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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Mixture Models vs. Latent Factor Models 

• Mixture Models 

 Assume that each observation was generated by exactly one of 

K components. 

 The uncertainty is just about which component is responsible. 

 

• Latent Factor Models 

 Weaken this assumption. 

 Each observation is influenced by each of K components 

(factors or features) in a different way. 

 Sparse factor models: only a small subset of factors is active for 

each observation. 
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Latent Factor/Feature Models 

• Most popular examples 

 Principal Component Analysis (PCA) 

 Factor Analysis (FA) 

 Independent Component Anlalysis (ICA) 
 

• Properties 

 All of those assume that the number of factors K is known. 

 Usually, K is smaller than the dimensionality of the data: 

K ¿ D 

 Models provide dimensionality reduction. 

 

• Let’s look at PCA and see how it fits into this 

framework... 
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Principal Component Analysis 

• Goal 

 Given a data set X = {xn} in D dimensions, find the K-

dimensional projection (K < D) that maximizes the variance of 

the projected data. 

 Intuition: preserve as much variance as possible. 

 

• One-dimensional example 

 Project each data point xn onto the unit vector u1 

 

 

 What is the vector u1 that maximizes the variance of the 

projected data? 
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Principal Component Analysis 

• One-dimensional example (cont’d) 

 Mean of the projected data 

 

 

 

 Variance of the projected data 

 

 

 

 

 
 

where S is the data covariance matrix. 
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Principal Component Analysis 

• Optimization problem 

 Maximize the projected variance               w.r.t. u1. 

 Problem: trivial solution is ku1k ! 1. 

 Need to enforce the normalization condition u1
Tu1 = 1. 

 

 Formulation with Lagrange multiplier 

 

 

 Setting the derivative to zero 

 
 

 Eigenvalue problem: u1 must be eigenvector of S. 

 
 

 Maximal variance if ¸1 is the largest eigenvalue of S. 
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Principal Component Analysis 

• General case 

 Inductively, we can show that the optimal linear projection into 

a K-dimensional space is given by the first K eigenvectors 

u1,...,uK of S. 

 

 

• Graphical interpretation 

9 
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Uses of PCA 

• Dimensionality reduction 

 Work in a subspace that contains only the K most important 

dimensions. 

 Advantages: faster processing, reduced memory footprint, 

robustness to noise. 
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Example: Eigenfaces         [Turk & Pentland, 1993] 
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Uses of PCA 

• Dimensionality reduction 

 Work in a subspace that contains only the K most important 

dimensions. 

 Advantages: faster processing, reduced memory footprint, 

robustness to noise. 
 

• Data Preprocessing 

 Remove correlations between different dimensions of the data 

and bring them to a common scale. 

 Many classification or regression algorithms work better when 

the data is standardized, i.e., when each variable has zero mean 

and unit variance. 

 Using PCA, we can make a more substantial normalization of the 

data to give it zero mean and unit covariance. This is known as 

whitening. 
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PCA for Whitening 

• Whitening procedure 

 Rewrite the eigenvector equation in matrix form 

 

 

 where                                                     . 

 

 Define for each data point the transformed value as 

 

 
 

 The transformed set {yn} has zero mean and unit covariance. 
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Whitening Example 

 

 

 

 

 

 

 

 

• Whitening result 

 Correlations are removed. 

 Distances are normalized to same value range. 

14 
B. Leibe Image source: C.M. Bishop 

Original data Principal axes Whitened data 
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Probabilistic PCA 

• Discussion 

 The formulation of PCA we have just seen was based on a linear 

projection of data into a lower-dim. subspace. 

 We now show that PCA can also be expressed as the ML solution 

of a probabilistic latent variable model. 

 

• Advantages of Probabilistic PCA 

 We can derive an EM algorithm that is efficient in situations 

where only few leading eigenvectors are required. 

 Probabilistic model + EM makes it possible to deal with missing 

data values. 

 Basis for a Bayesian treatment of PCA in which the 

dimensionality of the principal subspace can be found 

automatically. 
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Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Probabilistic PCA 

• Graphical Model 

 Introduce an explicit latent variable z corresponding to the 

principal component subspace. 

 Define a Gaussian prior distribution 

 

 

 Conditional distribution also Gaussian 

 

 

 

 Example of a Linear Gaussian framework: all of the marginal  

and conditional distributions are Gaussian 

 As we will see, the columns of W span an K-dimensional linear 

subspace within the data space that corresponds to the principal 

subspace. 

 
17 
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Probabilistic PCA 

• Generative interpretation 

 D-Dimensional observed variable x is defined by a linear 

transformation of the K-dimensional latent variable z, plus 

some added (isotropic Gaussian) noise. 

 

 

 Marginal distribution 

 

 
 

 Because of the linear-Gaussian model, this will again be Gaussian 

 

 

where 
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Probabilistic PCA 

• Properties 

 There is a rotational ambiguity in the parametrization. 

 Consider a rotation of the latent parameter space with 

orthonormal matrix R (orthogonality property: RRT = I). 

 

 

 

 Thus, the covariance matrix C is independent of R. 
 

 Efficiency trick: instead of evaluating C{1 directly, use the 

following equivalence (                              ). 

 

 

with 
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Probabilistic PCA 

• Posterior distribution 

 Can again be derived from properties of linear Gaussian models 
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Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Maximum Likelihood for PCA 

• Maximum Likelihood estimate 

 Log-likelihood function 

 

 

 

 

 

 

 
 

 Optimizing the parameters 

22 
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Maximum Likelihood for PCA 

• Maximum Likelihood estimate 

 Plugging in the result for ¹... 

 

 

 Maximizing w.r.t. W yields a closed-form solution: 

 
 

 where 

– UK is a D£K matrix, whose columns are given by the K principal 

eigenvectors of the data covariance matrix S, 

– L contains eigenvalues ¸i, and  

– R is an arbitrary K£K rotation matrix. 
 

 The columns of W define the principal subspace of standard 

PCA. For R = I, they correspond to the principal eigenvectors 

[u1,...,uK], scaled by the variance parameters ¸i - ¾
2. 
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Maximum Likelihood for PCA 

• Maximum Likelihood estimate (cont’d) 

 Maximizing w.r.t. ¾: 

 

 

 

 ¾2
ML is the average variance associated with the discarded  

dimensions.  

 

 

24 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Interpretation of Probabilistic PCA 

• Putting all those results together... 

 Consider again the covariance matrix 

 
 

where 

 

 

 

 

 The model correctly captures the variance of the data along the 

principal axes and approximates the variance in all remaining 

directions by ¾2, the average of the discarded eigenvalues.  
 

 To construct C, we simply set R = I and compute the principal 

eigenvalues and eigenvectors of the data covariance matrix S. 

 If C is obtained in a different way, R may still be arbitrary. 
25 
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Discussion: PCA vs. Probabilistic PCA 

• Comparison with standard PCA:  

 PCA is generally formulated as a projection of points from the  

D-dimensional space onto a K-dimensional linear subspace. 

 Probabilistic PCA is more naturally expressed as a mapping from 

the latent space into the data space via  

 
 

 For applications such as visualization or data compression, we 

can reverse this mapping using Bayes’ theorem. 

 

 

 This projects to a point in data space given by 

 
 

 In the limit ¾ ! 0, this reduces to the standard PCA model. 

26 
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E[zjx] =M¡1WT
ML(x¡ ¹x)

WE[zjx] +¹

where 
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Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Other Latent Factor Models 

• Factor Analysis (FA) 

 Linear-Gaussian latent variable model, closely related to 

Probabilistic PCA. 

 Probabilistic PCA uses an isotropic covariance 

 
 

 Factor Analysis instead assumes a diagonal covariance 

 

 

 The FA model explains the observed covariance structure of the 

data by representing the independent variables associated with 

each coordinate by the matrix ª and capturing the covariance 

between variables in the matrix W. 

 In the literature, the columns of W are called factor loadings, 

the diagonal elements Ãi are called uniquenesses. 
28 
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Other Latent Factor Models (2) 

• Independent Component Analysis (ICA) 

 Model for which the observed variables are related linearly to 

the latent variables, but for which the latent distribution is non-

Gaussian. 

 Consider a distribution over latent variables that factorizes 

 

 
 

i.e., the components zj are independent. 

 This definition requires that the latent variables have a non-

Gaussian distribution (as Gaussian models always have the 

rotational ambiguity R in latent space). 

 There is a large variety of ICA models and corresponding 

algorithms, differing mainly in the choice of latent-variable 

distribution. 
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Next Steps from Here... 

• Discussion 

 We have now derived that the PCA result can be obtained as  

the ML estimate of the corresponding probabilistic model. 

 This result can directly be used to incorporate priors and derive 

a Bayesian extension of the model. 

 We can do similar things for FA and ICA... 

 

• In the following, we will go into a different direction 

 What happens when we let K ! 1?  

 Can we automatically determine K? 
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Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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General Latent Factor Models 

• General formulation 

 Assume that the data are generated by noisy weighted 

combination of latent factors 

 
 

 E.g., in Factor Analysis, F would be a D £ K factor loading 

matrix expressing how latent factor k influences observation 

dimension d. yn would be a K-dimensional vector expressing  

the activity of each factor. 
 

• Advantages of latent feature modeling 

 Each group of observations is associated with a subset of the 

possible latent features/factors. 

 Factorial power: There are 2K combinations of K features, 

while accurate mixture modeling may require many more 

clusters. 
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Sparse Latent Factor Models 

• Goal: Infinite models 

 We would like to work with infinite-dimensional models (K!1) 

 In order to do keep inference tractable, however, we have to 

restrict the model somehow. 

 Mixture Models: DPs enforce that the main part of the 

probability mass is concentrated on few cluster components. 

 Latent Factor Models: enforce that each object is represented 

by a sparse subset of an unbounded number of features. 
 

• Incorporating sparsity 

 Decompose F into the product of two components: F = ZW, 

where  is the Hadamard product (element-wise product). 

– zmk is a binary mask variable indicating whether factor k is “on”. 

– wmk is a continuous weight variable. 

 Enforce sparsity by restricting the non-zero entries in Z. 
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Sparse Latent Factor Models 

 

 

 

 

 

 

 

• Latent feature modeling 

 In PCA (FA, ICA, etc.), objects have non-zero values on every 

feature and every entry of Z is 1. 

 In sparse latent feature models, only a sparse subset of features 

take non-zero values, and Z makes those subsets explicit. 

34 
B. Leibe 

Image source: Zoubin Gharahmani 

Resulting feature matrix F 

   after multiplication with W   

Binary matrix Z indicating 

feature presence/absence 
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Towards a Full Bayesian Treatment 

• Inference in Latent Feature Models 

 Goal: Infer the latent factors, mask variables, and weights. 

 Classical approaches (PCA, FA, ICA) fit point estimates of the 

parameters through ML estimation. 

 

• Bayesian approach 

 Specify a prior over latent features/factors p(F) and a 

distribution over observed property distributions p(X|F). 

 Compute the posterior                        . 
 

 Our focus will be on p(F) = p(Z)p(W), showing how such a 

prior can be defined without placing an upper bound on the 

number of features/factors. 
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Priors on Binary Matrices 

• Let’s first go back to DPs/CRPs 

 Back there, we also had binary  

matrices due to 1-of-K coding. 

 What is different here? 

 

• Binary matrices for clustering 

 We can think of CRPs as priors on 

infinite binary matrices, where... 

 ...each data point is assigned 

to one and only one cluster (class). 

 ...the rows sum to one. 
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Priors on Binary Matrices 

• Let’s first go back to DPs/CRPs 

 Back there, we also had binary  

matrices due to 1-of-K coding. 

 What is different here? 

 

• More general binary matrices 

 Each data point can now have 

multiple factors/features. 

 The rows sum to more than one. 

 What is the corresponding prior on 

infinite binary matrices? 
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Image source: Zoubin Gharahmani Slide adapted from Zoubin Gharahmani 
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Priors on Latent Factor Models 

• Defining suitable priors 

 We will focus on defining a prior on Z, since the effective 

dimensionality of the latent feature model is determined by Z. 

 Assuming that Z is sparse, we can define a prior for infinite 

latent feature models by defining a distribution over infinite 

binary matrices. 
 

• Desiderata for such a distribution 

 Objects should be exchangeable. 

 Inference should be tractable. 
 

• Procedure 

 Start with a model that assumes a finite number of features and 

consider the limit as this number approaches infinity. 

 Next lecture... 
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References and Further Reading 

• More information on latent factor models and 

particularly PCA can be found in Chapter 12 of  
 

 

 

 

 

 

 

• Tutorial papers for infinite latent factor models  

 A good introduction to the topic 

– Z. Ghahramani, T.L. Griffiths, P. Sollich, “Bayesian Nonparametric 

Latent Feature Models“, Bayesian Statistics, 2006. 
 

 

 

 
 

B. Leibe 
39 

Christopher M. Bishop 

Pattern Recognition and Machine Learning 

Springer, 2006 

http://mlg.eng.cam.ac.uk/zoubin/papers/GhaGriSol06.pdf
http://mlg.eng.cam.ac.uk/zoubin/papers/GhaGriSol06.pdf

