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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 

3 
B. Leibe 
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Recap: Dirichlet Process Mixture Models 

 

 

 

 

 

 

 

 

 
 

• Distributional form 

 Explicit representation of the DP through the node G. 

 Useful when we want to use the DPMM’s predictive distribution. 
4 

B. Leibe Image sources: Yee Whye The 

Base distribution G0 

Infinite discrete 

distribution on £,  

defines the clusters 

Parameters of the 

cluster that gene- 

rates xn  

Likelihood of xn  

given the cluster 
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Recap: Pólya Urn Scheme 

• Pólya Urn scheme  

 Simple generative process for the predictive distribution of a DP 

 Consider a set of N observations             taking K  

distinct values             . The predictive distribution  

of the next observation is then   

 

 

 
 

• Remarks 

 This procedure can be used to sample observations from a DP 

without explicitly constructing the underlying mixture. 

 DPs lead to simple predictive distributions that can be evaluated 

by caching the number of previous observations taking each 

distinct value. 

 

 

 

5 
B. Leibe 
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Recap: Chinese Restaurant Process (CRP) 

• Procedure 

 Imagine a Chinese restaurant with an infinite number of tables, 

each of which can seat an infinite number of customers. 

 The 1st customer enters and sits at the first table. 

 The Nth customer enters and sits at table 

 

 

 

 

 where Nk is the number of customers already sitting at table k. 

 

 

6 
B. Leibe 

   k    with prob                   for k = 1,…,K  

K+1  with prob                      (new table) 
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Recap: CRPs & De Finetti’s Theorem 

• Putting all of this together… 

 De Finetti’s theorem tells us that the CRP has an underlying 

mixture distribution with a prior distribution over measures. 

 The Dirichlet Process is the De Finetti mixing distribution for the 

CRP. 
 

• Graphical model visualization 

 This means, when we integrate out 

G, we get the CRP: 

 

 

 

 If the DP is the prior on G, then the 

CRP defines how points are assigned 

to clusters when we integrate out G. 

7 
Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 
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Recap: CRPs and Efficient Inference 

• Taking advantage of exchangeability… 

 In clustering applications, we are ultimately interested in the 

cluster assignments z1,…,zN.  

 Equivalent question in the CRP: Where should customer n sit, 

conditioned on the seating choices of all the other customers? 

– This is easy when customer n is the last customer to arrive: 

 

 

 

– (Seemingly) hard otherwise… 

 

 Because of exchangeability, we can always swap customer n 

with the final customer and use the above formula! 

 We’ll use this for efficient Gibbs sampling later on… 

8 
B. Leibe Slide adapted from Mike Jordan 
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Recap: Stick-Breaking Construction 

• Explicit construction for the weights in DP realizations 

 Define an infinite sequence of random variables 

 
 

 Then define an infinite sequence of mixing proportions as 

 

 

 

 

 This can be viewed as breaking off portions of a stick 

 

 

 

 When the ¼k are drawn this way, we can write ¼ » GEM(®). 

(where GEM stands for Griffiths, Engen, McCloskey) 
9 

B. Leibe Slide adapted from Kurt Miller, Mike Jordan 
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Summary: Pólya Urns, CRPs, and Stick-Breaking 

10 
B. Leibe 

The CRP describes the  

partitions of µ when G 
is marginalized out 

Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 

The Stick-Breaking  

Process describes 

the partition  

weights 
The Pólya urn describes  

the predictive distribu- 

tion of µ when G is mar- 

ginalized out 
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Summary: Pólya Urns, CRPs, and Stick-Breaking 

• Better understanding of the properties of DPs 

 All three schemes lead to proofs that DPs exist. 

 Using the Polya urn scheme, we showed that we can sample 

from DPs without constructing the underlying mixture explicitly. 

 Using the Chinese Restaurant Process, we showed that the 

expected number of clusters grows with O(® log N). 

 Using the Stick-Breaking Construction, we showed that Dirichlet 

measures are discrete with probability one. 

 

• Uses for inference 

 All three schemes can be used to construct efficient inference 

methods. 

 We will mostly look at Gibbs samplers that are derived from the 

CRP. 

11 
B. Leibe 
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 

12 
B. Leibe 
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Dirichlet Process Mixture Models 

• Back to the clustering problem… 

16 
B. Leibe 

Indicator variable 

representation 

Distributional form 

Image sources: Yee Whye The, Kurt Miller 
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Collapsed DP Mixture Sampler 

• Efficient algorithm 

 Generalize the collapsed (Rao-Blackwellized) Gibbs sampler we 

derived for finite mixtures 

 As before, sample the indicator variables zn assigning 

observations to latent clusters, marginalizing mixture weights ¼k 

and parameters µk. 

 Assume the cluster priors H(¸) are conjugate. 
 

• Derivation 

 The model implies the factorization 

 
 

  

 

 

 17 
B. Leibe Image source: Yee Whye Teh 

Prior on partitions 

expressed by the CRP! 
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Collapsed DP Mixture Sampler 

• Derivation (cont’d) 

 Exchangeability: Think of zn as the last observation in sequence 

 

 
 

 The predictive likelihood of xn is computed as for finite 

mixtures: 

 
 

 New clusters    are based on the predictive likelihood implied by 

the hyperparameters ¸  

18 
B. Leibe 
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Collapsed DP Mixture Sampler 

• Algorithm 

1. Sample a random permutation ¿ (¢) of the integers {1,…,N}. 
 

2. Set ® = ®(t-1) and z = z(t-1). For each n 2 {¿(1),…,¿(N)}, 

sequentially resample zn as follows 

a) For each of the K existing clusters, determine the predictive 

likelihood 

 
 

Also determine the likelihood           of a potential new cluster  

  
 

b) Sample a new assignment zn from the multinomial distribution 

 

 
 

c) Update cached sufficient statistics to reflect assignment znk. If  

             , create a new cluster and increment K. 19 

B. Leibe Slide adapted from Erik Sudderth 
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Collapsed DP Mixture Sampler (cont’d) 

• Algorithm (cont’d) 

3. Set z(t) = z. Optionally, mixture parameters for the K currently 

instantiated clusters may be sampled as in step 3 of the 

standard finite mixture sampler. 

4. If any current clusters are empty (Nk = 0), remove them and 

decrement K accordingly. 
 

• Remarks 

 Algorithm is valid if the cluster priors H(¸) are conjugate. 

 Cluster assignments z(t) produced by Gibbs sampler provide 

estimates K(t) of the number of clusters underlying the 

observations X, as well as their associated parameters. 

 Predictions based on samples average over mixtures of varying 

size, avoiding difficulties in selecting a single model. 

20 
B. Leibe Slide adapted from Erik Sudderth 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Collapsed DP Sampler: 2 Iterations 

 

21 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 
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Collapsed DP Sampler: 10 Iterations 

 

22 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Collapsed DP Sampler: 50 Iterations 

 

23 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 
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DPMMs vs. Finite Mixture Samplers 

 

 

 

 

 

 

 

 
 

• Observations 

 Despite having to search over mixtures of varying order, the DP 

sampler typically converges faster. 

 Avoids local optima by creating redundant clusters at beginning. 

24 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 

median 

median 
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DP Posterior Number of Clusters 

 

25 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 

Number of mixture components 

with at least 2% of the probability 

mass at each iteration 

Average across the final 

900 iterations 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Summary: Nonparametric Bayesian Clustering 

• DPMMs for Clustering 

 First specify the likelihood. This is application dependent. 

 Next, specify a prior on all parameters – the Dirichlet Process! 

 Exact posterior inference is intractable. But we can use a Gibbs 

sampler for approximate inference. This is based on the CRP 

representation. 

26 
B. Leibe Slide credit: Kurt Miller 
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DPMM Software Packages 

• Matlab packages for CRP mixture models 

 

27 
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Algorithm Author Link 

MCMC J. Eisenstein http://people.csail.mit.edu/jacobe/software.html 

Variational K. Kurihara http://sites.google.com/site/kenichikurihara/ 

academic-software 

http://people.csail.mit.edu/jacobe/software.html
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 

28 
B. Leibe 
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Hierarchical Bayesian Models 

• Original Bayesian idea 

 View parameters as random variables – place a prior on them. 

 

• Problem 

 Often the priors themselves need parameters (hyperparameters) 

 

• Solution 

 Place a prior on these parameters! 

29 
B. Leibe Slide credit: Kurt Miller 
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Multiple Learning Problems 

• We often face multiple, related learning problems 

 E.g., multiple related Gaussian means: xij » N(µi,¾i
2)  

 

 

 

 

 

 

 
 

 Maximum likelihood:  

 

 ML often does not work very well… 

 Want to “share statistical strength” (i.e., smooth) 

 30 
B. Leibe Slide credit: Kurt Miller, Mike Jordan Image source: Kurt Miller 
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Hierarchical Bayesian Approach 

• Bayesian solution 

 Treat the parameters µi as random variables sampled from an 

underlying prior µ0. 

 

 

 

 

 

 

 

 

• Bayesian inference yields shrinkage 

 Posterior mean for each µk combines data from all of the groups, 

without simply lumping the data into one group. 
31 

B. Leibe Slide credit: Mike Jordan Image source: Kurt Miller 

Plate 

notation: 
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Multiple Clustering Problems 

• What to do if we have DPs for multiple related datasets? 

32 
B. Leibe Slide credit: Kurt Miller, Mike Jordan Image source: Kurt Miller 

? 
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Attempt 1 

 

 What kind of distribution do we use for G0? 

What for H? 

 

 Suppose µij are mean parameters for a 

Gaussian where  

 

 

and G0 is a Gaussian with unknown mean? 

 

 

 

 This does NOT work! Why? 

33 
B. Leibe Image source: Kurt Miller Slide credit: Kurt Miller, Mike Jordan 
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Attempt 1 

 

 Problem: if G0 is continuous, then with 

probability ONE, Gi and Gj will share ZERO 

atoms. 

 This means NO clustering! 

 

34 
B. Leibe Image source: Kurt Miller Slide credit: Kurt Miller, Mike Jordan 
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Hierarchical Dirichlet Processes 

• We need to have the base measure G0 be discrete 

 But also need it to be flexible and random. 

 

• Solution:  

 Let G0 itself be distributed according to a DP: 

 
 

 Then 

 

 

 has at its base measure a (random) atomic distribution. 

 Samples of Gj will resample from those atoms. 

 

 

35 
B. Leibe Slide credit: Mike Jordan 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Hierarchical Dirichlet Processes  [Teh et al., 2006] 

 

36 
B. Leibe Image source: Kurt Miller Slide credit: Kurt Miller, Mike Jordan 
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Comparison 

• Dirichlet Process 

 Useful in models for which a component of the model is a 

discrete random variable of unknown cardinality. 
 

• Hierarchical Dirichlet Processes           [Teh et al., 2006] 

 Useful in problems in which there are multiple groups of data, 

where the model for each group of data incorporates a discrete 

variable of unknown cardinality, and where we wish to tie these 

variables across groups. 
 

• Similar representations for HDP to derive its properties 

 Stick-Breaking construction 

 Chinese Restaurant Franchise 
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Chinese Restaurant Franchise (CRF) 

• Chain of Chinese restaurants 

 Each restaurant has an unboun- 

ded number of tables. 

 There is a global menu with an  

unbounded number of dishes. 

 The first customer at a table  

selects the dish for that table  

from the global menu. 

 

• Reinforcement effects 

 Customers prefer to sit at tables with many other customers, 

and prefer dishes that are chosen by many other customers. 

 Dishes are chosen with probability proportional to the number of 

tables (franchise-wide) that have previously served that dish. 

38 
B. Leibe Image source: Erik Sudderth Slide adapted from Mike Jordan 
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Chinese Restaurant Franchise (CRF) 

• Examine marginal properties of HDP 

 First integrate out Gi, then G0. 

39 
B. Leibe Image source: Kurt Miller Slide adapted from Kurt Miller 
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Chinese Restaurant Franchise (CRF) 

• Step 1: Integrate out Gi: 

 Variable definitions 

–  µij  : RV for customer i in restaurant j. 

–  µjt
* : RV for table t in restaurant j. 

–  µk
** : RV for dish k. 

–  mjk: number of tables in rest. j serving dish k. 

–  njtk: number of customers in rest. j sitting at  

         table t and being served dish k.  

–  We denote marginal counts by dots, e.g. 

 
 

 Integration yields a set of conditional distributions described by  

a Polya urn scheme 

 

40 
B. Leibe Image source: Kurt Miller 
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Chinese Restaurant Franchise (CRF) 

• Step 2: Integrate out G0: 

 Variable definitions 

–  µij  : RV for customer i in restaurant j. 

–  µjt
* : RV for table t in restaurant j. 

–  µk
** : RV for dish k. 

–  mjk: number of tables in rest. j serving dish k. 

–  njtk: number of customers in rest. j sitting at  

         table t and being served dish k.  

–  We denote marginal counts by dots, e.g. 

 
 

 Again, we get a Polya urn scheme 
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Inference for HDP: CRF Sampler 

• Using the CRF representation of the HDP 

 Customer i in restaurant j is associated with i.i.d draw from Gi 

and sits at table tij. 

 Table t in restaurant j is associated with i.i.d draw from G0  

and serves dish kjt. 

 Dish k is associated with i.i.d draw from H. 
 

• Gibbs sampling approach 

 Iteratively sample the table and dish assignment variables, 

conditioned on the state of all other variables. 

 The parameters µij are integrated out analytically (assuming 

conjugacy). 

 To resample, make use of exchangeability. 

 Imagine each customer i being the last to enter restaurant j. 
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Inference for HDP: CRF Sampler 

• Procedure 

1. Resample tij according to the following distribution 

 

 

 

 
 

where :ij denotes counts in which customer i in restaurant j is 

removed from the CRF. (If this empties a table, we also remove 

the table from the CRF, along with the dish on it.) 
 

 The terms fk({xij}) are defined as follows  

 

 
 

 where DK denotes the set of indices associated with dish k. 
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Inference for HDP: CRF Sampler 

• Procedure (cont’d) 

2. Resample kjt (Gibbs update for the dish) 

 

 

 

 

 

• Remarks 

 Computational cost of Gibbs updates is dominated by 

computation of the marginal conditional probabilities fk(¢). 

 Still, the number of possible events that can occur at one Gibbs 

step is one plus the total number of tables and dishes in all 

restaurants that are ancestors of j. 

 This number can get quite large in deep or wide hierarchies... 
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 
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Applications 

• Example: Document topic modelling 

 Topic: probability distribution over a set of words 

 Model each document as a probability distribution over topics. 

46 
B. Leibe Image source: Yee Whye Teh 
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Applications 

• Latent Dirichlet Allocation             [Blei et al., 2003] 

 Popular topic modelling approach with fixed number of topics k  

 

 

 

 

 

 

 

 Random variables 

– A word is represented as a multinomial random variable w 

– A topic is represented as a multinomial random variable z 

– A document is represented as a Dirichlet random variable µ  
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Applications 

• HDPs can be used to define a BNP version of LDA 

 Number of topics is open-ended 

 Multiple infinite mixture models, linked via 

shared topic distribution. 

 

 

 

 

 

 

 

 

 

 HDP-LDA avoids the need for model selection. 
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Applications 

• There are many other generalizations I didn’t talk about 

 Dependent DPs 

 Nested DPs 

 Pitman-Yor processes 

 Infinite HMMs 

 ... 

 

• And some that I will talk about in Lectures 15/16... 

 Infinite Latent Factor Models 

 Beta Processes 

 Indian Buffet Process 

 Hierarchical Beta Process 
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References and Further Reading 

• Unfortunately, there are currently no good introductory 

textbooks on the Dirichlet Process. We will therefore 

post a number of tutorial papers on their different 

aspects.  
 

 One of the best available general introductions 

– E.B. Sudderth, “Graphical Models for Visual Object Recognition and 

Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006. 
 

 A tutorial on Hierarchical DPs 

– Y.W. Teh, M.I. Jordan, Hierarchical Bayesian Nonparametric Models 

with Applications. Bayesian Nonparametrics, Cambridge Univ. Press, 

2010. 
 

 Good overview of MCMC methods for DPMMs 

– R. Neal, Markov Chain Sampling Methods for Dirichlet Process 

Mixture Models. Journal of Computational and Graphical Statistics, 

Vol. 9(2), p. 249-265, 2000.  
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