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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 

3 
B. Leibe 
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Recap: Dirichlet Process Mixture Models 

 

 

 

 

 

 

 

 

 
 

• Distributional form 

 Explicit representation of the DP through the node G. 

 Useful when we want to use the DPMM’s predictive distribution. 
4 

B. Leibe Image sources: Yee Whye The 

Base distribution G0 

Infinite discrete 

distribution on £,  

defines the clusters 

Parameters of the 

cluster that gene- 

rates xn  

Likelihood of xn  

given the cluster 
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Recap: Pólya Urn Scheme 

• Pólya Urn scheme  

 Simple generative process for the predictive distribution of a DP 

 Consider a set of N observations             taking K  

distinct values             . The predictive distribution  

of the next observation is then   

 

 

 
 

• Remarks 

 This procedure can be used to sample observations from a DP 

without explicitly constructing the underlying mixture. 

 DPs lead to simple predictive distributions that can be evaluated 

by caching the number of previous observations taking each 

distinct value. 

 

 

 

5 
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Recap: Chinese Restaurant Process (CRP) 

• Procedure 

 Imagine a Chinese restaurant with an infinite number of tables, 

each of which can seat an infinite number of customers. 

 The 1st customer enters and sits at the first table. 

 The Nth customer enters and sits at table 

 

 

 

 

 where Nk is the number of customers already sitting at table k. 

 

 

6 
B. Leibe 

   k    with prob                   for k = 1,…,K  

K+1  with prob                      (new table) 
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Recap: CRPs & De Finetti’s Theorem 

• Putting all of this together… 

 De Finetti’s theorem tells us that the CRP has an underlying 

mixture distribution with a prior distribution over measures. 

 The Dirichlet Process is the De Finetti mixing distribution for the 

CRP. 
 

• Graphical model visualization 

 This means, when we integrate out 

G, we get the CRP: 

 

 

 

 If the DP is the prior on G, then the 

CRP defines how points are assigned 

to clusters when we integrate out G. 

7 
Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 
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Recap: CRPs and Efficient Inference 

• Taking advantage of exchangeability… 

 In clustering applications, we are ultimately interested in the 

cluster assignments z1,…,zN.  

 Equivalent question in the CRP: Where should customer n sit, 

conditioned on the seating choices of all the other customers? 

– This is easy when customer n is the last customer to arrive: 

 

 

 

– (Seemingly) hard otherwise… 

 

 Because of exchangeability, we can always swap customer n 

with the final customer and use the above formula! 

 We’ll use this for efficient Gibbs sampling later on… 

8 
B. Leibe Slide adapted from Mike Jordan 
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Recap: Stick-Breaking Construction 

• Explicit construction for the weights in DP realizations 

 Define an infinite sequence of random variables 

 
 

 Then define an infinite sequence of mixing proportions as 

 

 

 

 

 This can be viewed as breaking off portions of a stick 

 

 

 

 When the ¼k are drawn this way, we can write ¼ » GEM(®). 

(where GEM stands for Griffiths, Engen, McCloskey) 
9 

B. Leibe Slide adapted from Kurt Miller, Mike Jordan 
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Summary: Pólya Urns, CRPs, and Stick-Breaking 

10 
B. Leibe 

The CRP describes the  

partitions of µ when G 
is marginalized out 

Slide adapted from Kurt Miller, Mike Jordan Image source: Kurt Miller 

The Stick-Breaking  

Process describes 

the partition  

weights 
The Pólya urn describes  

the predictive distribu- 

tion of µ when G is mar- 

ginalized out 
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Summary: Pólya Urns, CRPs, and Stick-Breaking 

• Better understanding of the properties of DPs 

 All three schemes lead to proofs that DPs exist. 

 Using the Polya urn scheme, we showed that we can sample 

from DPs without constructing the underlying mixture explicitly. 

 Using the Chinese Restaurant Process, we showed that the 

expected number of clusters grows with O(® log N). 

 Using the Stick-Breaking Construction, we showed that Dirichlet 

measures are discrete with probability one. 

 

• Uses for inference 

 All three schemes can be used to construct efficient inference 

methods. 

 We will mostly look at Gibbs samplers that are derived from the 

CRP. 

11 
B. Leibe 
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 

12 
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Dirichlet Process Mixture Models 

• Back to the clustering problem… 

16 
B. Leibe 

Indicator variable 

representation 

Distributional form 

Image sources: Yee Whye The, Kurt Miller 
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Collapsed DP Mixture Sampler 

• Efficient algorithm 

 Generalize the collapsed (Rao-Blackwellized) Gibbs sampler we 

derived for finite mixtures 

 As before, sample the indicator variables zn assigning 

observations to latent clusters, marginalizing mixture weights ¼k 

and parameters µk. 

 Assume the cluster priors H(¸) are conjugate. 
 

• Derivation 

 The model implies the factorization 

 
 

  

 

 

 17 
B. Leibe Image source: Yee Whye Teh 

Prior on partitions 

expressed by the CRP! 
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Collapsed DP Mixture Sampler 

• Derivation (cont’d) 

 Exchangeability: Think of zn as the last observation in sequence 

 

 
 

 The predictive likelihood of xn is computed as for finite 

mixtures: 

 
 

 New clusters    are based on the predictive likelihood implied by 

the hyperparameters ¸  

18 
B. Leibe 
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Collapsed DP Mixture Sampler 

• Algorithm 

1. Sample a random permutation ¿ (¢) of the integers {1,…,N}. 
 

2. Set ® = ®(t-1) and z = z(t-1). For each n 2 {¿(1),…,¿(N)}, 

sequentially resample zn as follows 

a) For each of the K existing clusters, determine the predictive 

likelihood 

 
 

Also determine the likelihood           of a potential new cluster  

  
 

b) Sample a new assignment zn from the multinomial distribution 

 

 
 

c) Update cached sufficient statistics to reflect assignment znk. If  

             , create a new cluster and increment K. 19 

B. Leibe Slide adapted from Erik Sudderth 
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Collapsed DP Mixture Sampler (cont’d) 

• Algorithm (cont’d) 

3. Set z(t) = z. Optionally, mixture parameters for the K currently 

instantiated clusters may be sampled as in step 3 of the 

standard finite mixture sampler. 

4. If any current clusters are empty (Nk = 0), remove them and 

decrement K accordingly. 
 

• Remarks 

 Algorithm is valid if the cluster priors H(¸) are conjugate. 

 Cluster assignments z(t) produced by Gibbs sampler provide 

estimates K(t) of the number of clusters underlying the 

observations X, as well as their associated parameters. 

 Predictions based on samples average over mixtures of varying 

size, avoiding difficulties in selecting a single model. 

20 
B. Leibe Slide adapted from Erik Sudderth 
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Collapsed DP Sampler: 2 Iterations 

 

21 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 
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Collapsed DP Sampler: 10 Iterations 

 

22 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 
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Collapsed DP Sampler: 50 Iterations 

 

23 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 
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DPMMs vs. Finite Mixture Samplers 

 

 

 

 

 

 

 

 
 

• Observations 

 Despite having to search over mixtures of varying order, the DP 

sampler typically converges faster. 

 Avoids local optima by creating redundant clusters at beginning. 

24 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 

median 

median 
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DP Posterior Number of Clusters 

 

25 
B. Leibe Slide credit: Erik Sudderth Image source: Erik Sudderth 

Number of mixture components 

with at least 2% of the probability 

mass at each iteration 

Average across the final 

900 iterations 
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Summary: Nonparametric Bayesian Clustering 

• DPMMs for Clustering 

 First specify the likelihood. This is application dependent. 

 Next, specify a prior on all parameters – the Dirichlet Process! 

 Exact posterior inference is intractable. But we can use a Gibbs 

sampler for approximate inference. This is based on the CRP 

representation. 

26 
B. Leibe Slide credit: Kurt Miller 
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DPMM Software Packages 

• Matlab packages for CRP mixture models 

 

27 
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Algorithm Author Link 

MCMC J. Eisenstein http://people.csail.mit.edu/jacobe/software.html 

Variational K. Kurihara http://sites.google.com/site/kenichikurihara/ 

academic-software 

http://people.csail.mit.edu/jacobe/software.html
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
http://sites.google.com/site/kenichikurihara/academic-software
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 

28 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Hierarchical Bayesian Models 

• Original Bayesian idea 

 View parameters as random variables – place a prior on them. 

 

• Problem 

 Often the priors themselves need parameters (hyperparameters) 

 

• Solution 

 Place a prior on these parameters! 

29 
B. Leibe Slide credit: Kurt Miller 
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Multiple Learning Problems 

• We often face multiple, related learning problems 

 E.g., multiple related Gaussian means: xij » N(µi,¾i
2)  

 

 

 

 

 

 

 
 

 Maximum likelihood:  

 

 ML often does not work very well… 

 Want to “share statistical strength” (i.e., smooth) 

 30 
B. Leibe Slide credit: Kurt Miller, Mike Jordan Image source: Kurt Miller 
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Hierarchical Bayesian Approach 

• Bayesian solution 

 Treat the parameters µi as random variables sampled from an 

underlying prior µ0. 

 

 

 

 

 

 

 

 

• Bayesian inference yields shrinkage 

 Posterior mean for each µk combines data from all of the groups, 

without simply lumping the data into one group. 
31 

B. Leibe Slide credit: Mike Jordan Image source: Kurt Miller 

Plate 

notation: 
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Multiple Clustering Problems 

• What to do if we have DPs for multiple related datasets? 

32 
B. Leibe Slide credit: Kurt Miller, Mike Jordan Image source: Kurt Miller 

? 
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Attempt 1 

 

 What kind of distribution do we use for G0? 

What for H? 

 

 Suppose µij are mean parameters for a 

Gaussian where  

 

 

and G0 is a Gaussian with unknown mean? 

 

 

 

 This does NOT work! Why? 

33 
B. Leibe Image source: Kurt Miller Slide credit: Kurt Miller, Mike Jordan 
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Attempt 1 

 

 Problem: if G0 is continuous, then with 

probability ONE, Gi and Gj will share ZERO 

atoms. 

 This means NO clustering! 

 

34 
B. Leibe Image source: Kurt Miller Slide credit: Kurt Miller, Mike Jordan 
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Hierarchical Dirichlet Processes 

• We need to have the base measure G0 be discrete 

 But also need it to be flexible and random. 

 

• Solution:  

 Let G0 itself be distributed according to a DP: 

 
 

 Then 

 

 

 has at its base measure a (random) atomic distribution. 

 Samples of Gj will resample from those atoms. 
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Hierarchical Dirichlet Processes  [Teh et al., 2006] 
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Comparison 

• Dirichlet Process 

 Useful in models for which a component of the model is a 

discrete random variable of unknown cardinality. 
 

• Hierarchical Dirichlet Processes           [Teh et al., 2006] 

 Useful in problems in which there are multiple groups of data, 

where the model for each group of data incorporates a discrete 

variable of unknown cardinality, and where we wish to tie these 

variables across groups. 
 

• Similar representations for HDP to derive its properties 

 Stick-Breaking construction 

 Chinese Restaurant Franchise 

37 
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Chinese Restaurant Franchise (CRF) 

• Chain of Chinese restaurants 

 Each restaurant has an unboun- 

ded number of tables. 

 There is a global menu with an  

unbounded number of dishes. 

 The first customer at a table  

selects the dish for that table  

from the global menu. 

 

• Reinforcement effects 

 Customers prefer to sit at tables with many other customers, 

and prefer dishes that are chosen by many other customers. 

 Dishes are chosen with probability proportional to the number of 

tables (franchise-wide) that have previously served that dish. 

38 
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Chinese Restaurant Franchise (CRF) 

• Examine marginal properties of HDP 

 First integrate out Gi, then G0. 

39 
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Chinese Restaurant Franchise (CRF) 

• Step 1: Integrate out Gi: 

 Variable definitions 

–  µij  : RV for customer i in restaurant j. 

–  µjt
* : RV for table t in restaurant j. 

–  µk
** : RV for dish k. 

–  mjk: number of tables in rest. j serving dish k. 

–  njtk: number of customers in rest. j sitting at  

         table t and being served dish k.  

–  We denote marginal counts by dots, e.g. 

 
 

 Integration yields a set of conditional distributions described by  

a Polya urn scheme 
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Chinese Restaurant Franchise (CRF) 

• Step 2: Integrate out G0: 

 Variable definitions 

–  µij  : RV for customer i in restaurant j. 

–  µjt
* : RV for table t in restaurant j. 

–  µk
** : RV for dish k. 

–  mjk: number of tables in rest. j serving dish k. 

–  njtk: number of customers in rest. j sitting at  

         table t and being served dish k.  

–  We denote marginal counts by dots, e.g. 

 
 

 Again, we get a Polya urn scheme 
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Inference for HDP: CRF Sampler 

• Using the CRF representation of the HDP 

 Customer i in restaurant j is associated with i.i.d draw from Gi 

and sits at table tij. 

 Table t in restaurant j is associated with i.i.d draw from G0  

and serves dish kjt. 

 Dish k is associated with i.i.d draw from H. 
 

• Gibbs sampling approach 

 Iteratively sample the table and dish assignment variables, 

conditioned on the state of all other variables. 

 The parameters µij are integrated out analytically (assuming 

conjugacy). 

 To resample, make use of exchangeability. 

 Imagine each customer i being the last to enter restaurant j. 
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Inference for HDP: CRF Sampler 

• Procedure 

1. Resample tij according to the following distribution 

 

 

 

 
 

where :ij denotes counts in which customer i in restaurant j is 

removed from the CRF. (If this empties a table, we also remove 

the table from the CRF, along with the dish on it.) 
 

 The terms fk({xij}) are defined as follows  

 

 
 

 where DK denotes the set of indices associated with dish k. 
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Inference for HDP: CRF Sampler 

• Procedure (cont’d) 

2. Resample kjt (Gibbs update for the dish) 

 

 

 

 

 

• Remarks 

 Computational cost of Gibbs updates is dominated by 

computation of the marginal conditional probabilities fk(¢). 

 Still, the number of possible events that can occur at one Gibbs 

step is one plus the total number of tables and dishes in all 

restaurants that are ancestors of j. 

 This number can get quite large in deep or wide hierarchies... 
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Topics of This Lecture 

• Applying DPs 
 Recap: DPs 

 Efficient Gibbs sampling 
 

• Hierarchical Dirichlet Processes 
 Definition 

 Properties 

 Chinese Restaurant Franchise  

 Gibbs sampling for HDPs 
 

• Applications 
 Topic modeling 
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Applications 

• Example: Document topic modelling 

 Topic: probability distribution over a set of words 

 Model each document as a probability distribution over topics. 

46 
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Applications 

• Latent Dirichlet Allocation             [Blei et al., 2003] 

 Popular topic modelling approach with fixed number of topics k  

 

 

 

 

 

 

 

 Random variables 

– A word is represented as a multinomial random variable w 

– A topic is represented as a multinomial random variable z 

– A document is represented as a Dirichlet random variable µ  
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Applications 

• HDPs can be used to define a BNP version of LDA 

 Number of topics is open-ended 

 Multiple infinite mixture models, linked via 

shared topic distribution. 

 

 

 

 

 

 

 

 

 

 HDP-LDA avoids the need for model selection. 
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Applications 

• There are many other generalizations I didn’t talk about 

 Dependent DPs 

 Nested DPs 

 Pitman-Yor processes 

 Infinite HMMs 

 ... 

 

• And some that I will talk about in Lectures 15/16... 

 Infinite Latent Factor Models 

 Beta Processes 

 Indian Buffet Process 

 Hierarchical Beta Process 
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References and Further Reading 

• Unfortunately, there are currently no good introductory 

textbooks on the Dirichlet Process. We will therefore 

post a number of tutorial papers on their different 

aspects.  
 

 One of the best available general introductions 

– E.B. Sudderth, “Graphical Models for Visual Object Recognition and 

Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006. 
 

 A tutorial on Hierarchical DPs 

– Y.W. Teh, M.I. Jordan, Hierarchical Bayesian Nonparametric Models 

with Applications. Bayesian Nonparametrics, Cambridge Univ. Press, 

2010. 
 

 Good overview of MCMC methods for DPMMs 

– R. Neal, Markov Chain Sampling Methods for Dirichlet Process 

Mixture Models. Journal of Computational and Graphical Statistics, 

Vol. 9(2), p. 249-265, 2000.  
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