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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Mixture Models vs. Latent Factor Models 

• Mixture Models 

 Assume that each observation was generated by exactly one of 

K components. 

 The uncertainty is just about which component is responsible. 

 

• Latent Factor Models 

 Weaken this assumption. 

 Each observation is influenced by each of K components 

(factors or features) in a different way. 

 Sparse factor models: only a small subset of factors is active for 

each observation. 
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Latent Factor/Feature Models 

• Most popular examples 

 Principal Component Analysis (PCA) 

 Factor Analysis (FA) 

 Independent Component Anlalysis (ICA) 
 

• Properties 

 All of those assume that the number of factors K is known. 

 Usually, K is smaller than the dimensionality of the data: 

K ¿ D 

 Models provide dimensionality reduction. 

 

• Let’s look at PCA and see how it fits into this 

framework... 
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Principal Component Analysis 

• Goal 

 Given a data set X = {xn} in D dimensions, find the K-

dimensional projection (K < D) that maximizes the variance of 

the projected data. 

 Intuition: preserve as much variance as possible. 

 

• One-dimensional example 

 Project each data point xn onto the unit vector u1 

 

 

 What is the vector u1 that maximizes the variance of the 

projected data? 
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Principal Component Analysis 

• One-dimensional example (cont’d) 

 Mean of the projected data 

 

 

 

 Variance of the projected data 

 

 

 

 

 
 

where S is the data covariance matrix. 
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Principal Component Analysis 

• Optimization problem 

 Maximize the projected variance               w.r.t. u1. 

 Problem: trivial solution is ku1k ! 1. 

 Need to enforce the normalization condition u1
Tu1 = 1. 

 

 Formulation with Lagrange multiplier 

 

 

 Setting the derivative to zero 

 
 

 Eigenvalue problem: u1 must be eigenvector of S. 

 
 

 Maximal variance if ¸1 is the largest eigenvalue of S. 
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Principal Component Analysis 

• General case 

 Inductively, we can show that the optimal linear projection into 

a K-dimensional space is given by the first K eigenvectors 

u1,...,uK of S. 

 

 

• Graphical interpretation 
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Uses of PCA 

• Dimensionality reduction 

 Work in a subspace that contains only the K most important 

dimensions. 

 Advantages: faster processing, reduced memory footprint, 

robustness to noise. 
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Example: Eigenfaces         [Turk & Pentland, 1993] 
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Uses of PCA 

• Dimensionality reduction 

 Work in a subspace that contains only the K most important 

dimensions. 

 Advantages: faster processing, reduced memory footprint, 

robustness to noise. 
 

• Data Preprocessing 

 Remove correlations between different dimensions of the data 

and bring them to a common scale. 

 Many classification or regression algorithms work better when 

the data is standardized, i.e., when each variable has zero mean 

and unit variance. 

 Using PCA, we can make a more substantial normalization of the 

data to give it zero mean and unit covariance. This is known as 

whitening. 
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PCA for Whitening 

• Whitening procedure 

 Rewrite the eigenvector equation in matrix form 

 

 

 where                                                     . 

 

 Define for each data point the transformed value as 

 

 
 

 The transformed set {yn} has zero mean and unit covariance. 
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Whitening Example 

 

 

 

 

 

 

 

 

• Whitening result 

 Correlations are removed. 

 Distances are normalized to same value range. 

14 
B. Leibe Image source: C.M. Bishop 

Original data Principal axes Whitened data 
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Probabilistic PCA 

• Discussion 

 The formulation of PCA we have just seen was based on a linear 

projection of data into a lower-dim. subspace. 

 We now show that PCA can also be expressed as the ML solution 

of a probabilistic latent variable model. 

 

• Advantages of Probabilistic PCA 

 We can derive an EM algorithm that is efficient in situations 

where only few leading eigenvectors are required. 

 Probabilistic model + EM makes it possible to deal with missing 

data values. 

 Basis for a Bayesian treatment of PCA in which the 

dimensionality of the principal subspace can be found 

automatically. 
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Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Probabilistic PCA 

• Graphical Model 

 Introduce an explicit latent variable z corresponding to the 

principal component subspace. 

 Define a Gaussian prior distribution 

 

 

 Conditional distribution also Gaussian 

 

 

 

 Example of a Linear Gaussian framework: all of the marginal  

and conditional distributions are Gaussian 

 As we will see, the columns of W span an K-dimensional linear 

subspace within the data space that corresponds to the principal 

subspace. 
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Probabilistic PCA 

• Generative interpretation 

 D-Dimensional observed variable x is defined by a linear 

transformation of the K-dimensional latent variable z, plus 

some added (isotropic Gaussian) noise. 

 

 

 Marginal distribution 

 

 
 

 Because of the linear-Gaussian model, this will again be Gaussian 

 

 

where 
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Probabilistic PCA 

• Properties 

 There is a rotational ambiguity in the parametrization. 

 Consider a rotation of the latent parameter space with 

orthonormal matrix R (orthogonality property: RRT = I). 

 

 

 

 Thus, the covariance matrix C is independent of R. 
 

 Efficiency trick: instead of evaluating C{1 directly, use the 

following equivalence (                              ). 

 

 

with 
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Probabilistic PCA 

• Posterior distribution 

 Can again be derived from properties of linear Gaussian models 
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Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Maximum Likelihood for PCA 

• Maximum Likelihood estimate 

 Log-likelihood function 

 

 

 

 

 

 

 
 

 Optimizing the parameters 
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Maximum Likelihood for PCA 

• Maximum Likelihood estimate 

 Plugging in the result for ¹... 

 

 

 Maximizing w.r.t. W yields a closed-form solution: 

 
 

 where 

– UK is a D£K matrix, whose columns are given by the K principal 

eigenvectors of the data covariance matrix S, 

– L contains eigenvalues ¸i, and  

– R is an arbitrary K£K rotation matrix. 
 

 The columns of W define the principal subspace of standard 

PCA. For R = I, they correspond to the principal eigenvectors 

[u1,...,uK], scaled by the variance parameters ¸i - ¾
2. 
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Maximum Likelihood for PCA 

• Maximum Likelihood estimate (cont’d) 

 Maximizing w.r.t. ¾: 

 

 

 

 ¾2
ML is the average variance associated with the discarded  

dimensions.  
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Interpretation of Probabilistic PCA 

• Putting all those results together... 

 Consider again the covariance matrix 

 
 

where 

 

 

 

 

 The model correctly captures the variance of the data along the 

principal axes and approximates the variance in all remaining 

directions by ¾2, the average of the discarded eigenvalues.  
 

 To construct C, we simply set R = I and compute the principal 

eigenvalues and eigenvectors of the data covariance matrix S. 

 If C is obtained in a different way, R may still be arbitrary. 
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Discussion: PCA vs. Probabilistic PCA 

• Comparison with standard PCA:  

 PCA is generally formulated as a projection of points from the  

D-dimensional space onto a K-dimensional linear subspace. 

 Probabilistic PCA is more naturally expressed as a mapping from 

the latent space into the data space via  

 
 

 For applications such as visualization or data compression, we 

can reverse this mapping using Bayes’ theorem. 

 

 

 This projects to a point in data space given by 

 
 

 In the limit ¾ ! 0, this reduces to the standard PCA model. 
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where 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Topics of This Lecture 

• Latent Factor Models 
 Motivation 

 Example: PCA 

 Applications of PCA 

 Probabilistic PCA 

 Maximum Likelihood for PCA 

 Other Latent Factor Models: FA, ICA 
 

• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 
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Other Latent Factor Models 

• Factor Analysis (FA) 

 Linear-Gaussian latent variable model, closely related to 

Probabilistic PCA. 

 Probabilistic PCA uses an isotropic covariance 

 
 

 Factor Analysis instead assumes a diagonal covariance 

 

 

 The FA model explains the observed covariance structure of the 

data by representing the independent variables associated with 

each coordinate by the matrix ª and capturing the covariance 

between variables in the matrix W. 

 In the literature, the columns of W are called factor loadings, 

the diagonal elements Ãi are called uniquenesses. 
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Other Latent Factor Models (2) 

• Independent Component Analysis (ICA) 

 Model for which the observed variables are related linearly to 

the latent variables, but for which the latent distribution is non-

Gaussian. 

 Consider a distribution over latent variables that factorizes 

 

 
 

i.e., the components zj are independent. 

 This definition requires that the latent variables have a non-

Gaussian distribution (as Gaussian models always have the 

rotational ambiguity R in latent space). 

 There is a large variety of ICA models and corresponding 

algorithms, differing mainly in the choice of latent-variable 

distribution. 
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Next Steps from Here... 

• Discussion 

 We have now derived that the PCA result can be obtained as  

the ML estimate of the corresponding probabilistic model. 

 This result can directly be used to incorporate priors and derive 

a Bayesian extension of the model. 

 We can do similar things for FA and ICA... 

 

• In the following, we will go into a different direction 

 What happens when we let K ! 1?  

 Can we automatically determine K? 
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• Towards Infinite Latent Factor Models 
 General formulation 

 Sparse latent factor models 

 Priors on binary matrices 

 Finite latent feature model 

31 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

General Latent Factor Models 

• General formulation 

 Assume that the data are generated by noisy weighted 

combination of latent factors 

 
 

 E.g., in Factor Analysis, F would be a D £ K factor loading 

matrix expressing how latent factor k influences observation 

dimension d. yn would be a K-dimensional vector expressing  

the activity of each factor. 
 

• Advantages of latent feature modeling 

 Each group of observations is associated with a subset of the 

possible latent features/factors. 

 Factorial power: There are 2K combinations of K features, 

while accurate mixture modeling may require many more 

clusters. 
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Sparse Latent Factor Models 

• Goal: Infinite models 

 We would like to work with infinite-dimensional models (K!1) 

 In order to do keep inference tractable, however, we have to 

restrict the model somehow. 

 Mixture Models: DPs enforce that the main part of the 

probability mass is concentrated on few cluster components. 

 Latent Factor Models: enforce that each object is represented 

by a sparse subset of an unbounded number of features. 
 

• Incorporating sparsity 

 Decompose F into the product of two components: F = ZW, 

where  is the Hadamard product (element-wise product). 

– zmk is a binary mask variable indicating whether factor k is “on”. 

– wmk is a continuous weight variable. 

 Enforce sparsity by restricting the non-zero entries in Z. 
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Sparse Latent Factor Models 

 

 

 

 

 

 

 

• Latent feature modeling 

 In PCA (FA, ICA, etc.), objects have non-zero values on every 

feature and every entry of Z is 1. 

 In sparse latent feature models, only a sparse subset of features 

take non-zero values, and Z makes those subsets explicit. 
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Image source: Zoubin Gharahmani 

Resulting feature matrix F 

   after multiplication with W   

Binary matrix Z indicating 

feature presence/absence 
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Towards a Full Bayesian Treatment 

• Inference in Latent Feature Models 

 Goal: Infer the latent factors, mask variables, and weights. 

 Classical approaches (PCA, FA, ICA) fit point estimates of the 

parameters through ML estimation. 

 

• Bayesian approach 

 Specify a prior over latent features/factors p(F) and a 

distribution over observed property distributions p(X|F). 

 Compute the posterior                        . 
 

 Our focus will be on p(F) = p(Z)p(W), showing how such a 

prior can be defined without placing an upper bound on the 

number of features/factors. 
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Priors on Binary Matrices 

• Let’s first go back to DPs/CRPs 

 Back there, we also had binary  

matrices due to 1-of-K coding. 

 What is different here? 

 

• Binary matrices for clustering 

 We can think of CRPs as priors on 

infinite binary matrices, where... 

 ...each data point is assigned 

to one and only one cluster (class). 

 ...the rows sum to one. 
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Priors on Binary Matrices 

• Let’s first go back to DPs/CRPs 

 Back there, we also had binary  

matrices due to 1-of-K coding. 

 What is different here? 

 

• More general binary matrices 

 Each data point can now have 

multiple factors/features. 

 The rows sum to more than one. 

 What is the corresponding prior on 

infinite binary matrices? 
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Image source: Zoubin Gharahmani Slide adapted from Zoubin Gharahmani 
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Priors on Latent Factor Models 

• Defining suitable priors 

 We will focus on defining a prior on Z, since the effective 

dimensionality of the latent feature model is determined by Z. 

 Assuming that Z is sparse, we can define a prior for infinite 

latent feature models by defining a distribution over infinite 

binary matrices. 
 

• Desiderata for such a distribution 

 Objects should be exchangeable. 

 Inference should be tractable. 
 

• Procedure 

 Start with a model that assumes a finite number of features and 

consider the limit as this number approaches infinity. 

 Next lecture... 
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References and Further Reading 

• More information on latent factor models and 

particularly PCA can be found in Chapter 12 of  
 

 

 

 

 

 

 

• Tutorial papers for infinite latent factor models  

 A good introduction to the topic 

– Z. Ghahramani, T.L. Griffiths, P. Sollich, “Bayesian Nonparametric 

Latent Feature Models“, Bayesian Statistics, 2006. 
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