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Hierarchical Dirichlet Processes
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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
» Linear Regression 1 1 v | e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

> Mixture Models & EM o\ Fgue
> Dirichlet Processes Xn M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
~ SV Regression, SVDD f : X — y

> Large-margin Learning
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Topics of This Lecture

e Applying DPs
> Recap: DPs
» Efficient Gibbs sampling

e Hierarchical Dirichlet Processes
> Definition
> Properties
> Chinese Restaurant Franchise
~ Gibbs sampling for HDPs

e Applications
> Topic modeling
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RWNTH
Recap: Dirichlet Process Mixture Models

Go _/L Base distribution G|

l Infinite discrete
o — | h ‘ distribution on O,
© defines the clusters

l
Parameters of the
cluster that gene-
rates x,
@ " N\_ Likelihood of x,
N given the cluster

e Distributional form
» Explicit representation of the DP through the node G.
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> Useful when we want to use the DPMM’s predictive distribution.
4

Image sources: Yee Whye The
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Recap: Polya Urn Scheme

e Pdélya Urn scheme
~ Simple generative process for the predictive distribution of a DP

. Consider a set of N observationsd, ~ G taking K
distinct values {6, }2* .. The predictive distribution
of the next observation is then a (G)

aH () + 37, N,6(6,6;)

N—-1+4+a« @
(%)

p(Q_N — 9|9_1:N—17 x, H) —

e Remarks

> This procedure can be used to sample observations from a DP
without explicitly constructing the underlying mixture.

= DPs lead to simple predictive distributions that can be evaluated
by caching the nhumber of previous observations taking each
distinct value.
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RWNTH
Recap: Chinese Restaurant Process (CRP)

e Procedure

> Imagine a Chinese restaurant with an infinite number of tables,
each of which can seat an infinite number of customers.

> The 15t customer enters and sits at the first table.
> The N customer enters and sits at table

N
k  with prob N _ 1k+a fork=1,....K
) «
| K41 with prob N_1+a (new table)

where N, is the number of customers already sitting at table k.

G~> O~ &
HO 0

B. Leibe
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RWTH
Recap: CRPs & De Finetti’s Theorem

e Putting all of this together...

~ De Finetti’s theorem tells us that the CRP has an underlying
mixture distribution with a prior distribution over measures.

> The Dirichlet Process is the De Finetti mixing distribution for the

N CRP.

3

= + Graphical model visualization Go /L
= - This means, when we integrate out

£ (G, we get the CRP: .

§ N “ <G> | “ | o
A 60w = [T[ 26,/6)aP(G)

o

T = If the DP is the prior on G, then the

e CRP defines how points are assigned x,,

g to clusters when we integrate out G. QN AN

7
Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller




RWTH
Recap: CRPs and Efficient Inference

e Taking advantage of exchangeability...

> In clustering applications, we are ultimately interested in the
cluster assignments z,,...,zy.

» Equivalent question in the CRP: Where should customer n sit,
conditioned on the seating choices of all the other customers?

- This is easy when customer 7 is the last customer to arrive:

K
1 _
p(zny = 2|21, .., ZN 1, Q) = ( E Nyo(z, k) + a5(z,k))

N -1+« —

- (Seemingly) hard otherwise...

= Because of exchangeability, we can always swap customer n
with the final customer and use the above formula!

= We’ll use this for efficient Gibbs sampling later on...
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RWTH
Recap: Stick-Breaking Construction

e Explicit construction for the weights in DP realizations
~ Define an infinite sequence of random variables

Br, ~ Beta(1, a) k=12, ...
~ Then define an infinite sequence of mixing proportions as
T = b1
k—1
T = ﬁkH(l—ﬁI) k=23,...
1=1

~ This can be viewed as breaking off portions of a stick

2 By 1=5)
I I | [
I I | 1

- When the 7, are drawn this way, we can write 7 ~ GEM(«).
(where GEM stands for Griffiths, Engen, McCloskey)

Slide adapted from Kurt Miller, Mike Jordan B. Leibe
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RWNTH
Summary: Pélya Urns, CRPs, and Stick-Breaking

G~DP(Gy) S S\

\x l The Stick-Breaking
a —- | h ‘ «” Process describes
The Pélya urn describes o the partition
the predictive distribu- : weights
tion of f when G is mar-
ginalized out %

The CRP describes the / @ -/\

partitions of § when G N
is marginalized out
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RWTH
Summary: Pélya Urns, CRPs, and Stick-Breaking

e Better understanding of the properties of DPs
» All three schemes lead to proofs that DPs exist.

> Using the Polya urn scheme, we showed that we can sample
from DPs without constructing the underlying mixture explicitly.

> Using the Chinese Restaurant Process, we showed that the
expected number of clusters grows with O(a log N).

> Using the Stick-Breaking Construction, we showed that Dirichlet
measures are discrete with probability one.

e Uses for inference

> All three schemes can be used to construct efficient inference
methods.

> We will mostly look at Gibbs samplers that are derived from the
CRP.
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

e Applying DPs
> Recap: DPs
> Efficient Gibbs sampling
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Dirichlet Process Mixture Models

e Back to the clustering problem...

/ k=1 K
) (x
n=1.._, N N
Indicator variable Distributional form
representation
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Collapsed DP Mixture Sampler

e Efficient algorithm

» Generalize the collapsed (Rao-Blackwellized) Gibbs sampler we
derived for finite mixtures

- As before, sample the indicator variables z  assigning
observations to latent clusters, marginalizing mixture weights 7,
and parameters 0,.

- Assume the cluster priors H(\) are conjugate. GP

e Derivation ‘@ @
> The model implies the factorization
! !
P(zn[2-n. %, 0, N) % p(20|2_n, )p(x0 |2 X N

N J
Y
17
Image source: Yee Whye Teh

Prior on partitions e
expressed by the CRP!

i=1,....n
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Collapsed DP Mixture Sampler

e Derivation (cont’d)
- Exchangeability: Think of z _ as the last observation in sequence

1

K
p(2p|Z_p, ) = N _1ta ( Nn,k(5(zmk)+045(zna%))
k=1

- The predictive likelihood of x  is computed as for finite
mixtures:

p(Xn|Zn — kaz—nax—na)\) :p(Xn|{Xm|ka — 1am # n}a)‘)

. New clusters ¥ are based on the predictive likelihood implied by
the hyperparameters )\

P(Xn|Zp =k, 2_0,X_1, A) = (X, |\) = f p(x,|0)R(6]|))d6
C

18
B. Leibe
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Collapsed DP Mixture Sampler

e Algorithm
1. Sample a random permutation 7 (-) of the integers {1,...,N}.
2. Set o = oY and z = z(*V, For each n € {r(1),...,7(N)},
sequentially resample z  as follows

a) For each of the K existing clusters, determine the predictive
likelihood

Pr(Xn|Z_ny A) = (X {Xm|2me = 1, m # n}, A)
Also determine the likelihood p; (x,,) of a potential new cluster k
pr(calzns A) = D) = [ oo B)H(BIN)8
b) Sample a new assignment z fron?the multinomial distribution
2k Ok (X2 N) + 3y Zn N kP (30|21, M)
oy (X |z, A) 4+ 31 (N D (X |2, A)

c) Update cached sufficient statistics to reflect assignment z .. If

z, = k , create a new cluster and increment K.
Slide adapted from Erik Sudderth B. Leibe

n(’\.}
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RWTH
Collapsed DP Mixture Sampler (cont’d)

e Algorithm (cont’d)
3. Set z() = z. Optionally, mixture parameters for the K currently

instantiated clusters may be sampled as in step 3 of the
standard finite mixture sampler.

4. If any current clusters are empty (N, = (), remove them and
decrement K accordingly.

« Remarks
- Algorithm is valid if the cluster priors H()\) are conjugate.

. Cluster assignments z(Y) produced by Gibbs sampler provide
estimates K() of the number of clusters underlying the
observations X, as well as their associated parameters.

» Predictions based on samples average over mixtures of varying
size, avoiding difficulties in selecting a single model.
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RWTH
Collapsed DP Sampler: 2 Iterations

log p(x | T, 8) = —462.25 log p(x | T, 8) = —399.82
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RWTH
Collapsed DP Sampler: 10 Iterations

log p(x | T, 8) = —398.32 log p(x | T, 8) = —399.08
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RWTH
Collapsed DP Sampler: 50 Iterations

log p(x | 7, 8) = —397.67 log p(x | , 8) = —~396.71
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RWNTH
DPMMs vs. Finite Mixture Samplers

—350

log p(x | , 6)

550 ~

— Dirichlet Process Mixture == Dirichlet Process Mixture
—— Finite Mixture s Finiite Mixture
—800 ' : —600 ' -
10° 10' 10° 10° 10 10' 10° 10°
Ilteration lteration

e Observations

» Despite having to search over mixtures of varying order, the DP
sampler typically converges faster.

~ Avoids local optima by creating redundant clusters at beginning.

. 24
Slide credit: Erik Sudderth B. Leibe Image source: Erik Sudderth
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RWNTH
DP Posterior Number of Clusters

N
T

o

o

[=2]
T

DP Mixture Size
=9 [%]
Posterior Probability
o o
b o

[s]
T

2 0.2
1_ 1 I 1 1 I
K m1l01,terlati;nl L U "% Popmiuesize . | °
Number of mixture components Average across the final
with at least 2% of the probability 900 iterations

mass at each iteration

(9|
-
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

. 25
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RWTH
Summary: Nonparametric Bayesian Clustering

e DPMMs for Clustering

~ First specify the likelihood. This is application dependent.
> Next, specify a prior on all parameters - the Dirichlet Process!

» Exact posterior inference is intractable. But we can use a Gibbs
sampler for approximate inference. This is based on the CRP
representation.

Slide credit: Kurt Miller B. Leibe

26
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DPMM Software Packages

e Matlab packages for CRP mixture models

Algorithm Author Link
MCMC J. Eisenstein http://people.csail.mit.edu/jacobe/software.html

Variational K. Kurihara http://sites.google.com/site/kenichikurihara/
academic-software

27
B. Leibe


http://people.csail.mit.edu/jacobe/software.html
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software

Topics of This Lecture

e Hierarchical Dirichlet Processes
> Definition
> Properties
> Chinese Restaurant Franchise
~ Gibbs sampling for HDPs
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Hierarchical Bayesian Models

e Original Bayesian idea
~ View parameters as random variables - place a prior on them.

e Problem
~ Often the priors themselves need parameters (hyperparameters)

e Solution
~ Place a prior on these parameters!

, 29
Slide credit: Kurt Miller B. Leibe



Multiple Learning Problems

e We often face multiple, related learning problems
- E.g., multiple related Gaussian means: z,; ~ N0,

> 9

Nl NQ Nm

° ° * ) N
- Maximum likelihood: 6; = NL Ej;’l L

> ML often does not work very well...
> Want to “share statistical strength” (i.e., smooth)
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Hierarchical Bayesian Approach

e Bayesian solution

- Treat the parameters 6, as random variables sampled from an
underlying prior 6,.

Ny Ny Ny, m

Plate

[0y )
notation: ./

|

O

e Bayesian inference yields shrinkage

- Posterior mean for each 6, combines data from all of the groups,
without simply lumping the data into one group.
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Multiple Clustering Problems

e What to do if we have DPs for multiple related datasets?

H
i, H, H,,
3 /lﬂ /l\ D ~ -
: D (%2 (ng (2)
P | [ “
£ o 1
g Ml *"2 ’“ ®N
§ m
:
<

. 32
Slide credit: Kurt Miller, Mike Jordan B. Leibe Image source: Kurt Miller



Attempt 1
H . What kind of distribution do we use for G?
What for H?
(o)

E - Suppose 0;; are mean parameters for a
£ fi«\ Gaussian where
= a — G; |
= 7 G, ~ DP(a,Gy)
£
= /l\ and (G, is a Gaussian with unknown mean?
: ) :
Z, Go — N(@o, 0'8)
£
(S)
: @
o — > This does NOT work! Why?
3
<

. 33
Slide credit: Kurt Miller, Mike Jordan B. Leibe Image source: Kurt Miller




Attempt 1

— T
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- Problem: if G, is continuous, then with
probability ONE, G, and G ; will share ZERO
atoms.

= This means NO clustering!

T T~ G,

il e

| el

34

Slide credit: Kurt Miller, Mike Jordan B. Leibe Image source: Kurt Miller
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Hierarchical Dirichlet Processes

e We need to have the base measure G, be discrete
- But also need it to be flexible and random.

e Solution:
- Let G, itself be distributed according to a DP:

G0|77 H ~ DP(’-)/J H)

> Then
Gj‘Oé, Go ~ DP(O&(), Go)

has at its base measure a (random) atomic distribution.
= Samples of Gj will resample from those atoms.

Slide credit: Mike Jordan B. Leibe
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Hierarchical Dirichlet Processes [Teh et al., 20061

VAN

. ‘ |M|‘ |
/‘\_RR‘
_\_\_\_—_‘“—‘——_
TT—
T
]

| |
Ll |

T

Al o
VAN,

o,

!
|

=
/

-— |
[ e _

=

&
\S

G/g_ ~ DP((I? Go)
Qij‘Gi ~ G?;
Lij \Qz'.j ~ p(iﬁij ‘Qij)

m
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Comparison

e Dirichlet Process

» Useful in models for which a component of the model is a
discrete random variable of unknown cardinality.

e Hierarchical Dirichlet Processes [Teh et al., 2006]

~ Useful in problems in which there are multiple groups of data,
where the model for each group of data incorporates a discrete
variable of unknown cardinality, and where we wish to tie these
variables across groups.

e Similar representations for HDP to derive its properties
~ Stick-Breaking construction
» Chinese Restaurant Franchise

37
B. Leibe



RWNTH
Chinese Restaurant Franchise (CRF)

e Chain of Chinese restaurants 0 @ @
L
- Each restaurant has an unboun- . . o
k= I\

ded number of tables.

> There is a global menu with an A b ! ,k -
unbounded number of dishes. 9] 0, 0,|eee
- The first customer at a table Y TN

selects the dish for that table

from the global menu. @ @ @. . coe

e Reinforcement effects

» Customers prefer to sit at tables with many other customers,
and prefer dishes that are chosen by many other customers.

» Dishes are chosen with probability proportional to the number of
tables (franchise-wide) that have previously served that dish.
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R\WNTH
Chinese Restaurant Franchise (CRF)

e Examine marginal properties of HDP
- First integrate out GG, then G,,.

Q
|

@& (®—=
-2

m

2

m

m
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RWNTH
Chinese Restaurant Franchise (CRF)

e Step 1: Integrate out G;:
> Variable definitions '
O

- 0,; : RV for customer ¢ in restaurant j.

- 0, : RV for table ¢ in restaurant j.
- 6, : RV for dish k.

- my: number of tables in rest. j serving dish k.

- Myt humber of customers in rest. j sitting at
table ¢t and being served dish k.

-  We denote marginal counts by dots, e.g.

_ K T
m;. = Zk;:1 Mk

> Integration yields a set of conditional distributions described by

a Polya urn scheme m;.
n.; Qo
E : JL-
Qij\Qlj,...,Qi_Lj,a,Go ~ 59%} -+ GO
o+ n;. 7 o+ n;..
t=1
40
B. Leibe
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RWNTH
Chinese Restaurant Franchise (CRF)

e Step 2: Integrate out G:

> Variable definitions

- 0,; : RV for customer ¢ in restaurant j. gl H

- 0, : RV for table ¢ in restaurant j.

- 6, : RV for dish k.
- my: number of tables in rest. j serving dish k.

- Myt humber of customers in rest. j sitting at
table ¢t and being served dish k.

-  We denote marginal counts by dots, e.g. ,
S K m
Mj. = D k1 Mk

~ Again, we get a Polya urn scheme
K

twll?“' 1m1 g reey j,t—l)f}/aH ~ Z 59**_|_ H
P -+ m.. -+ m..

41

B. Leibe Image source: Kurt Miller
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Inference for HDP: CRF Sampler

e Using the CRF representation of the HDP

- Customer ¢ in restaurant j is associated with i.i.d draw from G,
and sits at table ¢, ..

- Table ¢ in restaurant j is associated with i.i.d draw from G|,
and serves dish k.

> Dish k is associated with i.i.d draw from H.

e Gibbs sampling approach

~ lteratively sample the table and dish assignment variables,
conditioned on the state of all other variables.

> The parameters Hz.j are integrated out analytically (assuming
conjugacy).

» To resample, make use of exchangeability.

= Imagine each customer i being the last to enter restaurant ;.

B. Leibe
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Inference for HDP: CRF Sampler

e Procedure
1. Resample ¢, according to the following distribution

( ﬂﬂ

tig =t with prob. o ﬂj fkjt({ 9,3})
.7
$ by = 1Y Kjpuen = K with prob. n;_i_(jé+a ﬂj_l_ry fk({xw})
t%j — tneW’ ]{'jtnew — ]{'.new With pI‘Ob. X nﬁ;}—l—a _\’LJ+,_Y fknew ({x“&j})

\ i

where —15 denotes counts in which customer 7 in restaurant j is

removed from the CRF. (If this empties a table, we also remove
the table from the CRF, along with the dish on it.)

- The terms f,({z;}) are defined as follows

fe{zijtijen) = fh ZlJlEDkUD fo(xiz)do
Jj J h(6) Z']’EDk\D fo(x;;)do

where D, denotes the set of indices associated with dish k.
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Inference for HDP: CRF Sampler

e Procedure (cont’d)
2. Resample & (Gibbs update for the dish)

{ k with prob. mﬁ; fre({xi; : ti; =t})

kY with prob. o mﬁjt fk ew ({24 1 ti; =t})

e Remarks

» Computational cost of Gibbs updates is dominated by
computation of the marginal conditional probabilities f,(-).

~ Still, the number of possible events that can occur at one Gibbs
step is one plus the total number of tables and dishes in all
restaurants that are ancestors of ;.

> This number can get quite large in deep or wide hierarchies...

B. Leibe
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Topics of This Lecture

e Applications
~ Topic modeling
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Applications

e Example: Document topic modelling

» Topic: probability distribution over a set of words
> Model each document as a probability distribution over topics.

CARSON, Calif., April 3 -
Nissan Motor Corp said it is
raising the suggested retail price
for its cars and trucks sold in the
United States by 1.9 pct, or an
average 212 dollars per vehicle,
effective April 6....

10% Auto industry

_—" = 15% Market economy

5% US geography
70% Plain old English

DETROIT, April 3 - Sales of
U.S.-built new cars surged during
the last 10 days of March to the
second highest levels of 1987.
Sales of imports, meanwhile, fell
for the first time in years,
succumbing to price hikes by
foreign carmakers.....

10% Auto industry

/\ 40% Market economy

5% US geography
45% Plain old English

B. Leibe

Image source: Yee Whye Teh
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Applications

e Latent Dirichlet Allocation
» Popular topic modelling approach with fixed number of topics &

7 )
Pl

[Blei et al., 2003]

1/ _\'I——H/ \—
N NI
o 0

g \%
N

W

N

> Random variables

- A word is represented as a multinomial random variable w

- A topic is represented as a multinomial random variable z

- A document is represented as a Dirichlet random variable 6

B. Leibe
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Applications

> Number of topics is open-ended

> Multiple infinite mixture models, linked via
shared topic distribution.

N
- Perplexity on test abstacts of LDA and HDP mixture
a J_OSO T T T T T T T T
S S Ty LDA
= 1000 }i = HDP Mixture
c 9s0F
[= z \
P 5 \
@ 2 900F Y
0 - Y
| ou.j \,‘
o 850
3
O 800 RS e aTe mm i = m S
©
E ?go 1 1 1 1 1 1 1 1 1 1
© 10 20 30 40 50 60 70 80 90 100 110 120
8 Number of LDA topics
c
N L3 o
2 = HDP-LDA avoids the need for model selection.
<

B. Leibe

e HDPs can be used to define a BNP version of LDA

Sk G

m
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Applications

e There are many other generalizations | didn’t talk about
» Dependent DPs
> Nested DPs
> Pitman-Yor processes
> Infinite HMMs

> o0 0

e And some that | will talk about in Lectures 15/16...

> Infinite Latent Factor Models
> Beta Processes

> Indian Buffet Process

> Hierarchical Beta Process
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References and Further Reading

e Unfortunately, there are currently no good introductory
textbooks on the Dirichlet Process. We will therefore
post a number of tutorial papers on their different
aspects.

» One of the best available general introductions

- E.B. Sudderth, “Graphical Models for Visual Object Recognition and
Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006.

> A tutorial on Hierarchical DPs

- Y.W. Teh, M.l. Jordan, Hierarchical Bayesian Nonparametric Models
with Applications. Bayesian Nonparametrics, Cambridge Univ. Press,
2010.

> Good overview of MCMC methods for DPMMs

- R. Neal, Markov Chain Sampling Methods for Dirichlet Process
Mixture Models. Journal of Computational and Graphical Statistics,
Vol. 9(2), p. 249-265, 2000Q,... 50

(9|
-
.
Q
P
=
(@))
IE
C
-
®
Q
—
Q
=
N e
(&)
(3]
=
©
Q
(&)
c
©
3
<



http://www.cs.brown.edu/~sudderth/papers/sudderthPhD.pdf
http://www.cs.brown.edu/~sudderth/papers/sudderthPhD.pdf
http://www.stats.ox.ac.uk/~teh/research/npbayes/TehJor2010a.pdf
http://www.stats.ox.ac.uk/~teh/research/npbayes/TehJor2010a.pdf
http://www.stat.purdue.edu/~rdutta/24.PDF
http://www.stat.purdue.edu/~rdutta/24.PDF
http://www.stat.purdue.edu/~rdutta/24.PDF
http://www.stat.purdue.edu/~rdutta/24.PDF
http://www.stat.purdue.edu/~rdutta/24.PDF

