Sampling 
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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 
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Recap: Latent Factor Models 

• Mixture Models 

 Assume that each observation was generated by exactly one of 

K components. 

 The uncertainty is just about which component is responsible. 

 

• Latent Factor Models 

 Each observation is influenced by each of K components  

(factors or features) in a different way. 

 Sparse factor models: only a small subset of factors is active for 

each observation. 
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Recap: Principal Component Analysis 

• Find the projection that maximizes the variance  

 Covariance matrix of the data 

 

 
 

 Optimal linear projection into a K-dimensional space is given by 

the first K eigenvectors u1,...,uK of S. 
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Recap: PCA for Whitening 

 

 

 

 

 

 

 
 

• Whitening procedure 

 Define for each data point the transformed value as 

 

 

 The transformed set {yn} has zero mean and unit covariance. 
7 

B. Leibe Image source: C.M. Bishop 

Original data Principal axes Whitened data 
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Recap: Probabilistic PCA 

• Graphical Model 

 Introduce an explicit latent variable z corresponding to the 

principal component subspace. 

 Define a Gaussian prior distribution 

 
 

 Conditional distribution also Gaussian 

 
 

 Because of this linear-Gaussian model,  

the marginal distribution will also be Gaussian 

 

 

 Posterior distribution (again Gaussian) 
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Recap: Interpretation of Probabilistic PCA 

• Analysis 

 Marginal distribution: 
 

 Covariance matrix: 
 

 The columns of W define the principal subspace of PCA. 
 

 Maximum Likelihood estimates 

 

 

 

 

 
 

 The model correctly captures the variance of the data along the 

principal axes and approximates the variance in all remaining 

directions by ¾2, the average of the discarded eigenvalues.  
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Recap: Examples of Latent Factor Models 

• Probabilistic PCA (pPCA) 

 Linear-Gaussian model with isotropic covariance 

 
 

• Factor Analysis (FA) 

 Same linear-Gaussian model, but with diagonal covariance 

 
 

• Independent Component Analysis (ICA) 

 Observed variables are related linearly to the latent variables, 

but the latent distribution is non-Gaussian. 

 Assumption: latent variables zj are independent. 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 
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Recap: General Latent Factor Models 

• General formulation 

 Assume that the data are generated by noisy weighted 

combination of latent factors 

 
 

 Mixture Models: DPs enforce that the main part of the 

probability mass is concentrated on few cluster components. 

 Latent Factor Models: enforce that each object is represented 

by a sparse subset of an unbounded number of features. 
 

• Incorporating sparsity 

 Decompose F into the product of two components: F = ZW, 

where  is the Hadamard product (element-wise product). 

– zmk is a binary mask variable indicating whether factor k is “on”. 

– wmk is a continuous weight variable. 

 Enforce sparsity by restricting the non-zero entries in Z. 
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Priors on Latent Factor Models 

• Defining suitable priors 

 We will focus on defining a prior on Z, since the effective 

dimensionality of the latent feature model is determined by Z. 

 Assuming that Z is sparse, we can define a prior for infinite 

latent feature models by defining a distribution over infinite 

binary matrices. 
 

• Desiderata for such a distribution 

 Objects should be exchangeable. 

 Inference should be tractable. 
 

• Procedure 

 Start with a model that assumes a finite number of features and 

consider the limit as this number approaches infinity. 
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A Finite Feature Model 

• Modeling assumptions 

 We have N objects and K features. 

 Binary variables znk indicates that object n possesses feature k. 

 Each object possesses feature k with probability ¼k and features 

are generated independently. 
 

 The probability of a matrix Z given ¼ = {¼1,...,¼k} is given by a 

Binomial distribution 

 

 

 

where                             is the number of objects possessing 

feature k. 
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A Finite Feature Model 

• Defining a prior 

 Define a prior on ¼ by assuming that each ¼k follows a Beta 

distribution (conjugate to the binomial): 

 

 

 

 where B(r,s) is the beta function 

 

 

 

 We set r = ®/K and s = 1, so this equation becomes 
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A Finite Feature Model 

 

 

 

 
 

• Resulting probability model 

 Finite Beta-Bernoulli model 

 

 

 

 

 Each znk is independent of all other assignments conditioned on 

¼k and the ¼k are generated independently. 
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A Finite Feature Model 

• We can now marginalize out ¼  

 Marginal probability of the matrix Z: 

 

 

 

 

 

 

 

 
 

 This distribution depends only on the counts mk . 

 It is therefore exchangeable. 
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Important Property 

• Bound on the number of entries 

 Expectation of the number of non-zero entries in Z: 

 

 

 

 

 

 

 

 

 

 
 

 For any K, the expectation of this number is bounded by N®. 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 
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Equivalence Class of Binary Matrices 

 

 

 

 

 
 

• Equivalence class of binary matrices 

 Define a function lof(Z) that maps binary matrices into left-

ordered binary matrices by ordering the columns of Z by the 

magnitude of the binary number expressed by that column. 

 There is a unique left-ordered form for every binary matrix. 
 

 Two matrices Y and Z are equivalent iff lof(Y) = lof(Z). 

 The lof-equivalence class of Z is denoted [Z]. 

20 
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Equivalence Class of Binary Matrices 

• What is the cardinality of [Z]? 

 Columns of a binary matrix are not guaranteed to be unique: 

 Since an object can possess multiple features, it is possible for 

two features to be possessed by exactly the same set of objects. 

 The cardinality of [Z] is therefore reduced if Z contains 

identical columns 

 

 

 
 

where Kh is the number of columns with binary number h. 
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Towards Infinite Feature Models 

• Taking the limit K ! 1  

 Probability of a lof-equivalence class of binary matrices 

 

 

 

 Reordering the columns such that mk > 0 if k · K+, we can 

derive (after several intermediate steps) 

 

 

 
 

 where HN is the Nth harmonic number HN = N
j=1 1/j. 
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Topics of This Lecture 

• Latent Factor Models 
 Recap 

 

• Towards Infinite Latent Factor Models 
 General formulation 

 Priors on binary matrices 

 Finite latent feature model 

 Left-ordered binary matrices 

 Indian Buffet Process 
 

• Beta Processes 
 Properties 

 Stick-Breaking construction 

 Efficient Inference 

 Applications 
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The Indian Buffet Process 

 

 

 

 

 

 

 
 

 

“Many Indian restaurants in London  

offer lunchtime buffets with an 

apparently infinite number of dishes” 

                                   [Zoubin Ghahramani] 
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The Indian Buffet Process 

 

 

 

 

• Analogy to Chinese Restaurant Process 

 Visualize feature assignment as a sequential process of 

customers sampling dishes from an (infinitely long) buffet 

 1st customer starts at the left of the buffet, and takes a serving 

from each dish, stopping after a Poisson() number of dishes as 

her plate becomes overburdened. 

 The nth customer moves along the buffet, sampling dishes in 

proportion to their popularity, serving himself with probability 

mk/n, and trying a Poisson(®/n) number of new dishes. 

 The customer-dish matrix is our feature matrix, Z. 
25 
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The Indian Buffet Process (IBP) 

 

 

 

 

 

 

 

• Properties of the IBP 

 Generative process to create samples from an infinite latent 

feature model. 

 The IBP is exchangeable, up to a permutation of the order with 

which dishes are listed in the feature matrix. 

 The number of features sampled at least once is O(® log N). 
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to be continued in 2013 
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References and Further Reading 

• Tutorial papers for infinite latent factor models  

 A good introduction to the topic 

– Z. Ghahramani, T.L. Griffiths, P. Sollich, “Bayesian Nonparametric 

Latent Feature Models“, Bayesian Statistics, 2006. 
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